Uncertainty Analysis of Remote Sensing Pretreatment for Biomass Estimation on Landsat OLI and Landsat ETM+
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Landsat Data
2.3. Field Data
2.4. Experimental Scheme
2.5. Random Forest Modeling
2.6. Remote Sensing Predictor Variables
2.7. Accuracy Assessment and Evaluation Indicators
2.8. Variance
3. Results
3.1. Biomass Estimation from Raw Data
3.2. Biomass Estimation from Radiometric Calibration
3.3. Biomass Estimation after Using Atmospheric Correction
3.4. Biomass Estimation Following Terrain Correction
4. Discussion
5. Conclusions
- In this study, with regard to results of training sample, we observed 21.05% and 23.45% uncertainty in biomass estimation using original images from the OLI and ETM+, respectively. For the test sample, an uncertainty of 33.70% and 34.28% was found, respectively. The three pretreatments can effectively improve the stability of model accuracy. Atmospheric correction was the main process for reducing the uncertainty of remote sensing biomass in the pretreatment stage. In the training sample, this reduced uncertainty by 3.78% and 3.72% for OLI and ETM+, respectively, as opposed to 5.56% and 4.41% in the test sample, Terrain correction can reduce the uncertainty of biomass estimation of OLI (training sample: 1.08%, test sample: 1.00%) and ETM+ (training sample: 2.42%, test sample: 1.67%). On the other hand, radiation calibration will slightly reduce the accuracy of the model and increase the uncertainty of remote sensing biomass estimation (OLI increased by 0.62% and 1.4%, ETM+ increased by 0.94% and 2.1%).
- Radiometric calibration as well as atmospheric and terrain corrections showed consistent basic characteristics with respect to the uncertainty of biomass estimation using remote sensing in Landsat series satellites (OLI, ETM+). Radiometric calibration can slightly increase the uncertainty, while atmospheric and terrain correction could significantly reduce the uncertainty and with similar effects.
- Atmospheric correction was a primary means for reducing the uncertainty of biomass estimation during pretreatment, and thus we conclude that the improved atmospheric correction method is beneficial for the further reduction of uncertainty during biomass estimation. However, the influence of solar elevation angle should be considered when performing terrain correction and choosing an appropriate optical image is recommended to improve the predictive accuracy.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Achard, F.; Eva, H.D.; Mayaux, P.; Stibig, H.J.; Belward, A. Improved estimates of net carbon emissions from land cover change in the tropics for the 1990s. Glob. Biogeochem. Cycles 2004, 18. [Google Scholar] [CrossRef]
- Frolking, S.; Palace, M.W.; Clark, D.B.; Chambers, J.Q.; Shugart, H.H.; Hurtt, G.C. Forest disturbance and recovery: A general review in the context of spaceborne remote sensing of impacts on aboveground biomass and canopy structure. J. Geophys. Res. Biogeosci. 2015, 114, 544. [Google Scholar] [CrossRef]
- Hansen, M.C.; Potapov, P.V.; Moore, R.; Hancher, M.; Turubanova, S.A.; Tyukavina, A.; Thau, D.; Stehman, S.V.; Goetz, S.J.; Loveland, T.R. High-resolution global maps of 21st-century forest cover change. Science 2014, 342, 850–853. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Houghton, R.A. Aboveground forest biomass and the global carbon balance. Glob. Chang. Biol. 2010, 11, 945–958. [Google Scholar] [CrossRef]
- Hese, S.; Lucht, W.; Schmullius, C.; Barnsley, M.; Dubayah, R.; Knorr, D.; Neumann, K.; Riedel, T.; Schröter, K. Global biomass mapping for an improved understanding of the co 2 balance—The earth observation mission carbon-3d. Remote Sens. Environ. 2005, 94, 94–104. [Google Scholar] [CrossRef]
- Sedjo, R.A. The carbon cycle and global forest ecosystem. Water Air Soil Pollut. 1993, 70, 295–307. [Google Scholar] [CrossRef]
- Waring, R.H.; Running, S.W. Forest Ecosystems, Analysis at Multiple Scales, 3rd ed.; Elsevier: Boston, MA, USA; Academic Press: Amsterdam, The Netherlands, 2007; pp. 347–408. [Google Scholar]
- Schlamadinger, B.; Marland, G. The role of forest and bioenergy strategies in the global carbon cycle. Biomass Bioenergy 1996, 11, 275–300. [Google Scholar] [CrossRef]
- Brinck, K.; Fischer, R.; Groeneveld, J.; Lehmann, S.; Dantas, D.P.M.; Pütz, S.; Sexton, J.O.; Song, D.; Huth, A. High resolution analysis of tropical forest fragmentation and its impact on the global carbon cycle. Nat. Commun. 2017, 8, 14855. [Google Scholar] [CrossRef] [Green Version]
- Gibbs, H.K.; Brown, S.; Niles, J.O.; Foley, J.A. Monitoring and estimating tropical forest carbon stocks: Making redd a reality. Environ. Res. Lett. 2007, 2, 045023. [Google Scholar] [CrossRef]
- Mandels, M.; Weber, J.; Parizek, R. Realising redd+ national strategy and policy options. Cent. Int. For. Res. 2009, 18, 6362–6369. [Google Scholar]
- Gumpenberger, M.; Vohland, K.; Heyder, U.; Poulter, B.; Macey, K.; Rammig, A.; Popp, A.; Cramer, W. Predicting pan-tropical climate change induced forest stock gains and losses—Implications for REDD. Environ. Res. Lett. 2018, 5, 014013. [Google Scholar] [CrossRef]
- Galidaki, G.; Zianis, D.; Gitas, I.; Radoglou, K.; Karathanassi, V.; Tsakiri–Strati, M.; Woodhouse, I.; Mallinis, G. Vegetation biomass estimation with remote sensing: Focus on forest and other wooded land over the mediterranean ecosystem. Int. J. Remote Sens. 2017, 38, 1940–1966. [Google Scholar] [CrossRef] [Green Version]
- Lu, D.; Chen, Q.; Wang, G.; Liu, L.; Li, G.; Moran, E. A survey of remote sensing-based aboveground biomass estimation methods in forest ecosystems. Int. J. Digit. Earth 2014, 9, 63–105. [Google Scholar] [CrossRef]
- Chave, J.; Réjou-Méchain, M.; Búrquez, A.; Chidumayo, E.; Colgan, M.S.; Delitti, W.B.C.; Duque, A.; Eid, T.; Fearnside, P.M.; Goodman, R.C. Improved allometric models to estimate the aboveground biomass of tropical trees. Glob. Chang. Biol. 2015, 20, 3177–3190. [Google Scholar] [CrossRef] [PubMed]
- Alves, L.F.; Vieira, S.A.; Scaranello, M.A.; Camargo, P.B.; Santos, F.A.M.; Joly, C.A.; Martinelli, L.A. Forest structure and live aboveground biomass variation along an elevational gradient of tropical atlantic moist forest (Brazil). For. Ecol. Manag. 2010, 260, 679–691. [Google Scholar] [CrossRef]
- Kumar, L.; Mutanga, O. Remote sensing of above-ground biomass. Remote Sens. 2017, 9, 935. [Google Scholar] [CrossRef] [Green Version]
- Oliveras, I.; Anderson, L.O.; Malhi, Y. Application of remote sensing to understanding fire regimes and biomass burning emissions of the tropical andes. Glob. Biogeochem. Cycles 2014, 28, 480–496. [Google Scholar] [CrossRef]
- Fry, J.C. 2 Direct methods and biomass estimation. Methods Microbiol. 1990, 22, 41–85. [Google Scholar]
- Brown, S.; Gillespie, A.J.; Lugo, A.E. Biomass estimation methods for tropical forests with applications to forest inventory data. For. Sci. 1989, 35, 881–902. [Google Scholar]
- Seidel, D.; Fleck, S.; Leuschner, C.; Hammett, T. Review of ground-based methods to measure the distribution of biomass in forest canopies. Ann. For. Sci. 2011, 68, 225–244. [Google Scholar] [CrossRef] [Green Version]
- Durante, P.; Martín-Alcón, S.; Gil-Tena, A.; Algeet, N.; Tomé, J.L.; Recuero, L.; Palacios-Orueta, A.; Oyonarte, C. Improving aboveground forest biomass maps: From high-resolution to national scale. Remote Sens. 2019, 11, 795. [Google Scholar] [CrossRef] [Green Version]
- O’Donnell, J.P.R.; Schalles, J.F. Examination of abiotic drivers and their influence on Spartina alterniflora biomass over a twenty-eight year period using Landsat 5 TM satellite imagery of the Central Georgia Coast. Remote Sens. 2016, 8, 477. [Google Scholar] [CrossRef] [Green Version]
- Lu, D. Aboveground biomass estimation using landsat tm data in the Brazilian amazon. Int. J. Remote Sens. 2005, 26, 2509–2525. [Google Scholar] [CrossRef]
- Næsset, E.; Gobakken, T.; Bollandsås, O.M.; Gregoire, T.G.; Nelson, R.; Ståhl, G. Comparison of precision of biomass estimates in regional field sample surveys and airborne lidar-assisted surveys in Hedmark county, Norway. Remote Sens. Environ. 2013, 130, 108–120. [Google Scholar] [CrossRef] [Green Version]
- Onisimo, M.; Elhadi, A.; Cho, A.M. High density biomass estimation for wetland vegetation using worldview-2 imagery and random forest regression algorithm. Int. J. Appl. Earth Obs. Geoinf. 2012, 18, 399–406. [Google Scholar]
- Shi, W. Principles of Modeling Uncertainties in Spatial Data and Spatial Analyses; CRC Press: Boca Raton, CA, USA, 2009. [Google Scholar]
- Hill, T.C.; Williams, M.; Bloom, A.A.; Mitchard, E.T.; Ryan, C.M. Are inventory based and remotely sensed above-ground biomass estimates consistent? PLoS ONE 2013, 8, e74170. [Google Scholar] [CrossRef] [Green Version]
- Tjelmeland, S. A model for the uncertainty around the yearly trawl-acoustic estimate of biomass of barents sea capelin, mallotus villosus (müller). ICES J. Mar. Sci. 2002, 59, 1072–1080. [Google Scholar] [CrossRef] [Green Version]
- Yu, F. Aboveground biomass estimation and uncertainties assessing on regional scale with an improved model analysis method. Hubei For. Sci. Technol. 2018, 47, 1–4. [Google Scholar]
- Yu, F.; Yuancai, L.; Weisheng, Z. Uncertainty assessment in regional-scale above ground biomass estimation of Chinese fir. Sci. Silvae Sin. 2014, 50, 79–86. [Google Scholar]
- Kaufman, Y. The effect of subpixel clouds on remote sensing. Int. J. Remote Sens. 1987, 8, 839–857. [Google Scholar] [CrossRef]
- Arvidson, T.; Goward, S.; Gasch, J.; Williams, D. Landsat-7 long-term acquisition plan radiometry-evolution over time. Photogramm. Eng. Remote Sens. 2006, 72, 1137–1146. [Google Scholar] [CrossRef]
- Nagol, J.R.; Sexton, J.O.; Kim, D.H.; Anand, A.; Morton, D.; Vermote, E.; Townshend, J.R. Bidirectional effects in landsat reflectance estimates: Is there a problem to solve? ISPRS J. Photogramm. Remote Sens. 2015, 103, 129–135. [Google Scholar] [CrossRef]
- Roy, D.P.; Ju, J.; Lewis, P.; Schaaf, C.; Gao, F.; Hansen, M.; Lindquist, E. Multi-temporal modis-landsat data fusion for relative radiometric normalization, gap filling, and prediction of landsat data. Remote Sens. Environ. 2008, 112, 3112–3130. [Google Scholar] [CrossRef]
- Steven, M.D.; Malthus, T.J.; Baret, F.; Hui, X.; Chopping, M.J. Intercalibration of vegetation indices from different sensor systems. Remote Sens. Environ. 2003, 88, 412–422. [Google Scholar] [CrossRef]
- Tucker, C.J.; Pinzon, J.E.; Brown, M.E.; Slayback, D.A.; Pak, E.W.; Mahoney, R.; Vermote, E.F.; Saleous, N.E. An extended AVHRR 8-km NDVI dataset compatible with MODIS and SPOT vegetation NDVI data. Int. J. Remote Sens. 2005, 26, 4485–4498. [Google Scholar] [CrossRef]
- Roy, D.P.; Borak, J.S.; Devadiga, S. The modis land product quality assessment approach. Remote Sens. Environ. 2002, 83, 62–76. [Google Scholar] [CrossRef]
- Roy, D.P.; Kovalskyy, V.; Zhang, H.K.; Vermote, E.F.; Yan, L.; Kumar, S.S.; Egorov, A. Characterization of landsat-7 to landsat-8 reflective wavelength and normalized difference vegetation index continuity. Remote Sens. Environ. 2016, 185, 57–70. [Google Scholar] [CrossRef] [Green Version]
- Chave, J.; Davies, S.J.; Phillips, O.L.; Lewis, S.L.; Sist, P.; Schepaschenko, D.; Armston, J.; Baker, T.R.; Coomes, D.; Disney, M. Ground data are essential for biomass remote sensing missions. Surv. Geophys. 2019. [Google Scholar] [CrossRef]
- Van, B.M.; Ransijn, J.; Craven, D.; Bongers, F.; Hall, J.S. Estimating carbon stock in secondary forests: Decisions and uncertainties associated with allometric biomass models. For. Ecol. Manag. 2011, 262, 1648–1657. [Google Scholar]
- Sándor, R.; Barcza, Z.; Acutis, M.; Doro, L.; Hidy, D.; Köchy, M.; Minet, J.; Lellei-Kovács, E.; Ma, S.; Perego, A. Multi-model simulation of soil temperature, soil water content and biomass in euro-mediterranean grasslands: Uncertainties and ensemble performance. Eur. J. Agron. 2017, 88, 22–40. [Google Scholar] [CrossRef] [Green Version]
- Breidenbach, J.; Antón-Fernández, C.; Petersson, H.; Mcroberts, R.E.; Astrup, R. Quantifying the model-related variability of biomass stock and change estimates in the norwegian national forest inventory. For. Sci. 2014, 60, 25–33. [Google Scholar] [CrossRef] [Green Version]
- Lu, D.; Chen, Q.; Wang, G.; Moran, E.; Saah, D. Aboveground forest biomass estimation with landsat and lidar data and uncertainty analysis of the estimates. Int. J. For. Res. 2012, 2012, 436537. [Google Scholar] [CrossRef]
- Molto, Q.; Rossi, V.; Blanc, L. Error propagation in biomass estimation in tropical forests. Methods Ecol. Evol. 2013, 4, 175–183. [Google Scholar] [CrossRef]
- Frazer, G.W.; Magnussen, S.; Wulder, M.A.; Niemann, K.O. Simulated impact of sample plot size and co-registration error on the accuracy and uncertainty of lidar-derived estimates of forest stand biomass. Remote Sens. Environ. 2011, 115, 636–649. [Google Scholar] [CrossRef]
- Keller, M.; Palace, M.; Hurtt, G. Biomass estimation in the Tapajos National Forest, Brazil: Examination of sampling and allometric uncertainties. For. Ecol. Manag. 2001, 154, 371–382. [Google Scholar] [CrossRef]
- Samimi, C.; Kraus, T. Biomass estimation using landsat-tm and -etm+. Towards a regional model for southern Africa? GeoJournal 2004, 59, 177–187. [Google Scholar] [CrossRef]
- Zheng, D.; Rademacher, J.; Chen, J.; Crow, T.; Bresee, M.; Moine, J.L.; Ryu, S.R. Estimating aboveground biomass using landsat 7 etm+ data across a managed landscape in northern wisconsin, USA. Remote Sens. Environ. 2004, 93, 402–411. [Google Scholar] [CrossRef]
- Chenge, I.B.; Osho, J.S. Mapping tree aboveground biomass and carbon in omo forest reserve Nigeria using landsat 8 oli data. South. For. 2018, 80, 1–10. [Google Scholar] [CrossRef]
- Belachew, G.; Svein, S.; Erik, N.; Terje, G.; Martin, B.O.; Johannes, B.; Eliakimu, Z.; William, M.E. Mapping and estimating the total living biomass and carbon in low-biomass woodlands using landsat 8 cdr data. Carbon Balance Manag. 2016, 11, 13. [Google Scholar]
- Mira, M.; Olioso, A.; Gallego-Elvira, B.; Courault, D.; Garrigues, S.; Marloie, O.; Hagolle, O.; Guillevic, P.; Boulet, G. Uncertainty assessment of surface net radiation derived from landsat images. Remote Sens. Environ. 2016, 175, 251–270. [Google Scholar] [CrossRef] [Green Version]
- Gertner, G.; Wang, G.; Fang, S.; Anderson, A.B. Mapping and uncertainty of predictions based on multiple primary variables from joint co-simulation with landsat tm image and polynomial regression. Remote Sens. Environ. 2002, 83, 498–510. [Google Scholar] [CrossRef]
- Fleming, A.L.; Wang, G.; Mcroberts, R.E. Comparison of methods toward multi-scale forest carbon mapping and spatial uncertainty analysis: Combining national forest inventory plot data and landsat tm images. Eur. J. For. Res. 2015, 134, 125–137. [Google Scholar] [CrossRef]
- Sánchez, J.M. Validation of landsat-7/etm+ thermal-band calibration and atmospheric correction with ground-based measurements. IEEE Trans. Geosci. Remote Sens. 2010, 48, 547–555. [Google Scholar]
- Thome, K.J. Absolute radiometric calibration of landsat 7 etm+ using the reflectance-based method. Remote Sens. Environ. 2001, 78, 27–38. [Google Scholar] [CrossRef]
- Campbell, J.B. Introduction to Remote Sensing; The Guilgord Press: New York, NY, USA; London, UK, 1987; pp. 51–67. [Google Scholar]
- Markham, B.; Barsi, J.; Kvaran, G.; Ong, L.; Helder, D. Landsat-8 operational land imager radiometric calibration and stability. Remote Sens. 2014, 6, 12275–12308. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Yu, D.; Shi, X.; Zhang, X.; Wang, H.; Gu, Z. Uncertainty in prediction of soil erod ibility k-factor in subtropical china. Acta Pedol. Sin. 2009, 46, 185–191. [Google Scholar]
- He, L. A Study on the Uncertainty of Regional Winter Wheat Growth Simulation from a Crop model Using Remote Sensing Data Assimilation. Ph.D. Thesis, Chinese Academy of Agricultural Sciences, Beijing, China, June 2016. [Google Scholar]
- Zeng, W.; Tomppo, E.; Healey, S.P.; Gadow, K.V. The national forest inventory in china: History-results-international context. For. Ecosyst. 2015, 2, 23. [Google Scholar] [CrossRef] [Green Version]
- Fang, J.; Oikawa, T.; Kato, T.; Mo, W.; Wang, Z. Biomass carbon accumulation by Japan’s forests from 1947 to 1995. Glob. Biogeochem. Cycles 2005, 19. [Google Scholar] [CrossRef]
- Tomppo, E.; Olsson, H.; Ståhl, G.; Nilsson, M.; Hagner, O.; Katila, M. Combining national forest inventory field plots and remote sensing data for forest databases. Remote Sens. Environ. 2008, 112, 1982–1999. [Google Scholar] [CrossRef]
- Nilsson, M.; Nordkvist, K.; Jonzén, J.; Lindgren, N.; Axensten, P.; Wallerman, J.; Egberth, M.; Larsson, S.; Nilsson, L.; Eriksson, J. A nationwide forest attribute map of Sweden predicted using airborne laser scanning data and field data from the national forest inventory. Remote Sens. Environ. 2017, 194, 447–454. [Google Scholar] [CrossRef]
- Guo, Z.; Fang, J.; Pan, Y.; Birdsey, R. Inventory-based estimates of forest biomass carbon stocks in china: A comparison of three methods. For. Ecol. Manag. 2010, 259, 1225–1231. [Google Scholar] [CrossRef]
- Brown, S.; Lugo, A.E. Biomass of tropical forests: A new estimate based on forest volumes. Science 1984, 223, 1290–1293. [Google Scholar] [CrossRef] [PubMed]
- Birdsey, R.; Heath, L. Forest inventory data, models, and assumptions for monitoring carbon flux. SSSA Spec. Publ. 2001, 57, 125–136. [Google Scholar]
- Canadell, J.G.; Le Quéré, C.; Raupach, M.R.; Field, C.B.; Buitenhuis, E.T.; Ciais, P.; Conway, T.J.; Gillett, N.P.; Houghton, R.; Marland, G. Contributions to accelerating atmospheric co2 growth from economic activity, carbon intensity, and efficiency of natural sinks. Proc. Natl. Acad. Sci. USA 2007, 104, 18866–18870. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piao, S.; Fang, J.; Zhu, B.; Tan, K. Forest biomass carbon stocks in china over the past 2 decades: Estimation based on integrated inventory and satellite data. J. Geophys. Res. Biogeosci. 2005, 110. [Google Scholar] [CrossRef] [Green Version]
- Du, L.; Zhou, T.; Zou, Z.; Zhao, X.; Huang, K.; Wu, H. Mapping forest biomass using remote sensing and national forest inventory in China. Forests 2014, 5, 1267–1283. [Google Scholar] [CrossRef] [Green Version]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Barbosa, J.; Broadbent, E.; Bitencourt, M. Remote sensing of aboveground biomass in tropical secondary forests: A review. Int. J. For. Res. 2014, 2014, 715796. [Google Scholar] [CrossRef]
- Kamusoko, C.; Jonah, G.; Murakami, H. Mapping woodland cover in the miombo ecosystem: A comparison of machine learning classifiers. Land 2014, 3, 524–540. [Google Scholar] [CrossRef] [Green Version]
- Coulston, J.W.; Blinn, C.E.; Thomas, V.A.; Wynne, R.H. Approximating prediction uncertainty for random forest regression models. Photogramm. Eng. Remote Sens. 2016, 82, 189–197. [Google Scholar] [CrossRef] [Green Version]
- Powell, S.L.; Cohen, W.B.; Healey, S.P.; Kennedy, R.E.; Moisen, G.G.; Pierce, K.B.; Ohmann, J.L. Quantification of live aboveground forest biomass dynamics with landsat time-series and field inventory data: A comparison of empirical modeling approaches. Remote Sens. Environ. 2010, 114, 1053–1068. [Google Scholar] [CrossRef]
- Ismail, R.; Mutanga, O.; Woldai, T.; Annegarn, H. A comparison of regression tree ensembles: Predicting sirex noctilio induced water stress in pinus patula forests of kwazulu-natal, South Africa. Int. J. Appl. Earth Obs. Geoinf. 2010, 12, S45–S51. [Google Scholar] [CrossRef]
- Liaw, A.; Wiener, M. Classification and regression by randomforest. R News 2002, 2, 18–22. [Google Scholar]
- Rouse, J.W., Jr.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring Vegetation Systems in the Great Plains with ERTS. In Proceedings of the Third ERTS-1 Symposium NASA, NASA SP-351, Washington, DC, USA, 29 September 1974; pp. 812–815. [Google Scholar]
- Gitelson, A.A.; Kaufman, Y.J.; Merzlyak, M.N. Use of a green channel in remote sensing of global vegetation from eos-modis. Remote Sens. Environ. 1996, 58, 289–298. [Google Scholar] [CrossRef]
- Huete, A.R. A soil-adjusted vegetation index (savi). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Qi, J.; Huete, A.; Moran, M.S.; Chehbouni, A.; Jackson, R.D. Interpretation of vegetation indices derived from multi-temporal spot images. Remote Sens. Environ. 1993, 44, 89–101. [Google Scholar] [CrossRef]
- Liu, H.Q.; Huete, A. A feedback based modification of the ndvi to minimize canopy background and atmospheric noise. IEEE Trans. Geosci. Remote Sens. 1995, 33, 457–465. [Google Scholar] [CrossRef]
- Fassnacht, F.E.; Hartig, F.; Latifi, H.; Berger, C.; Hernández, J.; Corvalán, P.; Koch, B. Importance of sample size, data type and prediction method for remote sensing-based estimations of aboveground forest biomass. Remote Sens. Environ. 2014, 154, 102–114. [Google Scholar] [CrossRef]
- Yang, Y.; Cao, C.; Pan, X.; Li, X.; Zhu, X. Downscaling land surface temperature in an arid area by using multiple remote sensing indices with random forest regression. Remote Sens. 2017, 9, 789. [Google Scholar] [CrossRef] [Green Version]
- Sun, X.; Lin, X.; Shen, S.; Hu, Z. High-resolution remote sensing data classification over urban areas using random forest ensemble and fully connected conditional random field. ISPRS Int. J. Geo Inf. 2017, 6, 245. [Google Scholar] [CrossRef] [Green Version]
- Shen, R.; Guo, J.; Zhang, J.; Luoxi, L.I. Construction of a drought monitoring model using the random forest based remote sensing. J. Geo-Inf. Sci. 2017, 19, 125–133. [Google Scholar]
- Mishra, N.; Helder, D.; Barsi, J.; Markham, B. Continuous calibration improvement in solar reflective bands: Landsat 5 through landsat 8. Remote Sens. Environ. 2016, 185, 7–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghulam, A.; Qin, Q.; Zhu, L.; Abdrahman, P. Satellite remote sensing of groundwater: Quantitative modelling and uncertainty reduction using 6s atmospheric simulations. Int. J. Remote Sens. 2004, 25, 5509–5524. [Google Scholar] [CrossRef]
- Sarker, L.R.; Nichol, J.E. Improved forest biomass estimates using alos avnir-2 texture indices. Remote Sens. Environ. 2011, 115, 968–977. [Google Scholar] [CrossRef]
- Hieu Cong, N.; Jaehoon, J.; Jungbin, L.; Sung-Uk, C.; Suk-Young, H.; Joon, H. Optimal atmospheric correction for above-ground forest biomass estimation with the etm+ remote sensor. Sensors 2015, 15, 18865–18886. [Google Scholar]
- Zhu, W.; Huang, L.; Sun, N.; Chen, J.; Pang, S. Landsat 8-observed water quality and its coupled environmental factors for urban scenery lakes: A case study of west lake. Water Environ. Res. 2019. [Google Scholar] [CrossRef]
- Deo, R.K.; Domke, G.M.; Russell, M.B.; Woodall, C.W.; Andersen, H.E. Evaluating the influence of spatial resolution of landsat predictors on the accuracy of biomass models for large-area estimation across the eastern USA. Environ. Res. Lett. 2018, 13, 055004. [Google Scholar] [CrossRef]
- Chave, J.; Chust, G.; Condit, R.; Aguilar, S.; Hernandez, A.; Lao, S.; Perez, R. Error propagation and scaling for tropical forest biomass estimates. Philos. Trans. R Soc. Lond. B Biol. Sci. 2004, 359, 409–420. [Google Scholar] [CrossRef]
- Baker, D.J.; Richards, G.; Grainger, A.; Gonzalez, P.; Brown, S.; Defries, R.; Held, A.; Kellndorfer, J.; Ndunda, P.; Ojima, D. Achieving forest carbon information with higher certainty: A five-part plan. Environ. Sci. Policy 2010, 13, 249–260. [Google Scholar] [CrossRef]
Remote Sensing Data | Date | Pixel Size |
---|---|---|
Landsat 8 OLI | 14 October 2013 | MS: 30 m |
Landsat 7 ETM+ | 22 October 2013 | MS: 30 m |
Predictor Variables | Formula |
---|---|
Normalized Difference Vegetation Index (NDVI) [78] | |
Generalized Difference Vegetation Index (GNDVI) [79] | |
Soil-Adjusted Vegetation Index (SAVI) [80] | |
Modified Soil-Adjusted Vegetation Index (MSAVI) [81] | |
Enhanced vegetation index (EVI) [82] |
Class | Value | Original Image | Radiometric Calibration | Atmospheric Correction | Terrain Correction | ||||
---|---|---|---|---|---|---|---|---|---|
OLI | ETM+ | OLI | ETM+ | OLI | ETM+ | OLI | ETM+ | ||
R2 | Mean | 0.571 | 0.499 | 0.565 | 0.498 | 0.670 | 0.561 | 0.725 | 0.681 |
SD | 0.332 | 0.364 | 0.329 | 0.343 | 0.304 | 0.337 | 0.270 | 0.323 | |
<SD | 23 | 24 | 22 | 23 | 18 | 21 | 18 | 21 | |
MAE | Mean | 47.1 | 50.3 | 49.4 | 54.2 | 44.0 | 45.3 | 42.8 | 43.3 |
SD | 24.3 | 25.3 | 24.2 | 24.9 | 21.1 | 24.6 | 21.2 | 20.7 | |
>SD | 15 | 14 | 14 | 14 | 14 | 12 | 14 | 13 | |
<SD | 7 | 15 | 11 | 16 | 12 | 20 | 17 | 22 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Q.; Xu, L.; Zhang, M.; Wang, Z.; Gu, Z.; Wu, Y.; Shi, Y.; Lu, Z. Uncertainty Analysis of Remote Sensing Pretreatment for Biomass Estimation on Landsat OLI and Landsat ETM+. ISPRS Int. J. Geo-Inf. 2020, 9, 48. https://doi.org/10.3390/ijgi9010048
Zhang Q, Xu L, Zhang M, Wang Z, Gu Z, Wu Y, Shi Y, Lu Z. Uncertainty Analysis of Remote Sensing Pretreatment for Biomass Estimation on Landsat OLI and Landsat ETM+. ISPRS International Journal of Geo-Information. 2020; 9(1):48. https://doi.org/10.3390/ijgi9010048
Chicago/Turabian StyleZhang, Qi, Lihua Xu, Maozhen Zhang, Zhi Wang, Zhangfeng Gu, Yaqi Wu, Yijun Shi, and Zhangwei Lu. 2020. "Uncertainty Analysis of Remote Sensing Pretreatment for Biomass Estimation on Landsat OLI and Landsat ETM+" ISPRS International Journal of Geo-Information 9, no. 1: 48. https://doi.org/10.3390/ijgi9010048