Performance Evaluation of Parallel Structure from Motion (SfM) Processing with Public Cloud Computing and an On-Premise Cluster System for UAS Images in Agriculture
Abstract
:1. Introduction
2. Materials and Methods
2.1. UAS Datasets
2.2. Cluster Systems for Processing
2.3. Structure from Motion (SfM) Processing
2.4. Performance Testing
3. Results
3.1. Computing Power of Single-Node
3.2. Single-Node Porcessing
3.3. Performance of Parallel Processing in Cluster Systems
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Cluster | Processor | # of Cores (Thread) | Lithography (nm) | Base Frequency (GHz) | Max Turbo Frequency (GHz) | Cache (MB) |
---|---|---|---|---|---|---|
AgriLife | Intel(R) Core(TM) i7–4790K | 4 (8) | 22 | 4.0 | 4.4 | 8 |
Intel(R) Core(TM) i7–8700K | 6 (12) | 14 | 3.7 | 4.7 | 12 | |
Intel(R) Xeon(R) E5–1650 | 6 (12) | 32 | 3.2 | 3.8 | 12 | |
Intel(R) Xeon(R) E5–2680 | 8 (16) | 32 | 2.7 | 3.5 | 20 | |
OCI | Intel(R) Xeon(R) Platinum 8167 M | 26 (52) | 14 | 2.0 | 2.4 | 36 |
Cluster | Graphic Card | CUDA Cores | Bus Support | Base Clocks (MHz) | Memory (GB) |
---|---|---|---|---|---|
AgriLife | GeForce GTX 980 | 2048 | PCI Express 3.0 | 1064 | 4 |
GeForce GTX 1050 Ti | 768 | PCI Express 3.0 | 1290 | 4 | |
GeForce GTX 1070 Ti | 2432 | PCI Express 3.0 | 1607 | 8 | |
OCI | NVIDIA Tesla P100 | 3584 | PCI Express 3.0 | 1189 | 16 |
NVIDIA Tesla V100 | 2150 | PCI Express 3.0 | 1246 | 16 |
Shape | OCPU | CPU Memory (GB) | GPU Memory (GB) | Max Network Bandwidth (Gbps) |
---|---|---|---|---|
VM.GPU2.1 | 12 | 72 | 16 | 8 |
VM.GPU3.1 | 6 | 90 | 16 | 4 |
VM.GPU3.2 | 12 | 180 | 32 | 8 |
VM.GPU3.4 | 24 | 360 | 64 | 24.6 |
References
- Chang, A.; Jung, J.; Yeom, J.; Maeda, M.M.; Landivar, J.A.; Enciso, J.M.; Avila, C.A.; Anciso, J.R. Unmanned Aircraft System- (UAS-) Based High-Throughput Phenotyping (HTP) for Tomato Yield Estimation. J. Sens. 2021, 2021, 8875606. [Google Scholar] [CrossRef]
- Xie, C.; Yang, C. A review on plant high-throughput phenotyping traits using UAV-based sensors. Comput. Electron. Agric. 2020, 178, 105731. [Google Scholar] [CrossRef]
- Tsouros, D.C.; Bibi, S.; Sarigiannidis, P.G. A Review on UAV-Based Applications for Precision Agriculture. Information 2019, 10, 349. [Google Scholar] [CrossRef] [Green Version]
- Chang, A.; Jung, J.; Yeom, J.; Landivar, J. 3D Characterization of Sorghum Panicles Using a 3D Point Cloud Derived from UAV Imagery. Remote Sens. 2021, 13, 282. [Google Scholar] [CrossRef]
- Garcia Millan, V.E.; Rankine, C.; Sanchez-Azofeifa, G.A. Crop Loss Evaluation Using Digital Surface Models from Unmanned Aerial Vehicles Data. Remote Sens. 2020, 12, 981. [Google Scholar] [CrossRef] [Green Version]
- Yeom, J.; Jung, J.; Chang, A.; Ashapure, A.; Maeda, M.; Maeda, A.; Landivar, J. Comparison of Vegetation Indices Derived from UAV Data for Differentiation of Tillage Effects in Agriculture. Remote Sens. 2019, 11, 1548. [Google Scholar] [CrossRef] [Green Version]
- Ashapure, A.; Jung, J.; Yeom, J.; Chang, A.; Maeda, M.; Maeda, A.; Landivar, J. A novel framework to detect conventional tillage and no-tillage cropping system effect on cotton growth and development using multi-temporal UAS data. ISPRS J. Photogramm. Remote Sens. 2019, 152, 49–64. [Google Scholar] [CrossRef]
- Radoglou-Grammatikis, P.; Sarigiannidis, P.; Lagkas, T.; Moscholios, I. A compilation of UAV applications for precision agriculture. Comput. Netw. 2020, 172, 107148. [Google Scholar] [CrossRef]
- Zaragoza, I.M.; Caroti, G.; Piemonte, A.; Riedel, B.; Tengen, D.; Niemeier, W. Structure from motion (SfM) processing of UAV images and combination with terrestrial laser scanning, applied for a 3D-documentation in a hazardous situation. Geomat. Nat. Hazards Risk 2017, 8, 1492–1504. [Google Scholar] [CrossRef]
- Jung, J.; Landivar, J.; Chang, A.; Maeda, M.M.; Miller, A.D.; Kulasekaran, S.; Gabriel, G. Uashub: Building a Modern Cloud-Based Data Portal for the Management of UAS Big Data. In Proceedings of the 2020 ASA-CSSA-SSSA International Annual Meeting, Virtual, 9–13 November 2020. [Google Scholar]
- Compute Shapes in Oracle Cloud Infrastructure Documentation. Available online: https://docs.oracle.com/en-us/iaas/Content/Compute/References/computeshapes.htm (accessed on 5 October 2021).
- Overview of File Storage in Oracle Cloud Infrastructure Documentation. Available online: https://docs.oracle.com/en-us/iaas/Content/File/Concepts/filestorageoverview.htm (accessed on 5 October 2021).
- Overview of Block Volume in Oracle Cloud Infrastructure Documentation. Available online: https://docs.oracle.com/en-us/iaas/Content/Block/Concepts/overview.htm (accessed on 5 October 2021).
- He, F.; Zhou, T.; Xiong, W.; Hasheminnasab, S.M.; Habib, A. Automated Aerial Triangulation for UAV-Based Mapping. Remote Sens. 2018, 10, 1952. [Google Scholar] [CrossRef] [Green Version]
- Benassi, F.; Dall’Asta, E.; Diotri, F.; Forlani, G.; Morra di Cella, U.; Roncella, R.; Santise, M. Testing Accuracy and Repeatability of UAV Blocks Oriented with GNSS-Supported Aerial Triangulation. Remote Sens. 2017, 9, 172. [Google Scholar] [CrossRef] [Green Version]
- Buzbee, B.L. The Efficiency of Parallel Processing. LOS ALAMOS SCIENCE 1983, 9, 71. [Google Scholar]
- Ananth, Y.G.; Anshul, G.; Vipin, K. Isoefficiency: Measuring the Scalability of Parallel Algorithms and Architectures. IEEE Parallel Distrib. Technol. Syst. Technol. 1993, 1, 12–21. [Google Scholar] [CrossRef]
Small Dataset | Large Dataset | |
---|---|---|
Acquisition date | 19 May 2020 | 30 April 2020 |
Field size (acre) | 4 | 220 |
Flight altitude (m) | 25 | 90 |
Overlap (%) | 85 | 70 |
Number of Images | 293 | 1557 |
Total data size (GB) | 2.3 | 12.5 |
GSD (cm) | 0.7 | 2.5 |
System | Node | OS | Processor | RAM | GPU (#) |
---|---|---|---|---|---|
AgriLife Cluster | M1 | Windows 10 (Build 20H2) | Intel(R) Core(TM) i7–8700K | 32 GB | GeForce GTX 1070 Ti |
M2 | Intel(R) Core(TM) i7–4790K | 32 GB | GeForce GTX 980 | ||
M3 | Intel(R) Xeon(R) E5–2680 | 64 GB | GeForce GTX 1050 Ti | ||
M4 | Intel(R) Xeon(R) E5–1650 | 32 GB | GeForce GTX 1050 Ti | ||
M5 | Intel(R) Xeon(R) E5–1650 | 32 GB | GeForce GTX 1050 Ti | ||
Oracle Cloud | VM.GPU2.1 | Windows Server 2019 | Intel(R) Xeon(R) Platinum 8167 M | 72 GB | NVIDIA Tesla P100 (×1) |
VM.GPU3.1 | Intel(R) Xeon(R) Platinum 8167 M | 90 GB | NVIDIA Tesla V100 (×1) | ||
VM.GPU3.2 | Intel(R) Xeon(R) Platinum 8167 M | 180 GB | NVIDIA Tesla V100 (×2) | ||
VM.GPU3.4 | Intel(R) Xeon(R) P latinum 8167 M | 360 GB | NVIDIA Tesla V100 (×4) |
Procedure | Default Values |
---|---|
Align Photos | Accuracy: High, Key point limit: 40,000, tie point limit: 4000, Adaptive camera model fitting: Yes |
Build Dense Cloud | Quality: High, Filtering mode: Mild, Calculate point cloud: Yes |
Build DEM | Source data: Dense cloud, Interpolation: Enabled |
Build Orthomosaic | Blending mode: Mosaic, Surface: DEM, Enable hole filling: Yes |
Export DEM | File format: GeoTIFF, Pixel size: Default, Write tiled TIFF: Yes, Write BigTIFF file: Yes, Generate TIFF overview: Yes |
Export Orthomosaic | File format: GeoTIFF, Pixel size: Default, Write tiled TIFF: Yes, Write BigTIFF file: Yes, Generate TIFF overview: Yes, Write alpha channel: Yes |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, A.; Jung, J.; Landivar, J.; Landivar, J.; Barker, B.; Ghosh, R. Performance Evaluation of Parallel Structure from Motion (SfM) Processing with Public Cloud Computing and an On-Premise Cluster System for UAS Images in Agriculture. ISPRS Int. J. Geo-Inf. 2021, 10, 677. https://doi.org/10.3390/ijgi10100677
Chang A, Jung J, Landivar J, Landivar J, Barker B, Ghosh R. Performance Evaluation of Parallel Structure from Motion (SfM) Processing with Public Cloud Computing and an On-Premise Cluster System for UAS Images in Agriculture. ISPRS International Journal of Geo-Information. 2021; 10(10):677. https://doi.org/10.3390/ijgi10100677
Chicago/Turabian StyleChang, Anjin, Jinha Jung, Jose Landivar, Juan Landivar, Bryan Barker, and Rajib Ghosh. 2021. "Performance Evaluation of Parallel Structure from Motion (SfM) Processing with Public Cloud Computing and an On-Premise Cluster System for UAS Images in Agriculture" ISPRS International Journal of Geo-Information 10, no. 10: 677. https://doi.org/10.3390/ijgi10100677
APA StyleChang, A., Jung, J., Landivar, J., Landivar, J., Barker, B., & Ghosh, R. (2021). Performance Evaluation of Parallel Structure from Motion (SfM) Processing with Public Cloud Computing and an On-Premise Cluster System for UAS Images in Agriculture. ISPRS International Journal of Geo-Information, 10(10), 677. https://doi.org/10.3390/ijgi10100677