Inferring Mixed Use of Buildings with Multisource Data Based on Tensor Decomposition
Abstract
:1. Introduction
2. Study Area and Datasets
3. Method
3.1. Single Building Merging
3.2. Construction and Decomposition of the Building Dynamic Characteristic Tensor
3.3. Building Mixed-Use Extrapolation
3.3.1. Pattern Inference for Factor Matrices
3.3.2. Building Mixed-Use Inference
3.4. Accuracy Evaluation
4. Results
4.1. Results of Single Building Merging
4.2. Analysis of Tensor Decomposition Results
4.2.1. Time Pattern Analysis
4.2.2. Building Functional Pattern Inference
4.2.3. Building Function Recognition Accuracy Assessment
5. Discussion
5.1. Error Analysis of Building Function Inference
5.2. Advantages of Integrating Remote Sensing Data to Infer Building Mixed-Use
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Farjam, R.; Motlaq, S.M.H.; Rasoul, F. Does urban mixed use development approach explain spatial analysis of inner city decay? J. Urban Manag. 2019, 8, 245–260. [Google Scholar] [CrossRef]
- Li, M.; Koks, E.; Taubenböck, H.; van Vliet, J. Continental-scale mapping and analysis of 3D building structure. Remote Sens. Environ. 2020, 245, 111859. [Google Scholar] [CrossRef]
- Atkins, K.G. Analysis of Town Center Mixed-Use Developments to Determine Key Retailer Success Factors. Master’s Thesis, University of Tennessee, Knoxville, TN, USA, 2005. [Google Scholar]
- Bell, J. A Mixed-Use Renaissance: A Renewed Interest in Creating a Vibrant Urban Feel in City Centers and in Suburban Set-tings Is Propelling Successful Mixed-Use Development. Here Are Three Projects That Blend the Best of Mixed Use. Infect. Immun. 2004, 67, 5427–5433. [Google Scholar]
- Dobbins, M. Urban Design and People; John Wiley & Sons: Hoboken, NJ, USA, 2011; p. 5. [Google Scholar]
- Joe, G.A. A Vertical Vision; National Real Estate Investor: New York, NY, USA, 2004; pp. 24–30. [Google Scholar]
- Hoppenbrouwer, E.; Louw, E. Mixed-use development: Theory and practice in Amsterdam’s Eastern Docklands. Eur. Plan. Stud. 2005, 13, 967–983. [Google Scholar] [CrossRef]
- Lee, J. Quality of Life and Semipublic Spaces in High-Rise Mixed-Use Housing Complexes in South Korea. J. Asian Arch. Build. Eng. 2011, 10, 149–156. [Google Scholar] [CrossRef]
- Lu, Z.; Im, J.; Rhee, J.; Hodgson, M. Building type classification using spatial and landscape attributes derived from LiDAR remote sensing data. Landsc. Urban Plan. 2014, 130, 134–148. [Google Scholar] [CrossRef]
- Huang, X.; Liu, H.; Zhang, L. Spatiotemporal Detection and Analysis of Urban Villages in Mega City Regions of China Using High-Resolution Remotely Sensed Imagery. IEEE Trans. Geosci. Remote Sens. 2015, 53, 3639–3657. [Google Scholar] [CrossRef]
- Belgiu, M.; Tomljenovic, I.; Lampoltshammer, T.J.; Blaschke, T.; Höfle, B. Ontology-Based Classification of Building Types Detected from Airborne Laser Scanning Data. Remote Sens. 2014, 6, 1347–1366. [Google Scholar] [CrossRef] [Green Version]
- Hecht, R.; Meinel, G.; Buchroithner, M. Automatic identification of building types based on topographic databases—A comparison of different data sources. Int. J. Cartogr. 2015, 1, 18–31. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.; Zhuo, L.; Tao, H.; Shi, Q.; Liu, K. A Novel Building Type Classification Scheme Based on Integrated LiDAR and High-Resolution Images. Remote Sens. 2017, 9, 679. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Huang, X.; Liu, H. Unsupervised Deep Feature Learning for Urban Village Detection from High-Resolution Remote Sensing Images. Photogramm. Eng. Remote Sens. 2017, 83, 567–579. [Google Scholar] [CrossRef]
- Sritarapipat, T.; Takeuchi, W. Building classification in Yangon City, Myanmar using Stereo GeoEye images, Landsat image and night-time light data. Remote Sens. Appl. Soc. Environ. 2017, 6, 46–51. [Google Scholar] [CrossRef]
- Wurm, M.; Schmitt, A.; Taubenbock, H. Building Types’ Classification Using Shape-Based Features and Linear Discriminant Functions. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 1901–1912. [Google Scholar] [CrossRef]
- Chen, W.; Huang, H.; Dong, J.; Zhang, Y.; Tian, Y.; Yang, Z. Social functional mapping of urban green space using remote sensing and social sensing data. ISPRS J. Photogramm. Remote Sens. 2018, 146, 436–452. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, X.; Li, X.; Liu, X.; Yao, Y.; Hu, G.; Xu, X.; Pei, F. Delineating urban functional areas with building-level social media data: A dynamic time warping (DTW) distance based k -medoids method. Landsc. Urban Plan. 2017, 160, 48–60. [Google Scholar] [CrossRef]
- Zhong, C.; Huang, X.; Arisona, S.M.; Schmitt, G.; Batty, M. Inferring building functions from a probabilistic model using public transportation data. Comput. Environ. Urban Syst. 2014, 48, 124–137. [Google Scholar] [CrossRef]
- Zhuo, L.; Shi, Q.; Zhang, C.; Li, Q.; Tao, H. Identifying Building Functions from the Spatiotemporal Population Density and the Interactions of People among Buildings. ISPRS Int. J. Geo-Inf. 2019, 8, 247. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Chen, G.; Chen, G.; Liu, X.; Niu, N. Integrating Multi-source Big Data to Extract Building of Urban Villages: A Case Study of Tianhe District, Guangzhou. Geogr. Geo-Inf. Sci. 2018, 34, 3–13. [Google Scholar]
- Chen, W.; Zhou, Y.; Wu, Q.; Chen, G.; Huang, X.; Yu, B. Urban Building Type Mapping Using Geospatial Data: A Case Study of Beijing, China. Remote Sens. 2020, 12, 2805. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Q.; Tu, W.; Mai, K.; Yao, Y.; Chen, Y. Functional urban land use recognition integrating multi-source geospatial data and cross-correlations. Comput. Environ. Urban Syst. 2019, 78, 101374. [Google Scholar] [CrossRef]
- Liu, X.; He, J.; Yao, Y.; Zhang, J.; Liang, H.; Wang, H.; Hong, Y. Classifying urban land use by integrating remote sensing and social media data. Int. J. Geogr. Inf. Sci. 2017, 31, 1675–1696. [Google Scholar] [CrossRef]
- Niu, N.; Liu, X.; Jin, H.; Ye, X.; Liu, Y.; Li, X.; Chen, Y.; Li, S. Integrating multi-source big data to infer building functions. Int. J. Geogr. Inf. Sci. 2017, 31, 1–20. [Google Scholar] [CrossRef]
- Liu, X.; Niu, N.; Liu, X.; Jin, H.; Ou, J.; Jiao, L.; Liu, Y. Characterizing mixed-use buildings based on multi-source big data. Int. J. Geogr. Inf. Sci. 2018, 32, 738–756. [Google Scholar] [CrossRef]
- Kolda, T.G.; Bader, B.W. Tensor Decompositions and Applications. SIAM Rev. 2009, 51, 455–500. [Google Scholar] [CrossRef]
- Sun, L.; Axhausen, K.W. Understanding urban mobility patterns with a probabilistic tensor factorization framework. Transp. Res. Part B Methodol. 2016, 91, 511–524. [Google Scholar] [CrossRef]
- Tao, H.; Wang, K.; Zhuo, L.; Li, X. Re-examining urban region and inferring regional function based on spatial–temporal interaction. Int. J. Digit. Earth 2018, 12, 293–310. [Google Scholar] [CrossRef]
- Mørup, M. Sparse Higher Order Non-negative Matrix Factorization. Available online: http://www2.imm.dtu.dk/pubdb/pubs/4718-full.html (accessed on 26 July 2020).
Type and Number of Samples | Largest Pattern Value | Second-Largest Pattern Value | Average Di |
---|---|---|---|
Working (87) | 0.0077 | 0.0045 | 0.5844 |
Residential (153) | 0.0081 | 0.0034 | 0.4198 |
Shopping and recreational (19) | 0.0051 | 0.0035 | 0.6667 |
Residential and working (31) | 0.0021 | 0.0017 | 0.7941 |
Working and recreational (22) | 0.0040 | 0.0030 | 0.7500 |
Residential and recreational (24) | 0.0033 | 0.0025 | 0.7567 |
Weekday | Weekend | |||||||
---|---|---|---|---|---|---|---|---|
Morning | Afternoon | Evening | Night | Morning | Afternoon | Evening | Night | |
Pattern 1 | 0.003 | 0.003 | 0 | 0.156 1 | 0.093 | 0.085 | 0.030 | 0.261 1 |
Pattern 2 | 0 | 0 | 0 | 0 | 0.626 1 | 0.007 | 0 | 0.008 |
Pattern 3 | 0 | 0.002 | 0.052 | 0 | 0 | 0.271 1 | 0.235 1 | 0.012 |
Pattern 4 | 0 | 0.259 1 | 0 | 0 | 0 | 0.022 | 0 | 0.028 |
Pattern 5 | 0.061 | 0.002 | 0.113 1 | 0 | 0 | 0 | 0.311 1 | 0.223 1 |
Pattern 6 | 0.552 1 | 0.006 | 0.007 | 0 | 0.074 | 0.003 | 0 | 0.001 |
Pattern 7 | 0.016 | 0.244 1 | 0.349 1 | 0 | 0 | 0.053 | 0.001 | 0.008 |
Pattern 8 | 0.005 | 0 | 0.099 | 0.365 | 0 | 0.004 | 0.004 | 0.052 |
Weekday | Weekend | |
---|---|---|
Morning | Pattern 6 | Pattern 2 |
Afternoon | Pattern 4,7 | Pattern 3 |
Evening | Pattern 7,5 | Pattern 3,5 |
Night | Pattern 1,8 | Pattern 1,5 |
Type | Number | Percentage (%) |
---|---|---|
Single-use building | 18,219 | 79.75 |
Mixed-use building | 4322 | 18.92 |
Working building | 2380 | 10.42 |
Residential building | 14,715 | 64.41 |
Shopping and recreational building | 1124 | 4.92 |
Residential and working building | 2536 | 11.10 |
Working and recreational building | 747 | 3.27 |
Residential and recreational building | 1039 | 4.55 |
Unclassified building | 304 | 1.33 |
Spatial Scale | Samples | Number of Single Buildings | Number of Correctly Inferred Single Buildings | Recognition Rate (RT) | OA | Kappa |
---|---|---|---|---|---|---|
500 m × 500 m | 76 | 67 | 1 | 0.88 | 0.75 | |
23 | 19 | 1 | 0.83 | 0.75 | ||
109 | 89 | 1 | 0.82 | 0.64 | ||
1 km × 1 km | 216 | 181 | 1 | 0.84 | 0.75 | |
86 | 71 | 1 | 0.83 | 0.77 | ||
206 | 171 | 1 | 0.83 | 0.73 | ||
Total | 716 | 598 | 1 | 0.84 | 0.75 |
Type | Sensitivity | Precision |
---|---|---|
Working building | 0.95 | 0.96 |
Residential building | 0.90 | 0.94 |
Shopping and recreational building | 0.54 | 0.77 |
Residential and working building | 0.67 | 0.64 |
Working and shopping building | 0.74 | 0.95 |
Residential and shopping building | 0.80 | 0.45 |
Misclassified Building Function | Examples |
---|---|
Residential building | Guangzhou Tianhe Stadium, Guangzhou Tianhe Sports Center, Haixinsha Asian Games Stand, Tianhe Huayang Primary School (Huacheng Campus) |
Working building | Poly 108 Mansion, Bihai Bay Residence, Jiayu Junyue Residence |
Shopping and recreational building | Hesheng DiJing Villa, Longfor Mansion villa |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, C.; Shi, Q.; Zhuo, L.; Wang, F.; Tao, H. Inferring Mixed Use of Buildings with Multisource Data Based on Tensor Decomposition. ISPRS Int. J. Geo-Inf. 2021, 10, 185. https://doi.org/10.3390/ijgi10030185
Zhang C, Shi Q, Zhuo L, Wang F, Tao H. Inferring Mixed Use of Buildings with Multisource Data Based on Tensor Decomposition. ISPRS International Journal of Geo-Information. 2021; 10(3):185. https://doi.org/10.3390/ijgi10030185
Chicago/Turabian StyleZhang, Chenyang, Qingli Shi, Li Zhuo, Fang Wang, and Haiyan Tao. 2021. "Inferring Mixed Use of Buildings with Multisource Data Based on Tensor Decomposition" ISPRS International Journal of Geo-Information 10, no. 3: 185. https://doi.org/10.3390/ijgi10030185
APA StyleZhang, C., Shi, Q., Zhuo, L., Wang, F., & Tao, H. (2021). Inferring Mixed Use of Buildings with Multisource Data Based on Tensor Decomposition. ISPRS International Journal of Geo-Information, 10(3), 185. https://doi.org/10.3390/ijgi10030185