Calcium-Binding Proteins as Determinants of Central Nervous System Neuronal Vulnerability to Disease
Abstract
:1. Introduction
2. CNS Distribution and Physiological Function of Neuronal CaBPs
3. CaBPs as Markers for Neuronal Vulnerability to Disease?
4. Subcellular Localization of CaBPs
5. Regulation of CaBP Expression
6. Conclusions
Funding
Conflicts of Interest
References
- Fairless, R.; Williams, S.K.; Diem, R. Dysfunction of neuronal calcium signalling in neuroinflammation and neurodegeneration. Cell Tissue Res. 2014, 357, 455–462. [Google Scholar] [CrossRef]
- Schwaller, B. The continuing disappearance of “pure” Ca2+ buffers. Cell Mol. Life Sci. 2009, 66, 275–300. [Google Scholar] [CrossRef]
- Kobayashi, M.; Hamanoue, M.; Masaki, T.; Furuta, Y.; Takamatsu, K. Hippocalcin mediates calcium-dependent translocation of brain-type creatine kinase (BB-CK) in hippocampal neurons. Biochem. Biophys. Res. Commun. 2012, 429, 142–147. [Google Scholar] [CrossRef]
- Mulder, J.; Zilberter, M.; Spence, L.; Tortoriello, G.; Uhlen, M.; Yanagawa, Y.; Aujard, F.; Hokfelt, T.; Harkany, T. Secretagogin is a Ca2+-binding protein specifying subpopulations of telencephalic neurons. Proc. Natl. Acad. Sci. USA 2009, 106, 22492–22497. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kantor, O.; Mezey, S.; Adeghate, J.; Naumann, A.; Nitschke, R.; Enzsoly, A.; Szabo, A.; Lukats, A.; Nemeth, J.; Somogyvari, Z.; et al. Calcium buffer proteins are specific markers of human retinal neurons. Cell Tissue Res. 2016, 365, 29–50. [Google Scholar] [CrossRef]
- Laube, G.; Seidenbecher, C.I.; Richter, K.; Dieterich, D.C.; Hoffmann, B.; Landwehr, M.; Smalla, K.H.; Winter, C.; Bockers, T.M.; Wolf, G.; et al. The neuron-specific Ca2+-binding protein caldendrin: Gene structure, splice isoforms, and expression in the rat central nervous system. Mol. Cell Neurosci. 2002, 19, 459–475. [Google Scholar] [CrossRef]
- Kim, K.Y.; Scholl, E.S.; Liu, X.; Shepherd, A.; Haeseleer, F.; Lee, A. Localization and expression of CaBP1/caldendrin in the mouse brain. Neuroscience 2014, 268, 33–47. [Google Scholar] [CrossRef] [Green Version]
- Haeseleer, F.; Sokal, I.; Verlinde, C.L.; Erdjument-Bromage, H.; Tempst, P.; Pronin, A.N.; Benovic, J.L.; Fariss, R.N.; Palczewski, K. Five members of a novel Ca(2+)-binding protein (CABP) subfamily with similarity to calmodulin. J. Biol. Chem. 2000, 275, 1247–1260. [Google Scholar] [CrossRef] [PubMed]
- Schwaller, B.; Meyer, M.; Schiffmann, S. ‘New’ functions for ‘old’ proteins: The role of the calcium-binding proteins calbindin D-28k, calretinin and parvalbumin, in cerebellar physiology. Studies with knockout mice. Cerebellum 2002, 1, 241–258. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, H. Three functional facets of calbindin D-28k. Front Mol. Neurosci. 2012, 5, 25. [Google Scholar] [CrossRef]
- Mayer, C.; Bruehl, C.; Salt, E.L.; Diem, R.; Draguhn, A.; Fairless, R. Selective Vulnerability of alphaOFF Retinal Ganglion Cells during Onset of Autoimmune Optic Neuritis. Neuroscience 2018, 393, 258–272. [Google Scholar] [CrossRef]
- Ou, Y.; Jo, R.E.; Ullian, E.M.; Wong, R.O.; Della Santina, L. Selective Vulnerability of Specific Retinal Ganglion Cell Types and Synapses after Transient Ocular Hypertension. J. Neurosci. 2016, 36, 9240–9252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pacelli, C.; Giguere, N.; Bourque, M.J.; Levesque, M.; Slack, R.S.; Trudeau, L.E. Elevated Mitochondrial Bioenergetics and Axonal Arborization Size Are Key Contributors to the Vulnerability of Dopamine Neurons. Curr. Biol. 2015, 25, 2349–2360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Romito-DiGiacomo, R.R.; Menegay, H.; Cicero, S.A.; Herrup, K. Effects of Alzheimer’s disease on different cortical layers: The role of intrinsic differences in Abeta susceptibility. J. Neurosci. 2007, 27, 8496–8504. [Google Scholar] [CrossRef]
- Mattsson, N.; Schott, J.M.; Hardy, J.; Turner, M.R.; Zetterberg, H. Selective vulnerability in neurodegeneration: Insights from clinical variants of Alzheimer’s disease. J. Neurol. Neurosurg. Psychiatry 2016, 87, 1000–1004. [Google Scholar] [CrossRef]
- Contreras, D. Electrophysiological classes of neocortical neurons. Neural Netw. 2004, 17, 633–646. [Google Scholar] [CrossRef]
- Park, H.S.; Park, S.J.; Park, S.H.; Chun, M.H.; Oh, S.J. Shifting of parvalbumin expression in the rat retina in experimentally induced diabetes. Acta Neuropathol. 2008, 115, 241–248. [Google Scholar] [CrossRef]
- Lee, E.S.; Jeon, C.J. Starburst amacrine cells express parvalbumin but not calbindin and calretinin in rabbit retina. Neuroreport 2013, 24, 918–923. [Google Scholar] [CrossRef] [PubMed]
- Hong, C.J.H.; Siddiqui, A.M.; Sabljic, T.F.; Ball, A.K. Changes in parvalbumin immunoreactive retinal ganglion cells and amacrine cells after optic nerve injury. Exp. Eye Res. 2016, 145, 363–372. [Google Scholar] [CrossRef]
- Chen, G.; Racay, P.; Bichet, S.; Celio, M.R.; Eggli, P.; Schwaller, B. Deficiency in parvalbumin, but not in calbindin D-28k upregulates mitochondrial volume and decreases smooth endoplasmic reticulum surface selectively in a peripheral, subplasmalemmal region in the soma of Purkinje cells. Neuroscience 2006, 142, 97–105. [Google Scholar] [CrossRef] [Green Version]
- Clements, R.J.; McDonough, J.; Freeman, E.J. Distribution of parvalbumin and calretinin immunoreactive interneurons in motor cortex from multiple sclerosis post-mortem tissue. Exp. Brain Res. 2008, 187, 459–465. [Google Scholar] [CrossRef]
- Yi, C.W.; Yu, S.H.; Lee, E.S.; Lee, J.G.; Jeon, C.J. Types of parvalbumin-containing retinotectal ganglion cells in mouse. Acta Histochem. Cytochem. 2012, 45, 201–210. [Google Scholar] [CrossRef]
- Jinno, S.; Kosaka, T. Parvalbumin is expressed in glutamatergic and GABAergic corticostriatal pathway in mice. J. Comp. Neurol. 2004, 477, 188–201. [Google Scholar] [CrossRef]
- Celio, M.R. Calbindin D-28k and parvalbumin in the rat nervous system. Neuroscience 1990, 35, 375–475. [Google Scholar] [CrossRef]
- Kim, B.J.; Lee, S.Y.; Kim, H.W.; Park, E.J.; Kim, J.; Kim, S.J.; So, I.; Jeon, J.H. Optimized immunohistochemical analysis of cerebellar purkinje cells using a specific biomarker, calbindin d28k. Korean J. Physiol. Pharm. 2009, 13, 373–378. [Google Scholar] [CrossRef]
- Li, J.T.; Xie, X.M.; Yu, J.Y.; Sun, Y.X.; Liao, X.M.; Wang, X.X.; Su, Y.A.; Liu, Y.J.; Schmidt, M.V.; Wang, X.D.; et al. Suppressed Calbindin Levels in Hippocampal Excitatory Neurons Mediate Stress-Induced Memory Loss. Cell Rep. 2017, 21, 891–900. [Google Scholar] [CrossRef] [PubMed]
- Van Brederode, J.F.; Helliesen, M.K.; Hendrickson, A.E. Distribution of the calcium-binding proteins parvalbumin and calbindin-D28k in the sensorimotor cortex of the rat. Neuroscience 1991, 44, 157–171. [Google Scholar] [CrossRef]
- Jeon, M.H.; Jeon, C.J. Immunocytochemical localization of calretinin containing neurons in retina from rabbit, cat, and dog. Neurosci. Res. 1998, 32, 75–84. [Google Scholar] [CrossRef]
- Barinka, F.; Druga, R. Calretinin expression in the mammalian neocortex: A review. Physiol. Res. 2010, 59, 665–677. [Google Scholar]
- Jacobowitz, D.M.; Winsky, L. Immunocytochemical localization of calretinin in the forebrain of the rat. J. Comp. Neurol. 1991, 304, 198–218. [Google Scholar] [CrossRef] [PubMed]
- Resibois, A.; Rogers, J.H. Calretinin in rat brain: An immunohistochemical study. Neuroscience 1992, 46, 101–134. [Google Scholar] [CrossRef]
- Rogers, J.H.; Resibois, A. Calretinin and calbindin-D28k in rat brain: Patterns of partial co-localization. Neuroscience 1992, 51, 843–865. [Google Scholar] [CrossRef]
- Ichikawa, H.; Jin, H.W.; Terayama, R.; Yamaai, T.; Jacobowitz, D.M.; Sugimoto, T. Calretinin-containing neurons which co-express parvalbumin and calbindin D-28k in the rat spinal and cranial sensory ganglia; triple immunofluorescence study. Brain Res. 2005, 1061, 118–123. [Google Scholar] [CrossRef] [PubMed]
- Baimbridge, K.G.; Celio, M.R.; Rogers, J.H. Calcium-binding proteins in the nervous system. Trends Neurosci. 1992, 15, 303–308. [Google Scholar] [CrossRef]
- Soghomonian, J.J.; Zhang, K.; Reprakash, S.; Blatt, G.J. Decreased parvalbumin mRNA levels in cerebellar Purkinje cells in autism. Autism Res. 2017, 10, 1787–1796. [Google Scholar] [CrossRef] [PubMed]
- Xenos, D.; Kamceva, M.; Tomasi, S.; Cardin, J.A.; Schwartz, M.L.; Vaccarino, F.M. Loss of TrkB Signaling in Parvalbumin-Expressing Basket Cells Results in Network Activity Disruption and Abnormal Behavior. Cereb. Cortex 2018, 28, 3399–3413. [Google Scholar] [CrossRef]
- Garcia-Junco-Clemente, P.; Tring, E.; Ringach, D.L.; Trachtenberg, J.T. State-Dependent Subnetworks of Parvalbumin-Expressing Interneurons in Neocortex. Cell Rep. 2019, 26, 2282.e3–2288.e3. [Google Scholar] [CrossRef]
- Drexel, M.; Romanov, R.A.; Wood, J.; Weger, S.; Heilbronn, R.; Wulff, P.; Tasan, R.O.; Harkany, T.; Sperk, G. Selective Silencing of Hippocampal Parvalbumin Interneurons Induces Development of Recurrent Spontaneous Limbic Seizures in Mice. J. Neurosci. 2017, 37, 8166–8179. [Google Scholar] [CrossRef]
- Krieger, B.; Qiao, M.; Rousso, D.L.; Sanes, J.R.; Meister, M. Four alpha ganglion cell types in mouse retina: Function, structure, and molecular signatures. PLoS ONE 2017, 12, e0180091. [Google Scholar] [CrossRef]
- Kawaguchi, Y.; Kubota, Y. Correlation of physiological subgroupings of nonpyramidal cells with parvalbumin- and calbindinD28k-immunoreactive neurons in layer V of rat frontal cortex. J. Neurophysiol. 1993, 70, 387–396. [Google Scholar] [CrossRef]
- Stefanits, H.; Wesseling, C.; Kovacs, G.G. Loss of Calbindin immunoreactivity in the dentate gyrus distinguishes Alzheimer’s disease from other neurodegenerative dementias. Neurosci. Lett. 2014, 566, 137–141. [Google Scholar] [CrossRef]
- Seress, L.; Gulyas, A.I.; Freund, T.F. Pyramidal neurons are immunoreactive for calbindin D28k in the CA1 subfield of the human hippocampus. Neurosci. Lett. 1992, 138, 257–260. [Google Scholar] [CrossRef]
- Lee, S.C.; Weltzien, F.; Madigan, M.C.; Martin, P.R.; Grunert, U. Identification of A amacrine, displaced amacrine, and bistratified ganglion cell types in human retina with antibodies against calretinin. J. Comp. Neurol. 2016, 524, 39–53. [Google Scholar] [CrossRef]
- Bearzatto, B.; Servais, L.; Roussel, C.; Gall, D.; Baba-Aissa, F.; Schurmans, S.; de Kerchove d’Exaerde, A.; Cheron, G.; Schiffmann, S.N. Targeted calretinin expression in granule cells of calretinin-null mice restores normal cerebellar functions. FASEB J. 2006, 20, 380–382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zallo, F.; Gardenal, E.; Verkhratsky, A.; Rodriguez, J.J. Loss of calretinin and parvalbumin positive interneurones in the hippocampal CA1 of aged Alzheimer’s disease mice. Neurosci. Lett. 2018, 681, 19–25. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.S.; Lee, J.Y.; Jeon, C.J. Types and density of calretinin-containing retinal ganglion cells in mouse. Neurosci. Res. 2010, 66, 141–150. [Google Scholar] [CrossRef]
- Magistretti, P.J.; Allaman, I. A cellular perspective on brain energy metabolism and functional imaging. Neuron 2015, 86, 883–901. [Google Scholar] [CrossRef]
- Kawaguchi, Y.; Katsumaru, H.; Kosaka, T.; Heizmann, C.W.; Hama, K. Fast spiking cells in rat hippocampus (CA1 region) contain the calcium-binding protein parvalbumin. Brain Res. 1987, 416, 369–374. [Google Scholar] [CrossRef]
- Billing-Marczak, K.; Przybyszewska, M.; Kuznicki, J. Measurements of [Ca2+] using fura-2 in glioma C6 cells expressing calretinin with GFP as a marker of transfection: No Ca2+-buffering provided by calretinin. Biochim. Biophys. Acta 1999, 1449, 169–177. [Google Scholar] [CrossRef]
- Muller, M.; Felmy, F.; Schwaller, B.; Schneggenburger, R. Parvalbumin is a mobile presynaptic Ca2+ buffer in the calyx of Held that accelerates the decay of Ca2+ and short-term facilitation. J. Neurosci. 2007, 27, 2261–2271. [Google Scholar] [CrossRef]
- Klapstein, G.J.; Vietla, S.; Lieberman, D.N.; Gray, P.A.; Airaksinen, M.S.; Thoenen, H.; Meyer, M.; Mody, I. Calbindin-D28k fails to protect hippocampal neurons against ischemia in spite of its cytoplasmic calcium buffering properties: Evidence from calbindin-D28k knockout mice. Neuroscience 1998, 85, 361–373. [Google Scholar] [CrossRef]
- Molinari, S.; Battini, R.; Ferrari, S.; Pozzi, L.; Killcross, A.S.; Robbins, T.W.; Jouvenceau, A.; Billard, J.M.; Dutar, P.; Lamour, Y.; et al. Deficits in memory and hippocampal long-term potentiation in mice with reduced calbindin D28K expression. Proc. Natl. Acad. Sci. USA 1996, 93, 8028–8033. [Google Scholar] [CrossRef]
- Schurmans, S.; Schiffmann, S.N.; Gurden, H.; Lemaire, M.; Lipp, H.P.; Schwam, V.; Pochet, R.; Imperato, A.; Bohme, G.A.; Parmentier, M. Impaired long-term potentiation induction in dentate gyrus of calretinin-deficient mice. Proc. Natl. Acad. Sci. USA 1997, 94, 10415–10420. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tortosa, A.; Ferrer, I. Parvalbumin immunoreactivity in the hippocampus of the gerbil after transient forebrain ischaemia: A qualitative and quantitative sequential study. Neuroscience 1993, 55, 33–43. [Google Scholar] [CrossRef]
- Kwon, O.J.; Kim, J.Y.; Kim, S.Y.; Jeon, C.J. Alterations in the localization of calbindin D28K-, calretinin-, and parvalbumin-immunoreactive neurons of rabbit retinal ganglion cell layer from ischemia and reperfusion. Mol. Cells 2005, 19, 382–390. [Google Scholar] [PubMed]
- Marx, M.; Haas, C.A.; Haussler, U. Differential vulnerability of interneurons in the epileptic hippocampus. Front. Cell. Neurosci. 2013, 7, 167. [Google Scholar] [CrossRef] [PubMed]
- Kuruba, R.; Hattiangady, B.; Parihar, V.K.; Shuai, B.; Shetty, A.K. Differential susceptibility of interneurons expressing neuropeptide Y or parvalbumin in the aged hippocampus to acute seizure activity. PLoS ONE 2011, 6, e24493. [Google Scholar] [CrossRef] [PubMed]
- Solodkin, A.; Veldhuizen, S.D.; Van Hoesen, G.W. Contingent vulnerability of entorhinal parvalbumin-containing neurons in Alzheimer’s disease. J. Neurosci. 1996, 16, 3311–3321. [Google Scholar] [CrossRef]
- Zhang, Z.; Sun, J.; Reynolds, G.P. A selective reduction in the relative density of parvalbumin-immunoreactive neurons in the hippocampus in schizophrenia patients. Chin. Med. J. (Engl.) 2002, 115, 819–823. [Google Scholar]
- Riascos, D.; de Leon, D.; Baker-Nigh, A.; Nicholas, A.; Yukhananov, R.; Bu, J.; Wu, C.K.; Geula, C. Age-related loss of calcium buffering and selective neuronal vulnerability in Alzheimer’s disease. Acta Neuropathol. 2011, 122, 565–576. [Google Scholar] [CrossRef]
- German, D.C.; Manaye, K.F.; Sonsalla, P.K.; Brooks, B.A. Midbrain dopaminergic cell loss in Parkinson’s disease and MPTP-induced parkinsonism: Sparing of calbindin-D28k-containing cells. Ann. N. Y. Acad. Sci. 1992, 648, 42–62. [Google Scholar] [CrossRef]
- Goodman, J.H.; Wasterlain, C.G.; Massarweh, W.F.; Dean, E.; Sollas, A.L.; Sloviter, R.S. Calbindin-D28k immunoreactivity and selective vulnerability to ischemia in the dentate gyrus of the developing rat. Brain Res. 1993, 606, 309–314. [Google Scholar] [CrossRef]
- Freund, T.F.; Ylinen, A.; Miettinen, R.; Pitkanen, A.; Lahtinen, H.; Baimbridge, K.G.; Riekkinen, P.J. Pattern of neuronal death in the rat hippocampus after status epilepticus. Relationship to calcium binding protein content and ischemic vulnerability. Brain Res. Bull. 1992, 28, 27–38. [Google Scholar] [CrossRef]
- Yamada, T.; McGeer, P.L.; Baimbridge, K.G.; McGeer, E.G. Relative sparing in Parkinson’s disease of substantia nigra dopamine neurons containing calbindin-D28K. Brain Res. 1990, 526, 303–307. [Google Scholar] [CrossRef]
- Bu, J.; Sathyendra, V.; Nagykery, N.; Geula, C. Age-related changes in calbindin-D28k, calretinin, and parvalbumin-immunoreactive neurons in the human cerebral cortex. Exp. Neurol. 2003, 182, 220–231. [Google Scholar] [CrossRef]
- Blumcke, I.; Beck, H.; Nitsch, R.; Eickhoff, C.; Scheffler, B.; Celio, M.R.; Schramm, J.; Elger, C.E.; Wolf, H.K.; Wiestler, O.D. Preservation of calretinin-immunoreactive neurons in the hippocampus of epilepsy patients with Ammon’s horn sclerosis. J. Neuropathol. Exp. Neurol. 1996, 55, 329–341. [Google Scholar]
- Cicchetti, F.; Gould, P.V.; Parent, A. Sparing of striatal neurons coexpressing calretinin and substance P (NK1) receptor in Huntington’s disease. Brain Res. 1996, 730, 232–237. [Google Scholar] [CrossRef]
- Mouatt-Prigent, A.; Agid, Y.; Hirsch, E.C. Does the calcium binding protein calretinin protect dopaminergic neurons against degeneration in Parkinson’s disease? Brain Res. 1994, 668, 62–70. [Google Scholar] [CrossRef]
- Kim, B.G.; Shin, D.H.; Jeon, G.S.; Seo, J.H.; Kim, Y.W.; Jeon, B.S.; Cho, S.S. Relative sparing of calretinin containing neurons in the substantia nigra of 6-OHDA treated rat parkinsonian model. Brain Res. 2000, 855, 162–165. [Google Scholar] [CrossRef]
- Hartley, D.M.; Neve, R.L.; Bryan, J.; Ullrey, D.B.; Bak, S.Y.; Lang, P.; Geller, A.I. Expression of the calcium-binding protein, parvalbumin, in cultured cortical neurons using a HSV-1 vector system enhances NMDA neurotoxicity. Brain Res. Mol. Brain Res. 1996, 40, 285–296. [Google Scholar] [CrossRef]
- Van Den Bosch, L.; Schwaller, B.; Vleminckx, V.; Meijers, B.; Stork, S.; Ruehlicke, T.; Van Houtte, E.; Klaassen, H.; Celio, M.R.; Missiaen, L.; et al. Protective effect of parvalbumin on excitotoxic motor neuron death. Exp. Neurol. 2002, 174, 150–161. [Google Scholar] [CrossRef] [PubMed]
- Bouilleret, V.; Schwaller, B.; Schurmans, S.; Celio, M.R.; Fritschy, J.M. Neurodegenerative and morphogenic changes in a mouse model of temporal lobe epilepsy do not depend on the expression of the calcium-binding proteins parvalbumin, calbindin, or calretinin. Neuroscience 2000, 97, 47–58. [Google Scholar] [CrossRef]
- D’Orlando, C.; Celio, M.R.; Schwaller, B. Calretinin and calbindin D-28k, but not parvalbumin protect against glutamate-induced delayed excitotoxicity in transfected N18-RE 105 neuroblastoma-retina hybrid cells. Brain Res. 2002, 945, 181–190. [Google Scholar] [CrossRef]
- D’Orlando, C.; Fellay, B.; Schwaller, B.; Salicio, V.; Bloc, A.; Gotzos, V.; Celio, M.R. Calretinin and calbindin D-28k delay the onset of cell death after excitotoxic stimulation in transfected P19 cells. Brain Res. 2001, 909, 145–158. [Google Scholar] [CrossRef]
- Moreno, H.; Burghardt, N.S.; Vela-Duarte, D.; Masciotti, J.; Hua, F.; Fenton, A.A.; Schwaller, B.; Small, S.A. The absence of the calcium-buffering protein calbindin is associated with faster age-related decline in hippocampal metabolism. Hippocampus 2012, 22, 1107–1120. [Google Scholar] [CrossRef]
- Airaksinen, M.S.; Thoenen, H.; Meyer, M. Vulnerability of midbrain dopaminergic neurons in calbindin-D28k-deficient mice: Lack of evidence for a neuroprotective role of endogenous calbindin in MPTP-treated and weaver mice. Eur. J. Neurosci. 1997, 9, 120–127. [Google Scholar] [CrossRef]
- Kook, S.Y.; Jeong, H.; Kang, M.J.; Park, R.; Shin, H.J.; Han, S.H.; Son, S.M.; Song, H.; Baik, S.H.; Moon, M.; et al. Crucial role of calbindin-D28k in the pathogenesis of Alzheimer’s disease mouse model. Cell Death Differ. 2014, 21, 1575–1587. [Google Scholar] [CrossRef]
- Roy, J.; Minotti, S.; Dong, L.; Figlewicz, D.A.; Durham, H.D. Glutamate potentiates the toxicity of mutant Cu/Zn-superoxide dismutase in motor neurons by postsynaptic calcium-dependent mechanisms. J. Neurosci. 1998, 18, 9673–9684. [Google Scholar] [CrossRef]
- Meier, T.J.; Ho, D.Y.; Park, T.S.; Sapolsky, R.M. Gene transfer of calbindin D28k cDNA via herpes simplex virus amplicon vector decreases cytoplasmic calcium ion response and enhances neuronal survival following glutamatergic challenge but not following cyanide. J. Neurochem. 1998, 71, 1013–1023. [Google Scholar] [CrossRef]
- Phillips, R.G.; Meier, T.J.; Giuli, L.C.; McLaughlin, J.R.; Ho, D.Y.; Sapolsky, R.M. Calbindin D28K gene transfer via herpes simplex virus amplicon vector decreases hippocampal damage in vivo following neurotoxic insults. J. Neurochem. 1999, 73, 1200–1205. [Google Scholar] [CrossRef] [PubMed]
- Kuznicki, J.; Isaacs, K.R.; Jacobowitz, D.M. The expression of calretinin in transfected PC12 cells provides no protection against Ca(2+)-overload or trophic factor deprivation. Biochim. Biophys. Acta 1996, 1313, 194–200. [Google Scholar] [CrossRef]
- Figueredo-Cardenas, G.; Harris, C.L.; Anderson, K.D.; Reiner, A. Relative resistance of striatal neurons containing calbindin or parvalbumin to quinolinic acid-mediated excitotoxicity compared to other striatal neuron types. Exp. Neurol. 1998, 149, 356–372. [Google Scholar] [CrossRef] [PubMed]
- Jaszai, J.; Farkas, L.M.; Gallatz, K.; Palkovits, M. Effects of glutamate-induced excitotoxicity on calretinin-expressing neuron populations in the area postrema of the rat. Cell Tissue Res. 1998, 293, 227–233. [Google Scholar] [CrossRef]
- Samson, A.J.; Robertson, G.; Zagnoni, M.; Connolly, C.N. Neuronal networks provide rapid neuroprotection against spreading toxicity. Sci. Rep. 2016, 6, 33746. [Google Scholar] [CrossRef] [Green Version]
- Huguet, G.; Joglekar, A.; Messi, L.M.; Buckalew, R.; Wong, S.; Terman, D. Neuroprotective Role of Gap Junctions in a Neuron Astrocyte Network Model. Biophys. J. 2016, 111, 452–462. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, H.; Kunerth, S.; Wilms, C.; Strotmann, R.; Eilers, J. Spino-dendritic cross-talk in rodent Purkinje neurons mediated by endogenous Ca2+-binding proteins. J. Physiol. 2007, 581, 619–629. [Google Scholar] [CrossRef] [Green Version]
- Lichvarova, L.; Henzi, T.; Safiulina, D.; Kaasik, A.; Schwaller, B. Parvalbumin alters mitochondrial dynamics and affects cell morphology. Cell Mol. Life Sci. 2018, 75, 4643–4666. [Google Scholar] [CrossRef]
- Schwaller, B. Cytosolic Ca2+ buffers. Cold Spring Harb. Perspect. Biol. 2010, 2, a004051. [Google Scholar] [CrossRef] [PubMed]
- Hardingham, G.E.; Bading, H. Synaptic versus extrasynaptic NMDA receptor signalling: Implications for neurodegenerative disorders. Nat. Rev. Neurosci. 2010, 11, 682–696. [Google Scholar] [CrossRef] [PubMed]
- Araki, C.M.; Hamassaki-Britto, D.E. Calretinin co-localizes with the NMDA receptor subunit NR1 in cholinergic amacrine cells of the rat retina. Brain Res. 2000, 869, 220–224. [Google Scholar] [CrossRef]
- Hack, N.J.; Wride, M.C.; Charters, K.M.; Kater, S.B.; Parks, T.N. Developmental changes in the subcellular localization of calretinin. J. Neurosci. 2000, 20, RC67. [Google Scholar] [CrossRef] [PubMed]
- Mockel, V.; Fischer, G. Vulnerability to excitotoxic stimuli of cultured rat hippocampal neurons containing the calcium-binding proteins calretinin and calbindin D28K. Brain Res. 1994, 648, 109–120. [Google Scholar] [CrossRef]
- Obal, I.; Engelhardt, J.I.; Siklos, L. Axotomy induces contrasting changes in calcium and calcium-binding proteins in oculomotor and hypoglossal nuclei of Balb/c mice. J. Comp. Neurol. 2006, 499, 17–32. [Google Scholar] [CrossRef]
- Krebs, C.; Neiss, W.F.; Streppel, M.; Guntinas-Lichius, O.; Dassesse, D.; Stennert, E.; Pochet, R. Axotomy induces transient calbindin D28K immunoreactivity in hypoglossal motoneurons in vivo. Cell Calcium 1997, 22, 367–372. [Google Scholar] [CrossRef]
- Park, E.; McKnight, S.; Ai, J.; Baker, A.J. Purkinje cell vulnerability to mild and severe forebrain head trauma. J. Neuropathol. Exp. Neurol. 2006, 65, 226–234. [Google Scholar] [CrossRef] [PubMed]
- Batini, C.; Guegan, M.; Palestini, M.; Thomasset, M.; Vigot, R. Upregulation of Calbindin-D-28k immunoreactivity by excitatory amino acids. Arch. Ital. Biol. 1997, 135, 385–397. [Google Scholar]
- Lowenstein, D.H.; Gwinn, R.P.; Seren, M.S.; Simon, R.P.; McIntosh, T.K. Increased expression of mRNA encoding calbindin-D28K, the glucose-regulated proteins, or the 72 kDa heat-shock protein in three models of acute CNS injury. Brain Res. Mol. Brain Res. 1994, 22, 299–308. [Google Scholar] [CrossRef]
- Ng, M.C.; Iacopino, A.M.; Quintero, E.M.; Marches, F.; Sonsalla, P.K.; Liang, C.L.; Speciale, S.G.; German, D.C. The neurotoxin MPTP increases calbindin-D28k levels in mouse midbrain dopaminergic neurons. Brain Res. Mol. Brain Res. 1996, 36, 329–336. [Google Scholar] [CrossRef]
- Lim, J.H.; Brunjes, P.C. Calcium-binding proteins: Differential expression in the rat olfactory cortex after neonatal olfactory bulbectomy. J. Neurobiol. 1999, 39, 207–217. [Google Scholar] [CrossRef] [Green Version]
- Wu, C.K.; Mesulam, M.M.; Geula, C. Age-related loss of calbindin from human basal forebrain cholinergic neurons. Neuroreport 1997, 8, 2209–2213. [Google Scholar] [CrossRef]
- Iacopino, A.M.; Christakos, S. Specific reduction of calcium-binding protein (28-kilodalton calbindin-D) gene expression in aging and neurodegenerative diseases. Proc. Natl. Acad. Sci. USA 1990, 87, 4078–4082. [Google Scholar] [CrossRef]
- Corns, R.A.; Boolaky, U.V.; Santer, R.M. Decreased calbindin-D28k immunoreactivity in aged rat sympathetic pelvic ganglionic neurons. Neurosci. Lett. 2000, 292, 91–94. [Google Scholar] [CrossRef]
- Kishimoto, J.; Tsuchiya, T.; Cox, H.; Emson, P.C.; Nakayama, Y. Age-related changes of calbindin-D28k, calretinin, and parvalbumin mRNAs in the hamster brain. Neurobiol. Aging 1998, 19, 77–82. [Google Scholar] [CrossRef]
- Moyer, J.R., Jr.; Furtak, S.C.; McGann, J.P.; Brown, T.H. Aging-related changes in calcium-binding proteins in rat perirhinal cortex. Neurobiol. Aging 2011, 32, 1693–1706. [Google Scholar] [CrossRef] [PubMed]
- Rapp, P.R.; Deroche, P.S.; Mao, Y.; Burwell, R.D. Neuron number in the parahippocampal region is preserved in aged rats with spatial learning deficits. Cereb. Cortex 2002, 12, 1171–1179. [Google Scholar] [CrossRef] [PubMed]
- You, J.C.; Muralidharan, K.; Park, J.W.; Petrof, I.; Pyfer, M.S.; Corbett, B.F.; LaFrancois, J.J.; Zheng, Y.; Zhang, X.; Mohila, C.A.; et al. Epigenetic suppression of hippocampal calbindin-D28k by DeltaFosB drives seizure-related cognitive deficits. Nat. Med. 2017, 23, 1377–1383. [Google Scholar] [CrossRef]
- Widmer, H.R.; Hefti, F. Stimulation of GABAergic neuron differentiation by NT-4/5 in cultures of rat cerebral cortex. Brain Res. Dev. Brain Res. 1994, 80, 279–284. [Google Scholar] [CrossRef]
- Ip, N.Y.; Li, Y.; Yancopoulos, G.D.; Lindsay, R.M. Cultured hippocampal neurons show responses to BDNF, NT-3, and NT-4, but not NGF. J. Neurosci. 1993, 13, 3394–3405. [Google Scholar] [CrossRef] [Green Version]
- Fiumelli, H.; Kiraly, M.; Ambrus, A.; Magistretti, P.J.; Martin, J.L. Opposite regulation of calbindin and calretinin expression by brain-derived neurotrophic factor in cortical neurons. J. Neurochem. 2000, 74, 1870–1877. [Google Scholar] [CrossRef]
- Nagahara, A.H.; Merrill, D.A.; Coppola, G.; Tsukada, S.; Schroeder, B.E.; Shaked, G.M.; Wang, L.; Blesch, A.; Kim, A.; Conner, J.M.; et al. Neuroprotective effects of brain-derived neurotrophic factor in rodent and primate models of Alzheimer’s disease. Nat. Med. 2009, 15, 331–337. [Google Scholar] [CrossRef]
- Almeida, R.D.; Manadas, B.J.; Melo, C.V.; Gomes, J.R.; Mendes, C.S.; Graos, M.M.; Carvalho, R.F.; Carvalho, A.P.; Duarte, C.B. Neuroprotection by BDNF against glutamate-induced apoptotic cell death is mediated by ERK and PI3-kinase pathways. Cell Death Differ. 2005, 12, 1329–1343. [Google Scholar] [CrossRef] [Green Version]
- Chen, A.; Xiong, L.J.; Tong, Y.; Mao, M. The neuroprotective roles of BDNF in hypoxic ischemic brain injury. Biomed. Rep. 2013, 1, 167–176. [Google Scholar] [CrossRef] [PubMed]
- Schwaller, B. Calretinin: From a “simple” Ca(2+) buffer to a multifunctional protein implicated in many biological processes. Front. Neuroanat. 2014, 8, 3. [Google Scholar] [CrossRef]
- Audran, E.; Dagher, R.; Gioria, S.; Tsvetkov, P.O.; Kulikova, A.A.; Didier, B.; Villa, P.; Makarov, A.A.; Kilhoffer, M.C.; Haiech, J. A general framework to characterize inhibitors of calmodulin: Use of calmodulin inhibitors to study the interaction between calmodulin and its calmodulin binding domains. Biochim. Biophys. Acta 2013, 1833, 1720–1731. [Google Scholar] [CrossRef] [PubMed] [Green Version]
CaBP | CNS Distribution | Reference |
---|---|---|
Parvalbumin | Amacrine cells | [17,18,19] |
Cerebellar Purkinje neurons | [20,35] | |
Cortical basket cells | [16,36] | |
Cortical interneurons | [21,37] | |
Corticostriatal projection neurons | [23] | |
Hippocampal interneurons | [16,38] | |
Retinal ganglion cells | [22,39] | |
Calbindin | Cerebellar Purkinje neurons | [24,25] |
Cortical nonpyramidal neurons | [27,40] | |
Granule cells of the dentate gyrus | [24,41,42] | |
Hippocampal pyramidal neurons | [26,42] | |
Retinal ganglion cells | [39] | |
Calretinin | Amacrine cells | [28,43] |
Cerebellar granule cells | [31,44] | |
Cortical interneurons | [29] | |
Hippocampal interneurons | [30,45] | |
Retinal ganglion cells | [28,46] |
CaBP | Resistant (+) or Susceptible (−) to Neurodegeneration? | Neuronal Population/Region | Disease/Model | Ref. |
---|---|---|---|---|
Parvalbumin | + | Hippocampus CA1 region | Experimental ischemia | [54] |
− | Ganglion cell layer of retina | Retinal ischemia | [55] | |
− | Motor cortex | Multiple sclerosis | [21] | |
− | Hippocampus | Kainic acid injection | [56] | |
− | Hippocampus | Kainic acid injection of aged mice | [57] | |
− | Entorhinal cortex | Alzheimer’s disease | [58] | |
− | Hippocampal GABAergic interneurons | Schizophrenia | [59] | |
Calbindin | + | Ganglion cell layer of retina | Retinal ischemia | [55] |
+ | Cholinergic neurons of basal forebrain | Alzheimer’s disease | [60] | |
+ | Midbrain dopaminergic neurons | Models of Parkinson’s disease | [61] | |
+ | Dentate granule cells | Experimental ischemia | [62] | |
− | Pyramidal cells of CA1 hippocampus | Experimental epilepsy | [63] 1 | |
Calretinin | + | Substantia nigra neurons | Parkinson’s disease | [64] |
+ | Cerebral cortex | Aging | [65] | |
+ | Hippocampus | Epilepsy | [66] | |
+ | Striatum | Huntington’s disease | [67] | |
+ | Dopaminergic neuronal subpopulations | Parkinson’s disease | [68] | |
+ | Substantia nigra neurons | Parkinson’s disease | [69] |
CaBP | Conditions | Gene Manipulation (↑, Overexpression; ↓, Knockout) | Neuronal Population | Insult | Supportive of Neuroprotective Role? | Ref. |
---|---|---|---|---|---|---|
PV | In vitro | ↑ | Cortical neurons | NMDA exposure | No | [70] |
In vivo | ↑ | Spinal motor neurons | KA exposure | Yes | [71] | |
In vitro | ↓ | Temporal lobe | Epilepsy model | No | [72] | |
In vitro | ↑ | Neuroblastoma-retina hybrid cells | Glutamate exposure | No | [73] | |
In vitro | ↑ | P19 cell line | NMDA exposure | No | [74] | |
CB | In vivo | ↓ | Hippocampus | Age-mediated decline | Yes | [75] |
In vivo | ↓ | Midbrain dopaminergic neurons | MPTP injection | No | [76] | |
In vivo | ↓ | Subiculum | Alzheimer genetic model | Yes | [77] | |
In vivo | ↓ | Hippocampal CA1 pyramidal neurons | Ischemia model | No | [51] | |
In vitro | ↑ | SOD-1 mutant motor neurons | Glutamate exposure | Yes | [78] | |
In vitro | ↑ | Hippocampal neurons | Glutamate exposure | Yes | [79] | |
In vivo | ↑ | Hippocampus | KA and 3-AP exposure | Yes | [80] | |
In vitro | ↓ | Temporal lobe | Epilepsy model | No | [72] | |
In vitro | ↑ | Neuroblastoma-retina hybrid cells | Glutamate exposure | Yes | [73] | |
In vitro | ↑ | P19 cell line | NMDA exposure | Yes | [74] | |
CR | In vitro | ↑ | PC12 cell line | Ionophore exposure and serum/growth factor withdrawal | No | [81] |
In vivo | ↓ | Temporal lobe | Epilepsy model | No | [72] | |
In vitro | ↑ | Neuroblastoma-retina hybrid cells | Glutamate exposure | Yes | [73] | |
In vitro | ↑ | P19 cell line | NMDA exposure | Yes | [74] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fairless, R.; Williams, S.K.; Diem, R. Calcium-Binding Proteins as Determinants of Central Nervous System Neuronal Vulnerability to Disease. Int. J. Mol. Sci. 2019, 20, 2146. https://doi.org/10.3390/ijms20092146
Fairless R, Williams SK, Diem R. Calcium-Binding Proteins as Determinants of Central Nervous System Neuronal Vulnerability to Disease. International Journal of Molecular Sciences. 2019; 20(9):2146. https://doi.org/10.3390/ijms20092146
Chicago/Turabian StyleFairless, Richard, Sarah K. Williams, and Ricarda Diem. 2019. "Calcium-Binding Proteins as Determinants of Central Nervous System Neuronal Vulnerability to Disease" International Journal of Molecular Sciences 20, no. 9: 2146. https://doi.org/10.3390/ijms20092146