Anchoring of a Single Molecular Rotor and Its Array on Metal Surfaces using Molecular Design and Self-Assembly
Abstract
:1. Introduction
2. Growth Mechanism for Polycyclic Aromatic Hydrocarbons Initial Layers on Metal Surfaces
3. Single Molecular Functional Units on Metal Surfaces
4. Conclusions
Acknowledgments
References
- Barth, JV; Costantini, G; Kern, K. Engineering atomic and molecular nanostructures at surfaces. Nature 2005, 437, 671–679. [Google Scholar]
- Gao, H-J; Gao, L. Scanning tunneling microscopy of functional nanostructures on solid surfaces: Manipulation, self-assembly, and applications. Prog Surf Sci 2009. [Google Scholar]
- Gao, H-J; Ji, W; Feng, M. Structural and conductance transitions of rotaxane based nanostructures and application in nanorecording. J. Comput. Theory Nano 2006, 3, 970–981. [Google Scholar]
- Shi, DX; Ji, W; Lin, X; He, XB; Lian, JC; Gao, L; Cai, JM; Lin, H; Du, SX; Lin, F; Seidel, C; Chi, LF; Hofer, WA; Fuchs, H; Gao, H-J. Role of lateral alkyl chains in modulation of molecular structure on metal surfaces. Phys Rev Lett 2006, 96, 226101:1–226101:4. [Google Scholar]
- Du, SX; Gao, H-J; Seidel, C; Tsetseris, L; Ji, W; Kopf, H; Chi, LF; Fuchs, H; Pennycook, SJ; Pantelides, ST. Selective nontemplated adsorption of organic molecules on nanofacets and the role of bonding patterns. Phys Rev Lett 2006, 97, 156105:1–156105:4. [Google Scholar]
- Wang, YL; Ji, W; Shi, DX; Du, SX; Seidel, C; Ma, YG; Gao, H-J; Chi, LF; Fuchs, H. Structural evolution of pentacene on a Ag(110) surface. Phys Rev B 2004, 69, 075408:1–075408:5. [Google Scholar]
- Gao, L; Deng, ZT; Ji, W; Lin, X; Cheng, ZH; He, XB; Shi, DX; Gao, H-J. Understanding and controlling the weakly interacting interface in perylene/Ag(110). Phys Rev B 2006, 73, 075424:1–075424:6. [Google Scholar]
- Gao, L; Sun, JT; Cheng, ZH; Deng, ZT; Lin, X; Du, SX; Gao, H-J. Structural evolution at the initial growth stage of perylene on Au(111). Surf. Sci 2007, 601, 3179–3185. [Google Scholar]
- Cheng, ZH; Gao, L; Deng, ZT; Liu, Q; Jiang, N; Lin, X; He, XB; Du, SX; Gao, H-J. Epitaxial growth of iron phthalocyanine at the initial stage on Au(111) surface. J. Phys. Chem. C 2007, 111, 2656–2660. [Google Scholar]
- Cheng, ZH; Gao, L; Deng, ZT; Jiang, N; Liu, Q; Shi, DX; Du, SX; Guo, HM; Gao, H-J. Adsorption behavior of iron phthalocyanine on Au(111) surface at submonolayer coverage. J. Phys. Chem. C 2007, 111, 9240–9244. [Google Scholar]
- Deng, ZT; Lin, H; Ji, W; Gao, L; Lin, X; Cheng, ZH; He, XB; Lu, JL; Shi, DX; Hofer, WA; Gao, H-J. Selective analysis of molecular states by functionalized scanning tunneling microscop tips. Phys Rev Lett 2006, 96, 156102:1–156102:4. [Google Scholar]
- Deng, ZT; Guo, HM; Guo, W; Gao, L; Cheng, ZH; Shi, DX; Gao, H-J. Structural properties of tetra-tert-butyl zinc(II) phthalocyaine isomers on a Au(111) surface. J. Phys. Chem. C 2009, 113, 11223–11227. [Google Scholar]
- He, XB; Cai, JM; Shi, DX; Wang, Y; Gao, H-J. Epitaxial growth of quinacridone derivative on Ag(110) studied by scanning tunneling microscopy. J. Phys. Chem. C 2008, 112, 7138–7144. [Google Scholar]
- Guo, W; Du, SX; Zhang, YY; Hofer, WA; Seidel, C; Chi, LF; Fuchs, H; Gao, H-J. Electrostatic field effect on molecular structures at metal surfaces. Surf. Sci 2009, 603, 2815–2819. [Google Scholar]
- Hwang, J; Pototschnig, M; Lettow, R; Zumofen, G; Renn, A; Götzinger, S; Sandoghdar, VA. Single-molecule optical transistor. Nature 2009, 460, 76–80. [Google Scholar]
- Binnig, G; Rohrer, H; Gerber, Ch; Weibel, E. Surface studies by scanning tunneling microscopy. Phys. Rev. Lett 1982, 49, 57–61. [Google Scholar]
- Böhringer, M; Morgenstern, K; Schneider, WD; Berndt, R; Mauri, F; De Vita, A; Car, R. Two-dimensional self-assembly of supramolecular clusters and chains. Phys. Rev. Lett 1999, 83, 324–327. [Google Scholar]
- Lukas, S; Witte, G; Wöll, C. Novel mechanism for molecular self-assembly on metal substrates: Unidirectional rows of pentacene on Cu(110) produced by a substrate-mediated repulsion. Phys Rev Lett 2002, 88, 028301:1–028301:4. [Google Scholar]
- Seidel, C; Ellerbrake, R; Gross, L; Fuchs, H. Structural transitions of perylene and coronene on silver and gold surfaces: A molecular-beam epitaxy LEED study. Phys Rev B 2001, 64, 195418:1–195418:10. [Google Scholar]
- Chen, Q; Rada, T; McDowall, A; Richardson, NV. Epitaxial growth of a crystalline organic semiconductor: perylene/Cu{110}. Chem. Mater 2002, 14, 743–749. [Google Scholar]
- Taborski, J; Väterlein, P; Dietz, H; Zimmermann, U; Umbach, E. NEXAFS investigations on ordered adsorbate layers of large aromatic molecules. J. Electron Spectrosc 1995, 75, 129–147. [Google Scholar]
- Witte, G; Hänel, K; Söhnchen, S; Wöll, C. Growth and morphology of thin films of aromatic molecules on metals: the case of perylene. Appl. Phys. A 2006, 82, 447–455. [Google Scholar]
- Hänel, K; Söhnchen, S; Lukas, S; Beernink, G; Birkner, A; Strunskus, T; Witte, G; Wöll, Ch. Organic molecular-beam deposition of perylene on Cu(110): Results from near-edge x-ray absorption spectroscopy, X-ray photoelectron spectroscopy, and atomic force microscopy. J. Mater. Res 2004, 19, 2049–2056. [Google Scholar]
- Witte, G; Wöll, Ch. Growth of aromatic molecules on solid substrates for applications in organic electronics. J. Mater. Res 2004, 19, 1889–1916. [Google Scholar]
- Gao, H-J; Sohlberg, K; Xue, ZQ; Chen, HY; Hou, SM; Ma, LP; Fang, XW; Pang, SJ; Pennycook, SJ. Reversible, nanometer-scale conductance transitions in an organic complex. Phys. Rev. Lett 2000, 84, 1780–1783. [Google Scholar]
- Gao, H-J; Xue, ZQ; Wang, KZ; Wu, QD; Pang, SJ. Ionized-cluster-beam deposition and electrical bistability of C60-tetracyanoquinodimethane thin films. Appl. Phys. Lett 1996, 68, 2192–2194. [Google Scholar]
- Ma, LP; Song, YL; Gao, H-J; Zhao, WB; Chen, HY; Xue, ZQ; Pang, SJ. Nanometer-scale recording on an organic-complex thin film with a scanning tunneling microscope. Appl. Phys. Lett 1996, 69, 3752–3753. [Google Scholar]
- Shi, DX; Song, YL; Zhang, HX; Jiang, P; He, ST; Xie, SS; Pang, SJ; Gao, H-J. Direct observation of a local structural transition for molecular recording with scanning tunneling microscopy. Appl. Phys. Lett 2000, 77, 3203–3205. [Google Scholar]
- Shi, DX; Song, YL; Zhu, DB; Zhang, HX; Xie, SS; Pang, SJ; Gao, H-J. Recording at the nanometer scale on p-nitrobenzonitrile thin films by scanning tunneling microscopy. Adv. Mater 2001, 13, 1103–1105. [Google Scholar]
- Wu, HM; Song, YL; Du, SX; Liu, HW; Gao, H-J; Jiang, L; Zhu, DB. Nanoscale data recording on an organic monolayer film. Adv. Mater 2003, 15, 1925–1929. [Google Scholar]
- Wen, YQ; Song, YL; Zhao, DB; Ding, KL; Yuan, WF; Lin, X; Gao, H-J; Jiang, L; Zhu, DB. Crystalline thin films formed by supramolecular assembly for ultrahigh-density data storage. Adv. Mater 2004, 16, 2018–2021. [Google Scholar]
- Feng, M; Guo, XF; Lin, X; He, XB; Ji, W; Du, SX; Zhang, DQ; Zhu, DB; Gao, H-J. Stable, reproducible nanorecording on rotaxane thin films. J. Am. Chem. Soc 2005, 127, 15338–15339. [Google Scholar]
- Feng, M; Gao, L; Deng, ZT; Ji, W; Guo, XF; Du, SX; Shi, DX; Zhang, DQ; Zhu, DB; Gao, H-J. Reversible, erasable, and rewritable nanorecording on an H2 rotaxane thin film. J. Am. Chem. Soc 2007, 129, 2204–2205. [Google Scholar]
- Cai, L; Feng, M; Guo, HM; Ji, W; Du, SX; Chi, LF; Fuchs, H; Gao, H-J. Reversible and reproducible conductance transition in a polyimide thin film. J. Phys. Chem. C 2008, 112, 17038–17041. [Google Scholar]
- Zhao, A; Li, Q; Chen, L; Xiang, H; Wang, W; Pan, S; Wang, B; Xiao, X; Yang, J; Hou, JG; Zhu, Q. Controlling the Kondo effect of an adsorbed magnetic ion through its chemical bonding. Science 2005, 309, 1542–1544. [Google Scholar]
- Gao, L; Ji, W; Hu, YB; Cheng, ZH; Deng, ZT; Liu, Q; Jiang, N; Lin, X; Guo, W; Du, SX; Hofer, WA; Xie, XC; Gao, H-J. Site-specific Kondo effect at ambient temperatures in iron-based molecules. Phys Rev Lett 2007, 99, 106402:1–106402:4. [Google Scholar]
- Wahl, P; Diekhöner, L; Wittich, G; Vitali, L; Schneider, MA; Kern, K. Kondo effect of molecular complexes at surfaces: ligand control of the local spin coupling. Phys Rev Lett 2005, 95, 166601:1–166601:4. [Google Scholar]
- Tsukahara, N; Noto, K; Ohara, M; Shiraki, S; Takagi, N; Takata, Y; Miyawaki, J; Taguchi, M; Chainani, A; Shin, S; Kawai, M. Adsorption-induced switching of magnetic anisotropy in a single iron(II) phthalocyanine molecule on an oxidized Cu(110) surface. Phys Rev Lett 2009, 102, 167203:1–167203:4. [Google Scholar]
- Chen, X; Fu, YS; Ji, SH; Zhang, T; Cheng, P; Ma, XC; Zou, XL; Duan, WH; Jia, JF; Xue, QK. Probing superexchange interaction in molecular magnets by spin-flip spectroscopy and microscopy. Phys Rev Lett 2008, 101, 197208:1–197208:4. [Google Scholar]
- Stipe, BC; Rezaei, MA; Ho, W. Single-molecular vibrational spectroscopy and microscopy. Science 1998, 280, 1732–1735. [Google Scholar]
- Stipe, BC; Rezaei, MA; Ho, W. Inducing and viewing the rotational motion of a single molecule. Science 1998, 279, 1907–1909. [Google Scholar]
- Gimzewski, JK; Joachim, C; Schlittler, RR; Langlais, V; Tang, H; Johannsen, I. Rotation of a single molecule within a supramolecular bearing. Science 1998, 281, 531–533. [Google Scholar]
- Gao, L; Liu, Q; Zhang, YY; Jiang, N; Zhang, HG; Cheng, ZH; Qiu, WF; Du, SX; Liu, YQ; Hofer, WA; Gao, H-J. Constructing an array of anchored single-molecule rotors on gold surfaces. Phys Rev Lett 2008, 101, 197209:1–197209:4. [Google Scholar]
- Eigler, DM; Lutz, CP; Rudge, WE. An atomic switch realized with the scanning tunneling microscope. Nature 1991, 352, 600–603. [Google Scholar]
- Park, H; Park, J; Lim, AKL; Anderson, EH; Alivisatos, AP; McEuen, PL. Nanomechanical oscillations in a single C60 transistor. Nature 2000, 407, 57–60. [Google Scholar]
- Schliwa, M. Molecular Motors; Wiley-VCH: Weinheim, Germany, 2003. [Google Scholar]
- Browne, WR; Feringa, BL. Making molecular machines work. Nat. Nanotech 2006, 1, 25–35. [Google Scholar]
- Kay, ER; Leigh, DA; Zerbetto, F. Synthetic molecular motors and mechanical machines. Angew. Chem. Int. Ed 2007, 46, 72–191. [Google Scholar]
- Kottas, GS; Clarke, LI; Horinek, D; Michl, J. Artificial molecular rotors. Chem. Rev 2005, 105, 1281–1376. [Google Scholar]
- Chiaravalloti, F; Gross, L; Rieder, K-H; Stojkovic, SM; Gourdon, A; Joachim, C; Moresco, F. A rack-and-pinion device at the molecular scale. Nat. Mater 2007, 6, 30–33. [Google Scholar]
- Grill, L; Rieder, K-H; Moresco, F; Rapenne, G; Stojkovic, S; Bouju, X; Joachim, C. Rolling a single molecular wheel at the atomic scale. Nat. Nanotech 2007, 2, 95–98. [Google Scholar]
- Shirai, Y; Osgood, AJ; Zhao, Y; Kelly, KF; Tour, JM. Directional control in thermally driven single-molecule nanocars. Nano Lett 2005, 5, 2330–2334. [Google Scholar]
- Maksymovych, P; Sorescu, DC; Yates, JT. Gold-adatom-mediated bonding in self-assembled short-chain alkanethiolate species on the Au(111) surface. Phys Rev Lett 2006, 97, 146103:1–146103:4. [Google Scholar]
- Perdew, JP; Chevary, JA; Vosko, SH; Jackson, KA; Pederson, MR; Singh, DJ; Fiolhais, C. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 1992, 46, 6671–6687. [Google Scholar]
- Blöchl, PE. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979. [Google Scholar]
- Kresse, G; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775. [Google Scholar]
- Kresse, G; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186. [Google Scholar]
- Kresse, G; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 1993, 47, R558–R561. [Google Scholar]
- Limot, L; Kröger, J; Berndt, R; Garcia-Lekue, A; Hofer, WA. Atom transfer and single-adatom contacts. Phys Rev Lett 2005, 94, 126102:1–126102:4. [Google Scholar]
- Wöll, C; Chiang, S; Wilson, RJ; Lippel, PH. Determination of atom positions at stacking-fault dislocations on Au(111) by scanning tunneling microscopy. Phys. Rev. B 1989, 39, 7988–7991. [Google Scholar]
- Barth, JV; Brune, H; Ertl, G. Scanning tunneling microscopy observations on the reconstructed Au(111) surface: Atomic structure, long-range superstructure, rotational domains, and surface defects. Phys. Rev. B 1990, 42, 9307–9318. [Google Scholar]
© 2010 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Gao, L.; Du, S.-X.; Gao, H.-J. Anchoring of a Single Molecular Rotor and Its Array on Metal Surfaces using Molecular Design and Self-Assembly. Int. J. Mol. Sci. 2010, 11, 656-671. https://doi.org/10.3390/ijms11020656
Gao L, Du S-X, Gao H-J. Anchoring of a Single Molecular Rotor and Its Array on Metal Surfaces using Molecular Design and Self-Assembly. International Journal of Molecular Sciences. 2010; 11(2):656-671. https://doi.org/10.3390/ijms11020656
Chicago/Turabian StyleGao, Li, Shi-Xuan Du, and Hong-Jun Gao. 2010. "Anchoring of a Single Molecular Rotor and Its Array on Metal Surfaces using Molecular Design and Self-Assembly" International Journal of Molecular Sciences 11, no. 2: 656-671. https://doi.org/10.3390/ijms11020656