Glycyrrhizin Represses Total Parenteral Nutrition-Associated Acute Liver Injury in Rats by Suppressing Endoplasmic Reticulum Stress
Abstract
:1. Introduction
2. Results
2.1. Biochemical Analysis of Glycyrrhizin
2.2. Effect of Glycyrrhizin on Hepatic Histopathological Changes
2.3. Effects of Glycyrrhizin on the Expression of Nitrotyrosine, iNOS and Proinflammatory Cytokines (IL-1β, IL-6 and TNF-α)
2.4. Anti-Apoptotic Effects of Glycyrrhizin
2.5. Effects of Glycyrrhizin on the Phosphorylation of JNK1/2 and p38, as well as CHOP Expression
2.6. Inhibitory Effect of Glycyrrhizin on Inflammation via Activation of SOCS3 in TPN-Related Acute Liver Injury in Vivo
3. Discussion
4. Experimental Section
4.1. Chemicals and Reagents
4.2. Animal Experiments and Drug Treatment
4.3. Biochemical Analysis
4.4. Histopathological Evaluation
4.5. Immunohistochemical Assay
4.6. Western Blot Analysis
4.7. Statistical Analyses
5. Conclusions
Acknowledgments
Conflict of Interest
References
- Chance, W.T.; Sheriff, S.; Dayal, R.; Friend, L.A.; Thomas, I.; Balasubramaniam, A. The role of polyamines in glucagon-like peptide-2 prevention of TPN-induced gut hypoplasia. Peptides 2006, 27, 883–892. [Google Scholar]
- Stoll, B.; Horst, D.A.; Cui, L.; Chang, X.; Ellis, K.J.; Hadsell, D.L.; Suryawan, A.; Kurundkar, A.; Maheshwari, A.; Davis, T.A.; et al. Chronic parenteral nutrition induces hepatic inflammation, steatosis, and insulin resistance in neonatal pigs. J. Nutr 2010, 140, 2193–2200. [Google Scholar]
- Raman, M.; Allard, J.P. Parenteral nutrition related hepato-biliary disease in adults. Appl. Physiol. Nutr. Metable 2007, 32, 646–654. [Google Scholar]
- Sandhu, I.S.; Jarvis, C.; Everson, G.T. Total parenteral nutrition and cholestasis. Clin. Liver Dis 1999, 3, 489–508. [Google Scholar]
- Kumpf, V.J. Parenteral nutrition-associated liver disease in adult and pediatric patients. Nutr. Clin. Pract 2006, 21, 279–290. [Google Scholar]
- Cavicchi, M.; Beau, P.; Crenn, P.; Degott, C.; Messing, B. Prevalence of liver disease and contributing factors in patients receiving home parenteral nutrition for permanent intestinal failure. Ann. Intern. Med 2000, 132, 525–532. [Google Scholar]
- Luman, W.; Shaffer, J.L. Prevalence, outcome and associated factors of deranged liver function tests in patients on home parenteral nutrition. Clin. Nutr 2002, 21, 337–343. [Google Scholar]
- Attili, A.F.; Angelico, M.; Cantafora, A.; Alvaro, D.; Capocaccia, L. Bile acid-induced liver toxicity: Relation to the hydrophobic-hydrophilic balance of bile acids. Med. Hypotheses 1986, 19, 57–69. [Google Scholar]
- Tomar, B.S. Hepatobiliary abnormalities and parenteral nutrition. Indian J. Pediatr 2000, 67, 695–701. [Google Scholar]
- Brinkman, A.S.; Murali, S.G.; Hitt, S.; Solverson, P.M.; Holst, J.J.; Ney, D.M. Enteral nutrients potentiate glucagon-like peptide-2 action and reduce dependence on parenteral nutrition in a rat model of human intestinal failure. Am. J. Physiol. Gastrointest Liver Physiol 2012, 303, 610–622. [Google Scholar]
- Jain, A.K.; Stoll, B.; Burrin, D.G.; Holst, J.J.; Moore, D.D. Enteral bile acid treatment improves parenteral nutrition-related liver disease and intestinal mucosal atrophy in neonatal pigs. Am. J. Physiol. Gastrointest Liver Physiol 2012, 302, 218–224. [Google Scholar]
- Loff, S.; Kranzlin, B.; Moghadam, M.; Dzakovic, A.; Wessel, L.; Back, W.; Hosie, S.; Wirth, H.; Waag, K.L. Parenteral nutrition-induced hepatobiliary dysfunction in infants and prepubertal rabbits. Pediatr. Surg. Int 1999, 15, 479–482. [Google Scholar]
- Shamir, R.; Zahavi, I.; Bar-Sever, Z.; Heckelman, B.; Marcus, H.; Dinari, G. Total parenteral nutrition-associated cholestasis after selective damage to acinar zone 3 hepatocytes by bromobenzene in the rat. Life Sci 1993, 52, 371–376. [Google Scholar]
- Zahavi, I.; Rosezki, O.; Stolkart, Y.; Shamir, R.; Heckelman, B.; Marcus, H.; Dinari, G. The effect of cisapride on total parenteral nutrition-associated cholestasis in rats. Isr. Med. Assoc. J 2000, 2, 91–93. [Google Scholar]
- Hong, L.; Wang, X.; Wu, J.; Cai, W. Mitochondria-initiated apoptosis triggered by oxidative injury play a role in total parenteral nutrition-associated liver dysfunction in infant rabbit model. J. Pediatr. Sur 2009, 4, 1712–1718. [Google Scholar]
- Laborie, S.; Lavoie, J.C.; Chessex, P. Paradoxical role of ascorbic acid and riboflavin in solutions of total parenteral nutrition: Implication in photoinduced peroxide generation. Pediatr. Res 1998, 43, 601–606. [Google Scholar]
- Knowles, H.; Li, Y.; Perraud, A.L. The TRPM2 ion channel, an oxidative stress and metabolic sensor regulating innate immunity and inflammation. Immunol. Res 2013, 55, 241–248. [Google Scholar]
- Egwuagu, C.E.; Yu, C.R.; Zhang, M.; Mahdi, R.M.; Kim, S.J.; Gery, I. Suppressors of cytokine signaling proteins are differentially expressed in Th1 and Th2 cells: Implications for Th cell lineage commitment and maintenance. J. Immunol 2002, 168, 3181–3187. [Google Scholar]
- Yu, C.R.; Mahdi, R.M.; Ebong, S.; Vistica, B.P.; Chen, J.; Guo, Y.; Gery, I.; Egwuagu, C.E. Cell proliferation and STAT6 pathways are negatively regulated in T cells by STAT1 and suppressors of cytokine signaling. J. Immunol 2004, 173, 737–746. [Google Scholar]
- Yoshimura, A.; Suzuki, M.; Sakaguchi, R.; Hanada, T.; Yasukawa, H. SOCS, Inflammation, and autoimmunity. Front. Immunol 2012, 3, 20. [Google Scholar]
- Tazuke, Y.; Drongowski, R.A.; Btaiche, I.; Coran, A.G.; Teitelbaum, D.H. Effects of lipid administration on liver apoptotic signals in a mouse model of total parenteral nutrition (TPN). Pediatr. Surg. Int 2004, 20, 224–228. [Google Scholar]
- Ferri, K.F.; Kroemer, G. Organelle-specific initiation of cell death pathways. Nat. Cell. Biol 2001, 3, 255–263. [Google Scholar]
- Wang, H.C.; Huang, W.; Lai, M.D.; Su, I.J. Hepatitis B virus pre-S mutants, endoplasmic reticulum stress and hepatocarcinogenesis. Cancer Sci 2006, 97, 683–688. [Google Scholar]
- Katz, M.S.; Thatch, K.A.; Schwartz, M.Z. Dose variation of hepatocyte growth factor and its effects on an animal model of TPN-induced liver injury. J. Surg. Res 2010, 163, 294–298. [Google Scholar]
- Liu, J.; Ren, F.; Cheng, Q.; Bai, L.; Shen, X.; Gao, F.; Busuttil, R.W.; Kupiec-Weglinski, J.W.; Zhai, Y. Endoplasmic reticulum stress modulates liver inflammatory immune response in the pathogenesis of liver ischemia and reperfusion injury. Transplantation 2012, 94, 211–217. [Google Scholar]
- Ashfaq, U.A.; Masoud, M.S.; Nawaz, Z.; Riazuddin, S. Glycyrrhizin as antiviral agent against Hepatitis C Virus. J. Transl. Med 2011, 9, 112. [Google Scholar]
- Liao, H.L.; Ma, T.C.; Li, Y.C.; Chen, J.T.; Chang, Y.S. Concurrent use of corticosteroids with licorice-containing TCM preparations in Taiwan: A National Health Insurance Database study. J. Altern. Complement. Med 2010, 16, 539–544. [Google Scholar]
- Asl, M.N.; Hosseinzadeh, H. Review of pharmacological effects of Glycyrrhiza sp. and its bioactive compounds. Phytother. Res 2008, 22, 709–724. [Google Scholar]
- Del Prete, A.; Scalera, A.; Iadevaia, M.D.; Miranda, A.; Zulli, C.; Gaeta, L.; Tuccillo, C.; Federico, A.; Loguercio, C. Herbal products: Benefits, limits, and applications in chronic liver disease. Evid. Based Complement. Alternat. Med 2012, 2012, 837939. [Google Scholar]
- Stickel, F.; Schuppan, D. Herbal medicine in the treatment of liver diseases. Dig. Liver Dis 2007, 39, 293–304. [Google Scholar]
- Makuuchi, M.; Kokudo, N.; Arii, S.; Futagawa, S.; Kaneko, S.; Kawasaki, S.; Matsuyama, Y.; Okazaki, M.; Okita, K.; Omata, M.; et al. Development of evidence-based clinical guidelines for the diagnosis and treatment of hepatocellular carcinoma in Japan. Hepatol. Res 2008, 38, 37–51. [Google Scholar]
- Van der kallen, C.J.; van greevenbroek, M.M.; Stehouwer, C.D.; Schalkwijk, C.G. Endoplasmic reticulum stress-induced apoptosis in the development of diabetes: Is there a role for adipose tissue and liver? Apoptosis 2009, 14, 1424–1434. [Google Scholar]
- Farley, N.; Pedraza-Alva, G.; Serrano-Gomez, D.; Nagaleekar, V.; Aronshtam, A.; Krahl, T.; Thornton, T.; Rincón, M. p38 mitogen-activated protein kinase mediates the Fas-induced mitochondrial death pathway in CD8+ T cells. Mol. Cell. Biol 2006, 26, 2118–2129. [Google Scholar]
- McGuinness, O.P.; Donmoyer, C.; Ejiofor, J.; McElligott, S.; Lacy, D.B. Hepatic and muscle glucose metabolism during total parenteral nutrition: Impact of infection. Am. J. Physiol 1998, 275, E763–E769. [Google Scholar]
- Jiménez, W.; Clária, J.; Arroyo, V.; Rodés, J. Carbon tetrachloride induced cirrhosis in rats: A useful tool for investigating the pathogenesis of ascites in chronic liver disease. J. Gastroenterol. Hepatol 1992, 7, 90–97. [Google Scholar]
- Manns, M.P.; Wedemeyer, H.; Singer, A.; Khomutjanskaja, N.; Dienes, H.P.; Roskams, T.; Goldin, R.; Hehnke, U.; Inoue, H. European SNMC Study Group. Glycyrrhizin in patients who failed previous interferon alpha-based therapies: Biochemical and histological effects after 52 weeks. J. Viral Hepat 2012, 19, 537–546. [Google Scholar]
- Yoshikawa, M.; Matsui, Y.; Kawamoto, H.; Umemoto, N.; Oku, K.; Koizumi, M.; Yamao, J.; Kuriyama, S.; Nakano, H.; Hozumi, N.; et al. Effects of glycyrrhizin on immune-mediated cytotoxicity. J. Gastroenterol. Hepatol 1997, 12, 243–248. [Google Scholar]
- Kao, T.C.; Shyu, M.H.; Yen, G.C. Glycyrrhizic acid and 18beta-glycyrrhetinic acid inhibit inflammation via PI3K/Akt/GSK3beta signaling and glucocorticoid receptor activation. J. Agric. Food Chem 2010, 58, 8623–8629. [Google Scholar]
- Wei, X.Q.; Charles, I.G.; Smith, A.; Ure, J.; Feng, G.J.; Huang, F.P.; Xu, D.; Muller, W.; Moncada, S.; Liew, F.Y. Altered immune responses in mice lacking inducible nitric oxide synthase. Nature 1995, 375, 408–411. [Google Scholar]
- Nussler, A.K.; Billiar, T.R. Inflammation, immunoregulation, and inducible nitric oxide synthase. J. Leukoc. Biol 1993, 54, 171–178. [Google Scholar]
- Minc-Golomb, D.; Tsarfaty, I.; Schwartz, J.P. Expression of inducible nitric oxide synthase by neurones following exposure to endotoxin and cytokine. Br. J. Pharmacol 1994, 112, 720–722. [Google Scholar]
- Ialenti, A.; Ianaro, A.; Moncada, S.; di Rosa, M. Modulation of acute inflammation by endogenous nitric oxide. Eur J. Pharmacol 1992, 211, 177–182. [Google Scholar]
- Fan, C.K.; Lin, Y.H.; Hung, C.C.; Chang, S.F.; Su, K.E. Enhanced inducible nitric oxide synthase expression and nitrotyrosine accumulation in experimental granulomatous hepatitis caused by Toxocaracanis in mice. Parasite Immunol 2004, 26, 273–281. [Google Scholar]
- Gorbunov, N.V.; McFaul, S.J.; Januszkiewicz, A.; Atkins, J.L. Pro-inflammatory alterations and status of blood plasma iron in a model of blast-induced lung trauma. Int. J. Immunopathol. Pharmacol 2005, 18, 547–556. [Google Scholar]
- Di Giannantonio, M.; Frydas, S.; Kempuraj, D.; Karagouni, E.; Hatzistilianou, M.; Conti, C.M.; Boucher, W.; Papadopoulou, N.; Donelan, J.; Cao, J.; et al. Cytokines in stress. Int. J. Immunopathol. Pharmacol 2005, 18, 1–5. [Google Scholar]
- Feng, Y.; Ralls, M.W.; Xiao, W.; Miyasaka, E.; Herman, R.S.; Teitelbaum, D.H. Loss of enteral nutrition in a mouse model results in intestinal epithelial barrier dysfunction. Ann. N. Y. Acad. Sci 2012, 1258, 71–77. [Google Scholar] [Green Version]
- Feng, Y.; McDunn, J.E.; Teitelbaum, D.H. Decreased phospho-Akt signaling in a mouse model of total parenteral nutrition: A potential mechanism for the development of intestinal mucosal atrophy. Am. J. Physiol. Gastrointest Liver Physiol 2010, 298, 833–841. [Google Scholar]
- Koeberlein, B.; zur Hausen, A.; Bektas, N.; Zentgraf, H.; Chin, R.; Nguyen, L.T.; Kandolf, R.; Torresi, J.; Bock, C.T. Hepatitis B virus overexpresses suppressor of cytokine signaling-3 (SOCS3) thereby contributing to severity of inflammation in the liver. Virus Res 2010, 148, 51–59. [Google Scholar]
- Sasaki, A.; Yasukawa, H.; Shouda, T.; Kitamura, T.; Dikic, I.; Yoshimura, A. CIS3/SOCS-3 suppresses erythropoietin (EPO) signaling by binding the EPO receptor and JAK2. J. Biol. Chem 2000, 275, 29338–29347. [Google Scholar]
- Boden, G.; Song, W.; Duan, X.; Cheung, P.; Kresge, K.; Barrero, C.; Merali, S. Infusion of glucose and lipids at physiological rates causes acute endoplasmic reticulum stress in rat liver. Obesity 2011, 19, 1366–1373. [Google Scholar]
- Kamiya, T.; Nishihara, H.; Hara, H.; Adachi, T. Ethanol extract of Brazilian red propolis induces apoptosis in human breast cancer MCF-7 cells through endoplasmic reticulum stress. J. Agric. Food Chem 2012, 60, 11065–11070. [Google Scholar]
- Malhi, H.; Kaufman, R.J. Endoplasmic reticulum stress in liver disease. J. Hepatol 2011, 54, 795–809. [Google Scholar]
- Riedl, S.J.; Shi, Y. Molecular mechanisms of caspase regulation during apoptosis. Nat. Rev. Mol. Cell. Biol 2004, 5, 897–907. [Google Scholar]
- Yeh, Y.T.; Hur, S.S.; Chang, J.; Wang, K.C.; Chiu, J.J.; Li, Y.S.; Chien, S. Matrix stiffness regulates endothelial cell proliferation through Septin 9. PLoS One 2012, 7, e46889. [Google Scholar]
Group | ALT (U/L) | AST (U/L) | TB (mg/dL) | TG (μg/μL) |
---|---|---|---|---|
Control | 27 ±4 | 123 ±6 | 0.10 ±0.1 | 5.5 ±0.4 |
TPN | 55 ±5 * | 434 ±5 * | 0.41 ±0.1 * | 9.3 ±0.4 * |
GL 1 mg/kg + TPN | 38 ±4 # | 310 ±16 # | 0.36 ±0.1 * | 8.1 ±0.4 # |
GL 3 mg/kg + TPN | 33 ±3 # | 236 ±9 # | 0.26 ±0.1 | 6.9 ±0.3 # |
GL 10 mg/kg + TPN | 24 ±3 # | 146 ±9 # | 0.20 ±0.4 | 6.4 ±0.3 # |
© 2013 by the authors; licensee MDPI, Basel, Switzerland This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Tsai, J.-J.; Kuo, H.-C.; Lee, K.-F.; Tsai, T.-H. Glycyrrhizin Represses Total Parenteral Nutrition-Associated Acute Liver Injury in Rats by Suppressing Endoplasmic Reticulum Stress. Int. J. Mol. Sci. 2013, 14, 12563-12580. https://doi.org/10.3390/ijms140612563
Tsai J-J, Kuo H-C, Lee K-F, Tsai T-H. Glycyrrhizin Represses Total Parenteral Nutrition-Associated Acute Liver Injury in Rats by Suppressing Endoplasmic Reticulum Stress. International Journal of Molecular Sciences. 2013; 14(6):12563-12580. https://doi.org/10.3390/ijms140612563
Chicago/Turabian StyleTsai, Jai-Jen, Hsing-Chun Kuo, Kam-Fai Lee, and Tung-Hu Tsai. 2013. "Glycyrrhizin Represses Total Parenteral Nutrition-Associated Acute Liver Injury in Rats by Suppressing Endoplasmic Reticulum Stress" International Journal of Molecular Sciences 14, no. 6: 12563-12580. https://doi.org/10.3390/ijms140612563