Evaluation of the Consistency of MODIS Land Cover Product (MCD12Q1) Based on Chinese 30 m GlobeLand30 Datasets: A Case Study in Anhui Province, China
Abstract
:1. Introduction
Dataset | Available Years | Spatial Resolution |
---|---|---|
IGBP-DISCover | 1992–1993 | 1 km |
UMD LC | 1992–1993 | 1 km |
CORINE | 1990–2000 | 100 m |
MCD12Q1 | 2001–2012 | 500 m |
GLC2000 | 1999–2000 | 1 km |
GlobCover | 2005, 2009 | 300 m |
ECOCLIMAP | 1999–2005 | 1 km |
GlobeLand30 | 2000, 2010 | 30 m |
2. Study Area
3. Data Sources and Preprocessing
Item | MCD12Q1 | GlobeLand30 |
---|---|---|
Data Format | HDF-EOS | Geotiff |
Projection | Sinusoidal | UTM |
Total Accuracy | 74.8% ± 1.3% | 83.5% |
Acquisition website | http://reverb.echo.nasa.gov | http://www.globallandcover.com |
3.1. MODIS Dataset
3.2. GlobeLand30 Data
3.3. Data Preprocessing
Type | Definition |
---|---|
Cultivated land | Lands used for agriculture, horticulture and gardens, including paddy fields, irrigated and dry farmlands, vegetation and fruit gardens. |
Forest | Lands with trees, with vegetation cover over 30%, including deciduous and coniferous forests, and sparse woodlands with cover from 10% to 30%, etc. |
Grassland | Lands covered with shrubs with cover over 10%, etc. |
Shrubland | Land with shrubs cover over 30%, including deciduous and evergreen shrubs and deserts steppe with cover over 10%, etc. |
Wetland | Lands covered with wetlands plants and water bodies, including inland marsh, lake marsh, river floodplain wetland, forest/shrub wetland, peat bogs, mangrove and salt marsh, etc. |
Water bodies | Water bodies in the land area, including river, lake, reservoir and fish pond, etc. |
Tundra | Lands covered by lichen, moss, hardy perennial herb and shrubs in the polar regions, including shrub tundra, herbaceous tundra, wet tundra and barren tundra, etc. |
Artificial surfaces | Lands modified by human activities, including the various habitation, industrial and mining area, transportation facilities, and interior urban green zones and water bodies, etc. |
Barren land | Lands with vegetation cover lower than 10%, including desert, sandy fields, Gobi, bare rocks, saline and alkaline lands, etc. |
Permanent snow and ice | Lands covered by permanent snow, glacier and icecap. |
4. Outline and Methodology
4.1. Arrangement of Sections
4.2. Harmonization of Land Cover Classification
Type | IGBP | UMD | LAI/FPAR | NPP | PFT | GlobeLand30 |
---|---|---|---|---|---|---|
Woodland | 1. Evergreen Needleleaf forest | 1. Evergreen Needleleaf forest | 1. Shrubs | 1. Evergreen Needleleaf vegetation | 1. Evergreen Needleleaf trees | 1. Forest |
2. Evergreen Broadleaf forest | 2. Evergreen Broadleaf forest | 2. Broadleaf forest | 2. Evergreen Broadleaf vegetation | 2. Evergreen Broadleaf trees | 2. Shrubland | |
3. Deciduous Needleleaf forest | 3. Deciduous Needleleaf forest | 3. Needleleaf forest | 3. Deciduous Needleleaf vegetation | 3. Deciduous Needleleaf trees | ||
4. Deciduous Broadleaf forest | 4. Deciduous Broadleaf forest | 4. Deciduous Broadleaf vegetation | 4. Deciduous Broadleaf trees | |||
5. Mixed forests | 5. Mixed forests | 5. Shrub | ||||
6. Closed shrublands | 6. Closed shrublands | |||||
7. Open shrublands | 7. Open shrublands | |||||
Grassland | 1. Woody savannas | 1. Woody savannas | 1. Grasses/Cereal crops | 1. Annual Broadleaf vegetation | 1. Grass | 1. Grassland |
2. Savannas | 2. Savannas | 2. Savannas | 2. Annual grass vegetation | |||
3. Grasslands | 3. Grasslands | |||||
Cropland | 1. Croplands | 1. Croplands | 1. Broadleaf crops | 1. Cereal crops | 1. Cultivated land | |
2. Croplands/Natural vegetation | 2. Broad-leaf crops | |||||
Wetland | 1. Water bodies | 1. Water bodies | 1. Water bodies | 1. Water bodies | 1. Water bodies | 1. Water bodies |
2. Permanent wetlands | 2. Snow and ice | 2. Wetland | ||||
3. Snow and ice | 3. Permanent snow and ice | |||||
Artificial Surfaces | 1. Urban and built-up | 1. Urban and built-up | 1. Urban | 1. Urban | 1. Urban and built-up | 1. Artificial Surfaces |
Others | 1. Barren or sparsely vegetated | 1. Barren or sparsely vegetated | 1. Non-vegetated land | 1. Non-vegetated land | 1. Barren or sparse vegetation | 1. Barren land |
4.3. C4.5 Decision Tree Classification
4.4. Evaluation of Consistency
4.4.1. Area Consistency
4.4.2. Spatial Consistency
4.4.3. Accuracy Verification
4.4.4. Landscape Diversity
5. Results and Discussion
5.1. Validation of Classification Accuracy of GlobeLand30
Region | Land Cover Type | Area (km2) | Yearbook Statistics | Fractional Error (%) |
---|---|---|---|---|
Anhui Province | Woodland | 36711.25 | 38042.20 | 3.50 |
Cropland | 82294.50 | 90865.91 | 9.43 | |
Wetland | 7346.50 | 10418.00 | 29.48 | |
Wanbei | Woodland | 106.25 | 5628.60 | 98.11 |
Cropland | 25786.00 | 35316.03 | 26.98 | |
Wetland | 326.00 | 1230.47 | 73.51 | |
Wanzhong | Woodland | 15549.50 | 14104.50 | 10.24 |
Cropland | 44284.50 | 45209.74 | 2.05 | |
Wetland | 5610.25 | 6271.95 | 10.55 | |
Wannan | Woodland | 21056.75 | 18309.10 | 15.01 |
Cropland | 12239.50 | 10340.14 | 18.37 | |
Wetland | 1416.00 | 2915.58 | 51.43 |
5.2. Evaluation of Area Consistency
Region | IGBP (%) | UMD (%) | LAI/FPAR (%) | NPP (%) | PFT (%) |
---|---|---|---|---|---|
Wanbei | 98.44 | 98.43 | −17.78 | −31.47 | 98.43 |
Wanzhong | 99.61 | 99.58 | −28.02 | −42.55 | 99.80 |
Wannan | 98.22 | 97.27 | 56.40 | 69.26 | 97.98 |
Anhui Province | 99.35 | 99.27 | −27.89 | −38.72 | 99.53 |
5.3. Analysis of Spatial Consistency
Classification Schemes | IGBP | UMD | LAI/FPAR | NPP | PFT |
---|---|---|---|---|---|
Spatial Similarity O (%) | 78.66 | 80.62 | 58.17 | 86.70 | 85.68 |
5.4. Comparison of Classification Accuracy
Land cover type (%) | IGBP | UMD | LAI/FPAR | NPP | PFT | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Wanbei | Woodland | 1.75 | 0.74 | 1.46 | 0.74 | 9.38 | 0.74 | 1.49 | 0.74 | 1.40 | 0.74 |
Grassland | 2.02 | 0.29 | 10.00 | 0.29 | 0.50 | 78.46 | 0.56 | 97.29 | 0.90 | 0.14 | |
Cropland | 81.99 | 98.19 | 82.00 | 98.20 | 80.00 | 11.92 | 0 | 0 | 82.01 | 98.18 | |
Wetland | 57.78 | 2.10 | 64.00 | 1.30 | 64.00 | 1.37 | 64 | 1.29 | 64.00 | 1.29 | |
Artificial Surfaces | 42.42 | 6.24 | 42.42 | 6.26 | 8.47 | 0.02 | 42.42 | 6.24 | 42.42 | 6.24 | |
OA = 80.82% | OA = 80.86% | OA = 10.23% | OA = 1.61% | OA = 80.80% | |||||||
K = 6.88 | K = 6.73 | K = −0.30 | K = 0.66 | K = 6.91 | |||||||
Wanzhong | Woodland | 74.50 | 66.40 | 71.20 | 69.38 | 78.27 | 56.06 | 70.17 | 75.89 | 70.03 | 74.78 |
Grassland | 5.02 | 4.47 | 5.22 | 4.95 | 2.49 | 52.28 | 2.82 | 65.49 | 5.07 | 2.15 | |
Cropland | 77.26 | 91.1 | 78.15 | 91.02 | 71.60 | 11.98 | 0 | 0 | 78.09 | 90.84 | |
Wetland | 71.65 | 42.25 | 88.60 | 37.10 | 88.60 | 37.88 | 88.60 | 36.25 | 88.04 | 36.53 | |
Artificial Surfaces | 48.34 | 10.04 | 48.30 | 10.28 | 4.49 | 0.39 | 48.30 | 10.04 | 48.30 | 10.04 | |
OA = 73.76% | OA = 74.15% | OA = 23.97% | OA = 21.68% | OA = 74.89% | |||||||
K = 49.11 | K = 49.86 | K = 13.62 | K = 15.33 | K = 51.25 | |||||||
Wannan | Woodland | 80.89 | 85.86 | 79.98 | 87.30 | 79.60 | 58.43 | 77.55 | 92.56 | 77.73 | 91.62 |
Grassland | 4.10 | 15.69 | 3.98 | 16.72 | 3.01 | 48.02 | 2.84 | 41.36 | 4.29 | 6.52 | |
Cropland | 72.49 | 58.1 | 74.34 | 56.81 | 68.96 | 8.49 | 0 | 0 | 74.23 | 57.10 | |
Wetland | 53.64 | 36.99 | 84.34 | 29.72 | 84.34 | 30.95 | 84.34 | 28.39 | 83.36 | 28.86 | |
Artificial Surfaces | 57.38 | 19.24 | 57.32 | 20.93 | 4.60 | 1.29 | 57.32 | 19.24 | 57.32 | 19.24 | |
OA = 71.77% | OA = 71.99% | OA = 39.32% | OA = 56.23% | OA = 74.29% | |||||||
K = 48.33 | K = 47.92 | K = 16.36 | K = 25.72 | K = 49.74 |
5.5. Assessment of Landscape Diversity
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Pervez, M.S.; Henebry, G.M. Assessing the impacts of climate and land use and land cover change on the freshwater availability in the Brahmaputra River basin. J. Hydrol. Region. Stud. 2015, 3, 285–311. [Google Scholar] [CrossRef]
- Clerici, N.; Paracchini, M.L.; Maes, J. Land-cover change dynamics and insights into ecosystem services in European stream riparian zones. Ecohydrol. Hydrobiol. 2014, 14, 107–120. [Google Scholar] [CrossRef]
- Maitre, D.C.L.; Kotzee, I.M.; O’Farrell, P.J. Impacts of land-cover change on the water flow regulation ecosystem service: Invasive alien plants, fire and their policy implications. Land Use Policy 2014, 36, 171–181. [Google Scholar] [CrossRef]
- Pomara, L.Y.; Ledee, O.E.; Martin, K.J.; Zuckerberg, B. Demographic consequences of climate change and land cover help explain a history of extirpations and range contraction in a declining snake species. Glob. Chang. Biol. 2014, 20, 2087–2099. [Google Scholar] [CrossRef] [PubMed]
- Nagy, R.C.; Lockaby, B.G.; Zipperer, W.C.; Marzen, L.J. A comparison of carbon and nitrogen stocks among land uses/covers in coastal Florida. Urban Ecosys. 2014, 17, 255–276. [Google Scholar] [CrossRef]
- Herold, M.; Woodcock, C.E.; Gregorio, A.D.; Mayaux, P.; Belward, A.S.; Latham, J.; Schmullius, C.C. A joint initiative for harmonization and validation of land cover datasets. IEEE T. Geosci. Remote Sens. 2006, 44, 1719–1727. [Google Scholar] [CrossRef]
- See, L.M.; Fritz, S. A method to compare and improve land cover datasets: application to the GLC-2000 and MODIS land cover products. IEEE Trans. Geosci. Remote Sens. 2006, 44, 1740–1746. [Google Scholar] [CrossRef]
- Herold, M.; Mayaux, P.; Woodcock, C.E.; Baccini, A.; Schmullius, C. Some challenges in global land cover mapping: An assessment of agreement and accuracy in existing 1 km datasets. Remote Sens. Environ. 2008, 112, 2538–2556. [Google Scholar] [CrossRef]
- Tchuenté, A.T.K.; Roujean, J.L.; De Jong, S.M. Comparison and relative quality assessment of the GLC2000, GLOBCOVER, MODIS and ECOCLIMAP land cover data sets at the African continental scale. Int. J. Appl. Earth Obs. 2011, 13, 207–219. [Google Scholar] [CrossRef]
- Pérez-Hoyos, A.; García-Haro, F.J.; San-Miguel-Ayanz, J. Conventional and fuzzy comparisons of large scale land cover products: application to CORINE, GLC2000, MODIS and GlobCover in Europe. ISPRS J. Photogramm. Remote Sens. 2012, 74, 185–201. [Google Scholar] [CrossRef]
- Pérez-Hoyos, A.; García-Haro, F.J.; Valcarcel, N. Incorporating sub-dominant classes in the accuracy assessment of large-area land cover products: application to GlobCover, MODISLC, GLC2000 and CORINE in Spain. IEEE J. Sel. Top. Appl. Earth Obs. 2014, 1, 187–205. [Google Scholar] [CrossRef]
- Congalton, R.G.; Gu, J.; Yadav, K.; Ozdogan, M. Global land cover mapping: A review and uncertainty analysis. Remote Sens. 2014, 6, 12070–12093. [Google Scholar] [CrossRef]
- Mora, B.; Tsendbazar, N.E.; Herold, M.; Arino, O. Global land cover mapping: Current status and future trends. In Land Use & Land Cover Mapping in Europe; Manakos, I., Braun, M., Eds.; Springer: Dordrecht, The Netherlands, 2014; pp. 11–30. [Google Scholar]
- Loveland, T.R.; Belward, A.S. The IGBP-DIS global 1 km land cover data set, DISCover: First results. Int. J. Remote Sens. 1997, 18, 3289–3295. [Google Scholar] [CrossRef]
- Reed, B.; Hansen, M.C. A comparison of the IGBP DISCover and University of Maryland 1 km global land cover products. Int. J. Remote Sens. 2000, 21, 1365–1373. [Google Scholar]
- Janssen, S.; Dumont, G.; Fierens, F.; Mensink, C. Spatial interpolation of air pollution measurements using CORINE land cover data. Atmos. Environ. 2008, 42, 4884–4903. [Google Scholar] [CrossRef]
- Feranec, J.; Hazeu, G.; Christensen, S.; Jaffrain, G. Corine land cover change detection in Europe (case studies of the Netherlands and Slovakia). Land Use Policy 2007, 24, 234–247. [Google Scholar] [CrossRef]
- Friedl, M.A.; Sulla-Menashe, D.; Tan, B.; Schneider, A.; Ramankutty, N.; Sibley, A.; Huang, X.M. MODIS Collection 5 global land cover: Algorithm refinements and characterization of new datasets. Remote Sens. Environ. 2010, 114, 168–182. [Google Scholar] [CrossRef]
- Bartholomé, A.S.; Belward, E. GLC2000: a new approach to global land cover mapping from Earth observation data. Int. J. Remote Sens. 2007, 26, 1959–1977. [Google Scholar] [CrossRef]
- Arino, O.; Gross, D.; Ranera, F.; Bourg, L.; Leroy, M.; Bicheron, P.; Latham, J.; Di Gregorio, A.; Brockman, C.; Witt, R.; et al. GlobCover: ESA service for global land cover from MERIS. In Proceedings of IEEE International Geoscience and Remote Sensing Symposium, Barcelona, Spain, 23–27 July 2007; pp. 2412–2415.
- Li, M.; Mao, L.J.; Zhou, C.G.; Vogelmann, J.E.; Zhu, Z.L. Comparing forest fragmentation and its drivers in China and the USA with Globcover v2.2. J. Environ. Manage. 2010, 91, 2572–2580. [Google Scholar] [CrossRef] [PubMed]
- Champeaux, J.L.; Masson, V.; Chauvin, F. ECOCLIMAP: A global database of land surface parameters at 1 km resolution. Meteorol. Appl. 2005, 12, 29–32. [Google Scholar] [CrossRef]
- Chen, J.; Ban, Y.F.; Li, S.N. China: Open access to Earth land-cover map. Nature 2014, 514, 434. [Google Scholar]
- Dong, J.; Xiao, X.; Sheldon, S.; Biradar, C.; Duong, N.D.; Hazarika, M. A comparison of forest cover maps in Mainland Southeast Asia from multiple sources: PALSAR, MERIS, MODIS and FRA. Remote Sens. Environ. 2012, 127, 60–73. [Google Scholar] [CrossRef]
- Dou, X.F.; Jiapa, A.; Li, Y.H.; Guan, Z.Z.; Wang, X.M.; Lv, Y.N.; Tian, L.L.; Li, X.; Zhang, X.C.; Sun, Y.L.; et al. Remote sensing of land coverage and investigation of plague risk among small mammals in Beijing, China. Chin. J. Vector Biol. Control. 2013, 24, 43–46. (In Chinese) [Google Scholar]
- Li, Y.; Andrés, V.; Yang, W.; Chen, X.D.; Zhang, J.D.; Ouyang, Z.Y. Effects of conservation policies on forest cover change in giant panda habitat regions, China. Land Use Policy 2013, 33, 42–53. [Google Scholar] [CrossRef] [PubMed]
- Yan, X.U.; Zhang, J. Detecting major phenological stages of rice using MODIS-EVI data and Symlet11 wavelet in Northeast China. Acta Ecologica Sinica 2012, 7, 1–4. (In Chinese) [Google Scholar]
- Moreno-Madriñán, M.J.; Rickman, D.L.; Ogashawara, I.; Irwin, D.; Ye, J.; Al-Hamdan, M.Z. Using remote sensing to monitor the influence of river discharge on watershed outlets and adjacent coral Reefs: Magdalena River and Rosario Islands, Colombia. Int. J. Appl. Earth Obs. 2015, 38, 204–215. [Google Scholar] [CrossRef]
- Zhao, X.; Xu, P.; Zhou, T.; Li, Q.; Wu, D.H. Distribution and variation of forests in China from 2001 to 2011: a study based on remotely sensed data. Forests 2013, 4, 632–649. [Google Scholar] [CrossRef]
- Weiss, M.; Baret, F.; Garrigues, S.; Lacaze, R. LAI and fAPAR CYCLOPES global products derived from VEGETATION. Part 2: Validation and comparison with MODIS collection 4 products. Remote Sens. Environ. 2007, 110, 317–331. [Google Scholar] [CrossRef]
- Gross, D.; Dubois, G.; Pekel, J.F.; Mayaux, P.; Holmgren, M.; Prins, H.H.T.; Rondinini, C.; Boitani, L. Monitoring land cover changes in African protected areas in the 21st century. Ecol. Inform. 2013, 14, 31–37. [Google Scholar] [CrossRef]
- Loveland, T.R.; Reed, B.C.; Brown, J.F.; Ohlen, D.O.; Zhu, Z.L.; Yang, L.M. Development of a global land cover characteristics database and IGBP DISCover from 1 km AVHRR data. Int. J. Remote Sen. 2000, 21, 1303–1330. [Google Scholar] [CrossRef]
- Hansen, M.C.; DeFries, R.S.; Townshend, J.R.G.; Sohlberg, R. Global land cover classification at 1 km spatial resolution using a classification tree approach. Int. J. Remote Sen. 2000, 21, 1331–1364. [Google Scholar] [CrossRef]
- Lotsch, A.; Tian, Y.; Friedl, M.A.; Myneni, R.B. Land cover mapping in support of LAI and FPAR retrievals from EOS-MODIS and MISR: classification methods and sensitivities to errors. Int. J. Remote Sen. 2003, 24, 1997–2016. [Google Scholar] [CrossRef]
- Myneni, R.B.; Hoffman, S.; Knyazikhin, Y.; Privette, J.; Glassy, J.; Tian, Y.; Wang, Y.; Song, X.; Zhang, Y.; Smith, G. Global products of vegetation leaf area and fraction absorbed PAR from year one of MODIS data. Remote Sens. Environ. 2002, 83, 214–231. [Google Scholar] [CrossRef]
- Zhao, M.; Running, S.; Heinsch, F.A.; Nemani, R. MODIS-derived terrestrial primary production. In Land Remote Sensing and Global Environmental Change; Ramachandran, B., Justice, C.O., Abrams, M.J., Eds.; Springer: Dordrecht, The Netherlands, 2011; pp. 635–660. [Google Scholar]
- Chen, J.; Zhang, H.; Liu, Z.; Che, M.; Chen, B. Evaluating parameter adjustment in the MODIS gross Primary production algorithm based on eddy covariance tower measurements. Remote Sens. 2014, 6, 3321–3348. [Google Scholar] [CrossRef]
- Chen, J.; Chen, J.; Liao, A.; Cao, X.; Chen, L.; Chen, X.; He, C.; Han, G.; Peng, S.; Lu, M.; et al. Global land cover mapping at 30m resolution: A POK-based operational approach. ISPRS J. Photogramm. Remote Sens. 2015, 103, 7–27. [Google Scholar] [CrossRef]
- Brovelli, M.; Molinari, M.; Hussein, E.; Chen, J.; Li, R. The first comprehensive accuracy assessment of GlobeLand30 at a national level: methodology and results. Remote Sens. 2015, 7, 4191–4212. [Google Scholar] [CrossRef] [Green Version]
- Manakos, I.; Chatzopoulos-Vouzoglanis, K.; Petrou, Z.I.; Filchev, L.; Apostolakis, A. Globalland30 mapping capacity of land surface water in Thessaly, Greece. Land 2015, 4, 1–18. [Google Scholar] [CrossRef]
- Hou, Y.; Wang, S.; Nan, Z.A. Rule-based land cover classification method for the Heihe River Basin. Acta Geographica Sinica 2011, 66, 549–561. (In Chinese) [Google Scholar]
- Ren, Z.C.; Zhu, H.Z.; Liu, X.N. Spatio-temporal differentiation of land covers on annual scale and its response to climate and topography in arid and semi-arid region. Trans. Chin. Soc. Agric. Engin. 2012, 28, 205–214. (In Chinese) [Google Scholar]
- Raynal, C.; Baux, D.; Theze, C.; Bareil, C.; Taulan, M.; Roux, A.F.; Claustres, M.; Tuffery-Giraud, S.; des Georges, M. A classification model relative to splicing for variants of unknown clinical significance: application to the CFTR gene. Hum. Mutat. 2013, 34, 774–784. [Google Scholar] [CrossRef] [PubMed]
- Saqib, F.; Dutta, A.; Plusquellic, J. Pipelined decision tree classification accelerator implementation in FPGA (DT-CAIF). IEEE Trans. Comput. 2015, 64, 280–285. [Google Scholar] [CrossRef]
- Rucci, P.; Mandreoli, M.; Gibertoni, D.; Zuccalà, A.; Mariapia, F.; Lenzi, J.; Santoro, A. A clinical stratification tool for chronic kidney disease progression rate based on classification tree analysis. Nephrol. Dial. Transpl. 2014, 29, 603–610. [Google Scholar] [CrossRef] [PubMed]
- Durán-Alarcón, C.; Gevaert, C.M.; Mattar, C.; Jiménez-Muñoz, J.C.; Pasapera-Gonzalesc, J.J.; Sobrino, J.A.; Silvia-Vidal, Y.; Fashé-Raymundo, O.; Chavez-Espiritu, T.W.; Santillan-Portilla, N. Recent trends on glacier area retreat over the group of Nevados Caullaraju-Pastoruri (Cordillera Blanca, Peru) using Landsat imagery. J. S. Am. Earth Sci. 2015, 59, 19–26. [Google Scholar] [CrossRef]
- Gharehgozli, A.H.; Yu, Y.; Koster, R.D.; Udding, J.T. A decision-tree stacking heuristic minimising the expected number of reshuffles at a container terminal. Int. J. Prod. Res. 2014, 52, 2592–2611. [Google Scholar] [CrossRef]
- Ahmad, A. Decision tree ensembles based on kernel features. Appl. Intell. 2014, 41, 855–869. [Google Scholar] [CrossRef]
- Salzberg, S.L. Book review: C4.5: Programs for machine learning by J. Ross Quinlan. Morgan Kaufmann Publishers, Inc., 1993. Mach. Learn. 1994, 16, 235–240. [Google Scholar] [CrossRef]
- Joseph, L.R.; Nicewander, W.A. Thirteen ways to look at the correlation coefficient. Am. Stat. 1988, 42, 59–66. [Google Scholar]
- He, Y.Q.; Bo, Y.C. A consistency analysis Of MODIS MCD12Q1 and MERIS Globcover land cover datasets over China. In Proceedings of the 19th International Conference on Geoinformatics, Shanghai, China, 24–26 June 2011; pp. 1–6.
- Song, H.; Zhang, X.; Wang, Y.; Wang, M. Comparison of relative uniformity between GLOBCOVER and MODIS land cover data sets. Trans. Chin. Soc. Agric. Engin. 2012, 15, 118–124. (In Chinese) [Google Scholar]
- Stehman, S.V. Selecting and interpreting measures of thematic classification accuracy. Remote Sens. Environ. 1997, 62, 77–89. [Google Scholar] [CrossRef]
- Thompson, W.D.; Walter, S.D. A reappraisal of the kappa coefficient. J. Clin. Epidemiol. 1988, 41, 949–958. [Google Scholar] [CrossRef]
- Romme, W.H.; Knight, D.H. Landscape diversity: The concept applied to Yellowstone Park. Bioscience 1982, 32, 664–670. [Google Scholar] [CrossRef]
- Anhui Provincial Bureau of Statistics. Available online: http://www.ahtjj.gov.cn/tjj/web/tjnj_view.jsp (accessed on 15 July 2015). (In Chinese)
- Anhui Provincial Forestry Department. Available online: http://www.ahly.gov.cn/ (accessed on 15 July 2015). (In Chinese)
- Xia, W.T.; Wang, Y.; Feng, Q.S.; Liang, T.G. Accuracy assessment of MODIS land cover product of Gannan Prefecture. Pratacultural Sci. 2010, 27, 11–18. (In Chinese) [Google Scholar]
- Yang, Y.; Liu, Y.B.; Ruan, R.Z.; Ye, C.; Lu, P.P. Scale-induced uncertainty in MODIS-based land cover classification. J. Remote Sens. 2012, 16, 868–880. (In Chinese) [Google Scholar]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, D.; Zuo, Y.; Huang, L.; Zhao, J.; Teng, L.; Yang, F. Evaluation of the Consistency of MODIS Land Cover Product (MCD12Q1) Based on Chinese 30 m GlobeLand30 Datasets: A Case Study in Anhui Province, China. ISPRS Int. J. Geo-Inf. 2015, 4, 2519-2541. https://doi.org/10.3390/ijgi4042519
Liang D, Zuo Y, Huang L, Zhao J, Teng L, Yang F. Evaluation of the Consistency of MODIS Land Cover Product (MCD12Q1) Based on Chinese 30 m GlobeLand30 Datasets: A Case Study in Anhui Province, China. ISPRS International Journal of Geo-Information. 2015; 4(4):2519-2541. https://doi.org/10.3390/ijgi4042519
Chicago/Turabian StyleLiang, Dong, Yan Zuo, Linsheng Huang, Jinling Zhao, Ling Teng, and Fan Yang. 2015. "Evaluation of the Consistency of MODIS Land Cover Product (MCD12Q1) Based on Chinese 30 m GlobeLand30 Datasets: A Case Study in Anhui Province, China" ISPRS International Journal of Geo-Information 4, no. 4: 2519-2541. https://doi.org/10.3390/ijgi4042519
APA StyleLiang, D., Zuo, Y., Huang, L., Zhao, J., Teng, L., & Yang, F. (2015). Evaluation of the Consistency of MODIS Land Cover Product (MCD12Q1) Based on Chinese 30 m GlobeLand30 Datasets: A Case Study in Anhui Province, China. ISPRS International Journal of Geo-Information, 4(4), 2519-2541. https://doi.org/10.3390/ijgi4042519