Surface Elevation Changes Estimation Underneath Mangrove Canopy Using SNERL Filtering Algorithm and DoD Technique on UAV-Derived DSM Data
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
3.1. Data
3.1.1. UAV Data Acquisition
3.1.2. GNSS Data Observation for GCPs
3.2. Methods
3.2.1. Generating UAV-Derived DSM through SfM-MVS Method
3.2.2. Segregation of Vegetation and Non-Vegetation Areas Using Vegetation Indices (VI)
3.2.3. Vegetation Filtering Using SNERL Algorithm
3.2.4. Quantification of Surface Elevation Changes Using Geomorphological Change Detection (GCD) Method
4. Results and Discussion
4.1. SfM-MVS Result
4.2. SNERL Filtering Result
4.3. GCD Result
4.4. Geomorphological Changes underneath Mangrove Canopy at Kilim River
4.5. Short and Long-Term Impacts of Geomorphological Changes on Mangrove Surface and the Interaction to Sea Level Rise
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix B
References
- Azian, M.; Mubarak, H. Functions and values of mangroves. In Status of Mangroves in Peninsular Malaysia; Omar, M., Aziz, K., Shamsudin, I., Raja Barizian, R.S., Eds.; Forest Research Institute Malaysia: Kuala Lumpur, Malaysia, 2012; pp. 12–25. [Google Scholar]
- Kuenzer, C.; Bluemel, A.; Gebhardt, S.; Quoc, T.V.; Dech, S. Remote sensing of mangrove ecosystems: A review. Remote Sens. 2011, 3, 878–928. [Google Scholar] [CrossRef] [Green Version]
- Mohamad, N.; Khanan, M.F.A.; Ahmad, A.; Din, M.; Hassan, A.; Shahabi, H. Evaluating Water Level Changes at Different Tidal Phases Using UAV Photogrammetry and GNSS Vertical Data. Sensors 2019, 19, 3778. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohamad, N.; Khanan, M.F.A.; Musliman, I.A.; Kadir, W.H.W.; Ahmad, A.; Rahman, M.Z.A.; Jamal, M.H.; Zabidi, M.; Suaib, N.M.; Zain, R.M. Spatio-temporal analysis of river morphological changes and erosion detection using very high resolution satellite image. In Proceedings of the 9th IGRSM International Conference and Exhibition on Geospatial & Remote Sensing (IGRSM 2018), Kuala Lumpur, Malaysia, 24–25 April 2018; IOP Conference Series: Earth and Environmental Science. IOP Publishing: Bristol, UK, 2018; Volume 169, p. 012020. [Google Scholar]
- Mohamad, N.; Khanan, M.F.A.; Musliman, I.A.; Kadir, W.H.W.; Ahmad, A.; Rahman, M.Z.A.; Jamal, M.H.; Zabidi, M.; Suaib, N.M.; Zain, R.M. Riverbank erosion mapping using high resolution satellite image and unmanned aerial vehicle (UAV) approach. In Proceedings of the 1st International Undergraduate and Postgraduate Students Conference on Marine Science, Technology and Management, Kuala Terengganu, Malaysia, 11–12 December 2017; pp. 211–222. [Google Scholar]
- Kanniah, K.D.; Sheikhi, A.; Cracknell, A.P.; Goh, H.C.; Tan, K.P.; Ho, C.S.; Rasli, F.N. Satellite images for monitoring mangrove cover changes in a fast growing economic region in southern Peninsular Malaysia. Remote Sens. 2015, 7, 14360–14385. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Jia, M.; Yin, D.; Tian, J. A review of remote sensing for mangrove forests: 1956–2018. Remote Sens. Environ. 2019, 231, 111223. [Google Scholar] [CrossRef]
- Ragia, L.; Krassakis, P. Monitoring the changes of the coastal areas using remote sensing data and geographic information systems. In Proceedings of the Seventh International Conference on Remote Sensing and Geoinformation of the Environment (RSCy2019), Paphos, Cyprus, 18–21 March 2019; p. 111740X. [Google Scholar]
- Aryastana, P.; Ardantha, I.M.; Candrayana, K.W. Coastline change analysis and erosion prediction using satellite images. In Proceedings of the 3rd Annual Applied Science and Engineering Conference (AASEC 2018), MATEC Web Conference, Bandung, Indonesia, 18 April 2018; Volume 197. [Google Scholar]
- Tamassoki, E.; Amiri, H.; Soleymani, Z. Monitoring of shoreline changes using remote sensing (case study: Coastal city of Bandar Abbas). In Proceedings of the 7th IGRSM International Conference and Exhibition on Geospatial & Remote Sensing (IGRSM 2018), Kuala Lumpur, Malaysia, 22–23 April 2014; IOP Conference Series: Earth and Environmental Science. IOP Publishing: Bristol, UK, 2014; Volume 20, p. 012023. [Google Scholar]
- Jayson-Quashigah, P.N.; Addo, K.A.; Kodzo, K.S. Medium resolution satellite imagery as a tool for monitoring shoreline change’, Case study of the Eastern coast of Ghana. J. Coast. Res. 2013, 65, 511–516. [Google Scholar] [CrossRef]
- Sesli, F.A.; Karsli, F.; Colkesen, I.; Akyol, N. Monitoring the changing position of coastlines using aerial and satellite image data: An example from the eastern coast of Trabzon, Turkey. Environ. Monit. Assess. 2009, 153, 391–403. [Google Scholar] [CrossRef]
- Maktav, D.; Erbek, F.S.; Kabdasli, S. Monitoring coastal erosion at the Black Sea coasts in Turkey using satellite data: A case study at the Lake Terkos, north-west Istanbul. Int. J. Remote Sens. 2002, 23, 4115–4124. [Google Scholar] [CrossRef]
- Hamshaw, S.D.; Engel, T.; Rizzo, D.M.; O’Neil-Dunne, J.; Dewoolkar, M.M. Application of unmanned aircraft system (UAS) for monitoring bank erosion along river corridors. Geomat. Nat. Hazards Risk 2019, 10, 1285–1305. [Google Scholar] [CrossRef] [Green Version]
- Hemmelder, S.; Marra, W.; Markies, H.; De Jong, S.M. Monitoring river morphology and bank erosion using UAV imagery–A case study of the river Buëch, Hautes-Alpes, France. Int. J. Appl. Earth Obs. Geoinf. 2018, 73, 428–437. [Google Scholar] [CrossRef]
- Duró, G.; Crosato, A.; Kleinhans, M.G.; Uijttewaal, W.S. Bank erosion processes measured with UAV-SfM along complex banklines of a straight mid-sized river reach. Earth Surf. Dyn. 2018, 6, 933–953. [Google Scholar] [CrossRef] [Green Version]
- Hamshaw, S.D.; Bryce, T.; O’Neil Dunne, J.; Rizzo, D.M.; Frolik, J.; Engel, T.; Dewoolkar, M.M. Quantifying streambank erosion using unmanned aerial systems at site-specific and river network scales. Geotech. Front. 2017, 499–508. [Google Scholar] [CrossRef]
- Wang, R.; Zhang, S.; Pu, L.; Yang, J.; Yang, C.; Chen, J.; Guan, C.; Wang, Q.; Chen, D.; Fu, B.; et al. Gully erosion mapping and monitoring at multiple scales based on multi-source remote sensing data of the Sancha River Catchment, Northeast China. ISPRS Int. J. Geo-Inf. 2016, 5, 200. [Google Scholar] [CrossRef] [Green Version]
- Neugirg, F.; Stark, M.; Kaiser, A.; Vlacilova, M.; Della Seta, M.; Vergari, F.; Schmidt, J.; Becht, M.; Haas, F. Erosion processes in calanchi in the Upper Orcia Valley, Southern Tuscany, Italy based on multitemporal high-resolution terrestrial LiDAR and UAV surveys. Geomorphology 2016, 269, 8–22. [Google Scholar] [CrossRef]
- Casado, M.R.; Gonzalez, R.B.; Kriechbaumer, T.; Veal, A. Automated identification of river hydromorphological features using UAV high resolution aerial imagery. Sensors 2015, 15, 27969–27989. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Le Mauff, B.; Juigner, M.; Ba, A.; Robin, M.; Launeau, P.; Fattal, P. Coastal monitoring solutions of the geomorphological response of beach-dune systems using multi-temporal LiDAR datasets (Vendée coast, France). Geomorphology 2018, 304, 121–140. [Google Scholar] [CrossRef]
- Cook, K.L. An evaluation of the effectiveness of low-cost UAVs and structure from motion for geomorphic change detection. Geomorphology 2017, 278, 195–208. [Google Scholar] [CrossRef]
- Kaliraj, S.; Chandrasekar, N.; Ramachandran, K.K. Mapping of coastal landforms and volumetric change analysis in the south west coast of Kanyakumari, South India using remote sensing and GIS techniques. Egypt. J. Remote Sens. Space Sci. 2017, 20, 265–282. [Google Scholar] [CrossRef]
- Ramírez-Cuesta, J.M.; Rodríguez-Santalla, I.; Gracia, F.J.; Sánchez-García, M.J.; Barrio-Parra, F. Application of change detection techniques in geomorphological evolution of coastal areas. Example: Mouth of the River Ebro (period 1957–2013). Appl. Geogr. 2016, 75, 12–27. [Google Scholar] [CrossRef]
- Guimarães, U.S.; Rodrigues, T.W.P.; Galo, M.D.L.B.T.; Pamplona, V.M.S. Change detection applied on shorelines in the mouth of Amazon River. In Proceedings of the 2014 IEEE Geoscience and Remote Sensing Symposium (IGARSS), Quebec City, QC, Canada, 13–18 July 2014; pp. 2146–2149. [Google Scholar]
- Anders, N.S.; Seijmonsbergen, A.C.; Bouten, W. Geomorphological change detection using object-based feature extraction from multi-temporal LiDAR data. IEEE Geosci. Remote Sens. Lett. 2013, 10, 1587–1591. [Google Scholar] [CrossRef] [Green Version]
- Kuleli, T.; Guneroglu, A.; Karsli, F.; Dihkan, M. Automatic detection of shoreline change on coastal Ramsar wetlands of Turkey. Ocean Eng. 2011, 38, 1141–1149. [Google Scholar] [CrossRef]
- Ghanavati, E.; Firouzabadi, P.Z.; Jangi, A.A.; Khosravi, S. Monitoring geomorphologic changes using Landsat TM and ETM+ data in the Hendijan River delta, southwest Iran. Int. J. Remote Sens. 2008, 29, 945–959. [Google Scholar] [CrossRef]
- Jayappa, K.S.; Mitra, D.; Mishra, A.K. Coastal geomorphological and land-use and land-cover study of Sagar Island, Bay of Bengal (India) using remotely sensed data. Int. J. Remote Sens. 2006, 27, 3671–3682. [Google Scholar] [CrossRef]
- Elkhrachy, I. Vertical accuracy assessment for SRTM and ASTER Digital Elevation Models: A case study of Najran city, Saudi Arabia. Ain Shams Eng. J. 2018, 9, 1807–1817. [Google Scholar] [CrossRef]
- Yue, L.; Shen, H.; Zhang, L.; Zheng, X.; Zhang, F.; Yuan, Q. High-quality seamless DEM generation blending SRTM-1, ASTER GDEM v2 and ICESat/GLAS observations. ISPRS J. Photogramm. Remote Sens. 2017, 123, 20–34. [Google Scholar] [CrossRef] [Green Version]
- Jing, C.; Shortridge, A.; Lin, S.; Wu, J. Comparison and validation of SRTM and ASTER GDEM for a subtropical landscape in Southeastern China. Int. J. Digit. Earth 2014, 7, 969–992. [Google Scholar] [CrossRef]
- Gesch, D.B.; Oimoen, M.J.; Evans, G.A. Accuracy Assessment of the US Geological Survey National Elevation Dataset, and Comparison with Other Large-Area Elevation Datasets: SRTM and ASTER; US Department of the Interior, US Geological Survey: Sioux Falls, SD, USA, 2014; p. 1008.
- Forkuor, G.; Maathuis, B. Comparison of SRTM and ASTER Derived Digital Elevation Models over Two Regions in Ghana-Implications for Hydrological and Environmental Modelling; INTECH Open Access Publisher: London, UK, 2012. [Google Scholar]
- Hirt, C.; Filmer, M.S.; Featherstone, W.E. Comparison and validation of the recent freely available ASTER-GDEM ver1, SRTM ver4.1 and GEODATA DEM-9S ver3 digital elevation models over Australia. Aust. J. Earth Sci. 2010, 57, 337–347. [Google Scholar] [CrossRef] [Green Version]
- Siart, C.; Bubenzer, O.; Eitel, B. Combining digital elevation data (SRTM/ASTER), high resolution satellite imagery (Quickbird) and GIS for geomorphological mapping: A multi-component case study on Mediterranean karst in Central Crete. Geomorphology 2009, 112, 106–121. [Google Scholar] [CrossRef]
- Nikolakopoulos, K.G.; Kamaratakis, E.K.; Chrysoulakis, N. SRTM vs ASTER elevation products. Comparison for two regions in Crete, Greece. Int. J. Remote Sens. 2006, 27, 4819–4838. [Google Scholar] [CrossRef]
- James, M.R.; Robson, S.; Smith, M.W. 3-D uncertainty-based topographic change detection with structure-from-motion photogrammetry: Precision maps for ground control and directly georeferenced surveys. Earth Surf. Process. Landf. 2017, 42, 1769–1788. [Google Scholar] [CrossRef]
- James, M.R.; Robson, S. Straightforward reconstruction of 3D surfaces and topography with a camera: Accuracy and geoscience application. J. Geophys. Res. Earth Surf. 2012, 117, F03017. [Google Scholar] [CrossRef] [Green Version]
- Wheaton, J.; Brasington, J.; Darby, S.; Sear, D. Accounting for uncertainty in DEMs from repeat topographic surveys: Improved sediment budgets. Earth Surf. Process. Landf. 2010, 35, 136–156. [Google Scholar] [CrossRef]
- Lane, S.; Westaway, R.; Hicks, D.M. Estimation of erosion and deposition volumes in a large, gravel-bed, Braided River using synoptic remote sensing. Earth Surf. Process. Landf. 2003, 28, 249–271. [Google Scholar] [CrossRef]
- Brasington, J.; Langham, J.; Rumsby, B. Methodological sensitivity of morphometric estimates of coarse fluvial sediment transport. Geomorphology 2003, 53, 299–316. [Google Scholar] [CrossRef]
- Taylor, J.R. An Introduction to Error Analysis: The Study of Uncertainties in Physical Measurements, 2nd ed.; University Science Books: Sausalito, CA, USA, 1997. [Google Scholar]
- Yilmaz, C.S.; Gungor, O. Comparison of the performances of ground filtering algorithms and DTM generation from a UAV-based point cloud. Geocarto Int. 2018, 33, 522–537. [Google Scholar] [CrossRef]
- Anders, N.; Valente, J.; Masselink, R.; Keesstra, S. Comparing Filtering Techniques for Removing Vegetation from UAV-Based Photogrammetric Point Clouds. Drones 2019, 3, 61. [Google Scholar] [CrossRef] [Green Version]
- Zeybek, M.; Şanlıoğlu, İ. Point cloud filtering on UAV based point cloud. Measurement 2019, 133, 99–111. [Google Scholar] [CrossRef]
- Štroner, M.; Urban, R.; Lidmila, M.; Kolář, V.; Křemen, T. Vegetation Filtering of a Steep Rugged Terrain: The Performance of Standard Algorithms and a Newly Proposed Workflow on an Example of a Railway Ledge. Remote Sens. 2021, 13, 3050. [Google Scholar] [CrossRef]
- Im, S.B.; Hurlebaus, S.; Kang, Y.J. Summary review of GPS technology for structural health monitoring. J. Struct. Eng. 2013, 139, 1653–1664. [Google Scholar] [CrossRef]
- Ponti, M.P. Segmentation of low-cost remote sensing images combining vegetation indices and mean shift. IEEE Geosci. Remote Sens. Lett. 2012, 10, 67–70. [Google Scholar] [CrossRef]
- Kraus, K.; Pfeifer, N. Determination of terrain models in wooded areas with airborne laser scanner data. ISPRS J. Photogramm. Remote Sens. 1998, 53, 193–203. [Google Scholar] [CrossRef]
- ESSA. Geomorphic Change Detection (GCD). Available online: https://essa.com/explore-essa/tools/geomorphic-change-detection (accessed on 15 October 2020).
- Candido, B.M. Use of Ground and Air-Based Photogrammetry for Soil Erosion Assessment. Ph.D. Thesis, Lancaster University, Lancaster, UK, September 2019. [Google Scholar]
- Cazenave, A.; Lombard, A.T.; Llovel, W. Present-day sea level rise: A synthesis. C. R. Geosci. 2008, 340, 761–770. [Google Scholar] [CrossRef]
- Hamid, A.I.A.; Din, A.H.M.; Hwang, C.; Khalid, N.F.; Tugi, A.; Omar, K.M. Contemporary sea level rise rates around Malaysia: Altimeter data optimization for assessing coastal impact. J. Asian Earth Sci. 2018, 166, 247–259. [Google Scholar] [CrossRef]
- Din, A.H.M.; Zulkifli, N.A.; Hamden, M.H.; Aris, W.A.W. Sea level trend over Malaysian seas from multi-mission satellite altimetry and vertical land motion corrected tidal data. Adv. Space Res. 2019, 63, 3452–3472. [Google Scholar] [CrossRef]
Low Tide 2016 | Low Tide 2017 | ||
---|---|---|---|
Details | |||
Accuracy of GCP | N error (mm) | 1.376 | 1.309 |
E error (mm) | 1.003 | 1.463 | |
H error (mm) | 0.263 | 0.232 | |
NE error (mm) | 1.723 | 1.921 | |
Total error (mm) | 0.178 | 1.547 | |
Min (mm) | 0.339 | −0.131 | |
Max (mm) | 2.612 | 2.372 | |
Mean (mm) | 1.697 | 1.660 | |
SD (mm) | 0.686 | 0.652 | |
Camera calibration | Focal length (F) | 2335.58 | 4002.28 |
Principal coordinate (Cx) | −28.6748 | −27.3149 | |
Principal coordinate (Cy) | −14.2393 | 10.0872 | |
Affinity (B1) | −4.02501 | −4.2571 | |
Non-orthogonality (B2) | 1.76359 | 2.3614 | |
Radio distortion (K1) | −0.000666 | 0.0102225 | |
Radio distortion (K2) | −0.003219 | −0.0258016 | |
Radio distortion (K3) | 0.000425734 | 0.037059 | |
Tangential distortion (P1) | −0.00000878648 | −0.00000000927189 | |
Tangential distortion (P2) | −0.0000520873 | −0.000000555727 | |
Tangential distortion (P3) | 7.86566 | 7.2483 | |
Tangential distortion (P4) | −7.03535 | −8.1128 | |
Processing parameters | Coordinate system | WGS 84 (EPSG:4326) | WGS 84 (EPSG:4326) |
Point cloud (points) | 72,066/90,739 | 35,766/40,957 | |
Point cloud projection (RMSE) | 0.29469 (2.07029 pix) | 0.460728 (2.25272 pix) | |
Max point cloud projection error | 7.26368 pix | 6.82471 pix | |
Dense point cloud (points) | 84,848,119 | 49,950,801 | |
Reconstruction parameters (quality) | High | High | |
Reconstruction parameters (depth) | Moderate | Moderate | |
DSM (size) | 17,191 × 13,529 | 15,810 × 13,221 | |
DSM reconstruction parameter (source data) | Dense cloud | Dense cloud | |
Orthomosaic (size) | 21,756 × 19,274 | 19,892 × 19,860 | |
Orthmosaic blending mode (colors) | Mosaic | Mosaic | |
Orthmosaic blending mode (surface) | DSM | DSM |
Focused Area | Volumetric Changes Rates (cm3) | Vertical Changes Rates (m) | Percent Imbalanced (%) |
---|---|---|---|
ROI 1 | 0.101 | 0.114 | 8.957 |
ROI 2 | −0.540 | −0.482 | −39.010 |
ROI 3 | −0.338 | −0.568 | −46.998 |
ROI 4 | −0.003 | −0.023 | −1.702 |
ROI 5 | 0.566 | 0.196 | 12.229 |
ROI 6 | 1.248 | 1.281 | 43.882 |
ROI 7 | −0.499 | −0.261 | −16.956 |
ROI 8 | −2.469 | −0.470 | −33.404 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohamad, N.; Ahmad, A.; Khanan, M.F.A.; Din, A.H.M. Surface Elevation Changes Estimation Underneath Mangrove Canopy Using SNERL Filtering Algorithm and DoD Technique on UAV-Derived DSM Data. ISPRS Int. J. Geo-Inf. 2022, 11, 32. https://doi.org/10.3390/ijgi11010032
Mohamad N, Ahmad A, Khanan MFA, Din AHM. Surface Elevation Changes Estimation Underneath Mangrove Canopy Using SNERL Filtering Algorithm and DoD Technique on UAV-Derived DSM Data. ISPRS International Journal of Geo-Information. 2022; 11(1):32. https://doi.org/10.3390/ijgi11010032
Chicago/Turabian StyleMohamad, Norhafizi, Anuar Ahmad, Mohd Faisal Abdul Khanan, and Ami Hassan Md Din. 2022. "Surface Elevation Changes Estimation Underneath Mangrove Canopy Using SNERL Filtering Algorithm and DoD Technique on UAV-Derived DSM Data" ISPRS International Journal of Geo-Information 11, no. 1: 32. https://doi.org/10.3390/ijgi11010032
APA StyleMohamad, N., Ahmad, A., Khanan, M. F. A., & Din, A. H. M. (2022). Surface Elevation Changes Estimation Underneath Mangrove Canopy Using SNERL Filtering Algorithm and DoD Technique on UAV-Derived DSM Data. ISPRS International Journal of Geo-Information, 11(1), 32. https://doi.org/10.3390/ijgi11010032