Metabolic Syndrome and Associated Factors in Farmers in Southeastern Brazil: A Cross-Sectional Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Population and Study Design
2.2. Data Collection
2.3. Diagnosis of MS
2.4. Statistical Analysis
3. Results
3.1. Characteristics of the Study Population
3.2. Binary Logistic Regression between MS and Analyzed Variables
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Castro-Barquero, S.; Ruiz-León, A.M.; Sierra-Pérez, M.; Estruch, R. Dietary strategies for metabolic syndrome: A comprehensive review. Nutrients 2020, 12, 2983. [Google Scholar] [CrossRef] [PubMed]
- McCraken, E.; Monaghan, M.; Srenivasan, S. Pathophysiology of the metabolic syndrome. Clin. Dermatol. 2018, 36, 14–20. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, L.V.A.; dos Santos, B.N.S.; Machado, I.E.; Malta, D.C.; Velasquez-Melendez, G.; Felisbino-Mendes, M.S. Prevalence of the Metabolic Syndrome and its components in the Brazilian adult population. Ciênc. Saúde Coletiva 2020, 25, 4269–4280. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Jia, X.; Wang, Y.; Jingwen, F.; Zhao, C.; Yang, Y.; Shi, X. Trends in the prevalence of metabolic syndrome in the United States, 2011–2016. Jama 2020, 323, 2526–2528. [Google Scholar]
- Salaroli, L.; Barbosa, G.; Mill, J.; Molina, M.C.B. Prevalence of metabolic syndrome in population-based study, Vitoria, ES-Brazil. Arq. Bras. Endocrinol. Metab. 2007, 51, 1143–1152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oliveira, E.; Souza, M.; Lima, M. Prevalência de síndrome metabólica em uma área rural do semi-árido baiano. Arq. Bras. Endocrinol. Metabol. 2006, 50, 456–465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pimenta, A.M.; Gazzinelli, A.; Velásquez-Meléndez, G. Prevalence of metabolic syndrome and its associated factors in a rural area of Minas Gerais State (MG, Brazil). Ciênc. Saúde Coletiva 2011, 16, 3297. [Google Scholar] [CrossRef] [Green Version]
- Valadares, L.T.S.; Souza, L.S.B.; Júnior, V.A.S.; de Freitas Bonomo, L.; de Macedo, L.R.; Silva, M. Prevalence of metabolic syndrome in Brazilian adults in the last 10 years: A systematic review and meta-analysis. BMC Public Health 2022, 22, 327. [Google Scholar]
- Paiva, M.H.P.; Miranda Filho, V.A.; Oliveira, A.R.S.; Cruz, K.J.C.; Araújo, R.M.S.; Oliveira, K.A. Prevalence of the metabolic syndrome and its components in Brazilian adolescents: A systematic review and meta-analysis. Rev. Paul. Pediatr. 2022, 41, e2021145. [Google Scholar] [CrossRef]
- Petarli, G.; Cattafesta, M.; Luz, T.; Bezerra, O.M.P.A.; Zandonade, E.; Salaroli, L. Occupational exposure to pesticides, risks and safety practices in family farming in a municipality of Espírito Santo, Brazil. Rev. Bras. Saúde Ocup. 2019, 44, 282. [Google Scholar]
- National Center for Farmworker Health. Agricultural Worker Occupational Health & Safety. 2017. Available online: http://www.ncfh.org/uploads/3/8/6/8/38685499/fs-occ_health.pdf (accessed on 6 June 2022).
- Brundisini, F.; Giacomini, M.; Dejean, D.; Vanstone, M.; Winsor, S.; Smith, A. Chronic disease patients’ experiences with accessing health care in rural and remote areas: A systematic review and qualitative meta-synthesis. Ont. Health Technol. Assess. Ser. 2013, 13, 1–33. [Google Scholar]
- Petarli, G.; Cattafesta, M.; Sant’Anna, M.; Bezerra, O.M.P.A.; Zandonade, E.; Salaroli, L.B. Multimorbidity and complex multimorbidity in Brazilian rural workers. PLoS ONE 2019, 14, e0225416. [Google Scholar] [CrossRef] [Green Version]
- Malachias, M.V.B.; Souza, W.K.S.B.; Plavnik, F.L.; Rodrigues, C.I.S.; Brandão, A.A.; Neves, M.F.T.; Bortolotto, L.A.; Franco, R.J.S.; Poli-de-Figueiredo, C.E.; Jardim, P.C.B.V.; et al. 7ª Diretriz Brasileira de Hipertensão Arterial: Apresentação; Arquivos Brasileiros de Cardiologia: Rio de Janeiro, Brazil, 2016; Volume 107, p. 15. Available online: http://publicacoes.cardiol.br/2014/diretrizes/2016/05_HIPERTENSAO_ARTERIAL.pdf (accessed on 17 May 2022).
- Alberti, G.; Zimmet, P.; Shaw, J. Metabolic syndrome—A new world-wide definition. A consensus statement from the international diabetes federation. Diabet Med. 2006, 23, 469–480. [Google Scholar] [CrossRef] [PubMed]
- Silveira, R.J.L.; Barbalho, S.M.; Reverete de Araujo, R.; Bechara, M.D.; Sloan, K.P.; Sloan, L.A. Metabolic syndrome and cardiovascular diseases: Going beyond traditional risk factors. Diabetes Metab. Res. Rev. 2022, 38, e3502. [Google Scholar] [CrossRef] [PubMed]
- Yao, F.; Bo, Y.; Zhao, L.; Li Yaru, L.; Ju, L.; Fang, H.; Piao, W.; Yu, D.; Lao, X. Prevalence and Influencing Factors of Metabolic Syndrome among Adults in China from 2015 to 2017. Nutrients 2021, 13, 4475. [Google Scholar] [CrossRef] [PubMed]
- Barroso, W.K.S.; Rodrigues, C.I.S.; Bortolotto, L.A.; Mota-Gomes, M.A.; Brandão, A.A.; Feitosa, A.D.M.; Machado, C.A.; Poli-de-Figueiredo, C.E.; Amodeo, C.; Junior, D.M.; et al. Diretrizes Brasileiras de Hipertensão Arterial—2020. Arq. Bras. Cardiol. 2021, 116, 516–658. [Google Scholar] [CrossRef]
- Cattafesta, M.; Petarli, G.B.; Zandonade, E.; Bezerra, O.M.P.A.; Abreu, S.M.R.; Salaroli, L.B. Prevalence and determinants of obesity and abdominal obesity among rural workers in Southeastern Brazil. PLoS ONE 2022, 17, e0270233. [Google Scholar] [CrossRef] [PubMed]
- Cattafesta, M.; Petarli, G.B.; Zandonade, E.; Bezerra, O.M.P.A.; Abreu, S.M.R.; Salaroli, L.B. Energy contribution of NOVA food groups and the nutritional profile of the Brazilian rural workers’ diets. PLoS ONE 2020, 15, e0240756. [Google Scholar] [CrossRef]
- Cattafeta, M.; Petarli, G.; Luz, T.C.; Zandonade, E.; Bezerra, O.M.P.A.; Salaroli, L.B. Dietary patterns of Brazilian farmers and their relation with sociodemographic, labor, and lifestyle conditions in 2021. Nutr. J. 2020, 19, 23. [Google Scholar] [CrossRef] [Green Version]
- Soares, A.L.G.; Banda, L.; Amberbir, A.; Jaffar, S.; Musicha, C.; Price, A.; Nyirenda, M.J.; Lawlor, D.A.; Crampin, A. Sex and area differences in the association between adiposity and lipid profile in Malawi. BMJ Glob Health 2019, 4, e001542. [Google Scholar] [CrossRef] [Green Version]
- Birhanu, M.M.; Evans, R.G.; Zengin, A.; Riddell, M.; Kalyanram, K.; Kartik, K.; Suresh, O.; Thomas, N.J.; Srikanth, V.K.; Thrift, A.G. Absolute cardiovascular risk scores and medication use in rural India: A cross-sectional study. BMJ Open 2022, 12, e054617. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.; Xing, L.; Du, Z.; Tian, Y.; Jing, L.; Yan, H.; Lin, M.; Zhang, B.; Liu, S.; Pan, Y.; et al. Prevalence of Obesity and Associated Risk Factors and Cardiometabolic Comorbidities in Rural Northeast China. Biomed. Res. Int. 2019, 25, 6509083. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petarli, G.B.; Cattafesta, M.; Viana, M.C.M.; Bezerra, O.M.P.A.; Zandonade, E.; Salaroli, L.B. Depression in Brazilian farmers: Prevalence and associated factors. J. Ment. Health 2022, 4, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Krupp, K.; Adsul, P.; Wilcox, M.L.; Srinivas, V.; Frank, E.; Srinivas, A.; Madhivanan, P. Prevalence and correlates of metabolic syndrome among rural women in Mysore, India. Indian Heart J. 2020, 72, 582–588. [Google Scholar] [CrossRef]
- Ko, S.H.; Jung, Y. Energy Metabolism Changes and Dysregulated Lipid Metabolism in Postmenopausal Women. Nutrients 2021, 13, 4556. [Google Scholar] [CrossRef] [PubMed]
- Opoku, A.A.; Abushama, M.; Konje, J.C. Obesity and menopause. Best Pract. Res. Clin. Obstet. Gynaecol. 2023, 88, 102348. [Google Scholar] [CrossRef]
- Fahed, G.; Aoun, L.; Zerdan, M.B.; Allam, S.; Zerdan, M.B.; Bouferraa, Y.; Assi, H.I. Metabolic syndrome: Updates on pathophysiology and management in 2021. Int. J. Mol. Sci. 2022, 23, 786. [Google Scholar] [CrossRef]
- Gakidou, E.; Afshin, A.; Alemu, A.; Abate, K.H.; Abbafati, C.; Abbas, K.M.; Abd-Allah, F.A.M.; Abera, S.F.; Aboyans, V.; Abdulle, A.M. Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2017, 390, 1345. [Google Scholar]
- da Silva, C.G.; Prada, C.A. Health in the countryside: Paths taken by the Landless Rural Workers Movement (MST). Saúde Debate 2020, 43, 50–65. [Google Scholar]
- Verma, V.R.; Dash, U. Geographical accessibility and spatial coverage modelling of public health care network in rural and remote India. PLoS ONE 2020, 15, e0239326. [Google Scholar] [CrossRef]
- Márquez-Sandoval, F.; Macedo-Ojeda, G.; Viramntes-Horner, D.; Ballart, J.D.F.; Salvado, J.S.; Vizmanos, B. The prevalence of metabolic syndrome in Latin America: A systematic review. Public Health Nutr. 2011, 14, 1702–1713. [Google Scholar] [CrossRef] [PubMed]
- do Prado, C.B.; Martins, C.A.; Cremonini, A.C.P.; Ferreira, J.R.S.; Cattafesta, M.; Almida-de-Souza, J.; Zandonade, E.; Bezerra, O.M.P.A.; Salaroli, L.B. Cut Points of the Conicity Index and Associated Factors in Brazilian Rural Workers. Nutrients 2022, 14, 4487. [Google Scholar] [CrossRef] [PubMed]
Variables | Male N (%) 95% CI | Female N (%) 95% CI | Total N (%) 95% CI |
---|---|---|---|
Age (years) | |||
<30 | 106 (13.4) 11.15–16.04 | 107 (13.5) 11.27–16.17 | 213 (26.9) 23.9–30.1 |
31–40 | 122 (15.4) 13.03–18.19 | 109 (13.8) 11.50–16.44 | 231 (29.2) 26.1–32.5 |
41–50 | 100 (12.7) 10.46–15.22 | 95 (12.0) 9.88–14.54 | 195 (24.7) 21.8–27.8 |
>50 | 85 (10.8) 8.72–13.18 | 66 (8.4) 6.56–10.56 | 151 (19.2) 16.5–22.0 |
Marital Status | |||
Single | 48 (6.1) 4.55–8.03 | 11 (1.4) 0.73–2.55 | 59 (7.5) 5.8–9.4 |
Lives maritally | 345 (43.7) 40.18–47.21 | 333 (42.1) 38.69–45.68 | 678 (85.8) 83.9–88.1 |
Does not live maritally | 20 (2.5) 1.59–3.95 | 33 (4.2) 2.93–5.88 | 53 (6.7) 5.1–8.6 |
Education (Years) | |||
<4 | 273 (34.5) 31.26–38.00 | 260 (33.0) 29.66–36.32 | 533 (67.5) 64.1–70.7 |
4–8 | 96 (12.1) 9.99–14.68 | 77 (9.7) 7.81–12.08 | 173 (21.9) 19.1–24.9 |
>8 | 44 (5.6) 4.12–7.46 | 40 (5.1) 3.68–6.89 | 84 (10.6) 8.6–12.9 |
Race/color | |||
White | 362 (45.9) 42.31–49.37 | 340 (43.0) 39.56–46.57 | 702 (88.9) 86.5–90.9 |
Not white | 51 (6.5) 4.88–8.45 | 37 (4.6) 3.36–6.46 | 88 (11.1) 9.1–13.5 |
Socioeconomic Class | |||
A/B | 42 (5.3) 3.90–7.17 | 16 (2.0) 1.20–3.34 | 58 (7.3) 5.7–9.3 |
C | 222 (28.1) 25.01–31.40 | 173 (21.9) 19.09–24.98 | 395 (50) 45.5–53.5 |
D/E | 149 (18.9) 16.22–21.80 | 188 (23.8) 20.89–26.95 | 337 (42.7) 39.2–46.1 |
BMI | |||
Low weight/eutrophy | 217 (27.5) 24.40–30.74 | 170 (21.5) 18.73–24.58 | 387 (49.0) 45.5–52.5 |
Overweight/obesity | 196 (25.0) 21.86–28.00 | 207 (26.0) 23.19–29.44 | 403 (51.0) 47.5–54.5 |
Presence of MS | |||
NCEP | 38 (4.8) 3.5–8.70 | 59 (7.5) 6.62–13.13 | 97 (12.3) 10.1–14.7 |
IDF | 52 (6.6) 5.17–11.97 | 77 (9.7) 6.66–16.16 | 129 (16.3) 13.9–19.0 |
Variables | NCEP Criteria | p-Value | IDF Criteria | p-Value | Total n (%) | ||
---|---|---|---|---|---|---|---|
Absent | Present | Absent | Present | ||||
n (%) | n (%) | n (%) | n (%) | ||||
Gender | |||||||
Male | 375 (47.5) | 38 (4.8) | 0.006 | 361 (45.7) | 52 (6.6) | 0.003 | 413 (52.3) |
Female | 318 (40.3) | 59 (7.5) | 300 (38.0) | 77 (9.7) | 377 (47.7) | ||
Age (years) | |||||||
≤30 | 203 (25.7) | 10 (1.3) | <0.001 | 197 (24.9) | 16 (2.0) | <0.001 | 213 (27.0) |
31–40 | 209 (26.5) | 22 (2.8) | 199 (25.2) | 32 (4.1) | 231 (29.2) | ||
41–50 | 163 (20.6) | 32 (4.1) | 154 (19.5) | 41 (5.2) | 195 (24.7) | ||
≥50 | 118 (14.9) | 33 (4.2) | 111 (14.1) | 40 (5.1) | 151 (19.1) | ||
Marital status | |||||||
Single | 52 (6.6) | 7 (0.9) | 0.545 | 51 (6.5) | 8 (1.0) | 0.833 | 59 (7.5) |
Lives maritally | 592 (74.9) | 86 (10.9) | 566 (71.6) | 112 (14.2) | 678 (85.8) | ||
Does not live maritally | 49 (6.2) | 4 (0.5) | 44 (5.6) | 9 (1.1) | 53 (6.7) | ||
Education (years) | |||||||
<4 | 460 (58.2) | 73 (9.2) | 0.148 | 436 (55.2) | 97 (12.3) | 0.055 | 533 (67.5) |
4–8 | 159 (20.1) | 14 (1.8) | 155 (19.6) | 18 (2.3) | 173 (21.9) | ||
>8 | 74 (9.4) | 10 (1.3) | 70 (8.9) | 14 (1.8) | 84 (10.6) | ||
Race/color | |||||||
White | 616 (78.0) | 86 (10.9) | 0.946 | 590 (74.7) | 112 (14.2) | 0.421 | 702 (88.9) |
Not white | 77 (9.7) | 11 (1.4) | 71 (9.0) | 17 (2.2) | 88 (11.1) | ||
Socioeconomic class | |||||||
A/B | 54 (6.8) | 4 (0.5) | 0.297 | 52 (6.6) | 6 (0.8) | 0.424 | 58 (7.3) |
C | 341 (43.2) | 54 (6.8) | 330 (41.8) | 65 (8.2) | 395 (50.0) | ||
D/E | 298 (37.7) | 39 (4.9) | 279 (35.4) | 58 (7.3) | 337 (42.7) |
Variables | NCEP Criteria | p-Value | IDF Criteria | p-Value | Total n (%) | ||
---|---|---|---|---|---|---|---|
Absent | Present | Absent | Present | ||||
n (%) | n (%) | n (%) | n (%) | ||||
Hours of work per week | |||||||
<40 | 136 (17.2) | 26 (3.3) | 0.101 | 128 (16.2) | 34 (4.3) | 0.072 | 162 (20.5) |
>40 | 557 (70.5) | 71 (9.0) | 533 (67.5) | 95 (12.0) | 628 (79.5) | ||
Land tenure | |||||||
Owner | 542 (68.6) | 67 (8.5) | 0.045 | 516 (65.3) | 93 (11.8) | 0.140 | 609 (77.1) |
Non-owner | 151 (19.1) | 30 (3.8) | 145 (18.4) | 36 (4.6) | 181 (22.9) | ||
BMI | |||||||
Low weight/eutrophy | 368 (46.6) | 19 (2.4) | <0.001 | 365 (46.2) | 22 (2.8) | <0.001 | 387 (49.0) |
Overweight/obesity | 325 (41.1) | 78 (9.9) | 296 (37.5) | 107 (13.5) | 403 (51.0) | ||
Physical activity (PA) | |||||||
Don’t practice PA | 565 (71.5) | 80 (10.1) | 0.967 | 539 (68.2) | 106 (13.4) | 0.979 | 645 (81.6) |
Practice PA (<150 min) * | 107 (13.5) | 14 (1.8) | 102 (12.9) | 19 (2.4) | 121 (15.3) | ||
Practice PA (>150 min) * | 21 (2.7) | 3 (0.4) | 20 (2.5) | 4 (0.5) | 24 (3.0) | ||
Smoking | |||||||
Non-smoking | 585 (74.1) | 80 (10.1) | 0.845 | 558 (70.6) | 107 (13.5) | 0.550 | 665 (84.2) |
Currently smoker | 53 (6.7) | 9 (1.1) | 49 (6.2) | 13 (1.6) | 62 (7.8) | ||
Smoker in the past | 55 (7.0) | 8 (1.0) | 54 (6.8) | 9 (1.1) | 63(8.0) | ||
Alcoholism | |||||||
No | 382 (48.4) | 61 (7.7) | 0.149 | 359 (45.4) | 84 (10.6) | 0.024 | 443 (56.1) |
Yes | 311 (39.4) | 36 (4.6) | 302 (38.2) | 45 (5.7) | 347 (43.9) |
Variables | Crude Model | Adjusted Model | ||||
---|---|---|---|---|---|---|
p-Value | OR | 95% CI | p-Value | OR | 95% CI | |
Gender | ||||||
Male | 1 | 1 | ||||
Female | 0.006 | 1.183 | 1.18–2.82 | 0.019 | 1.722 | 1.09–2.71 |
Age (years) | ||||||
<30 | 1 | 1 | ||||
31–40 | 0.054 | 2.137 | 0.98–4.62 | 0.113 | 1.893 | 0.86–4.16 |
41–50 | <0.001 | 3.985 | 1.90–8.34 | 0.002 | 3.418 | 1.59–7.31 |
>50 | <0.001 | 5.677 | 2.70–11.93 | <0.001 | 4.525 | 2.09–9.75 |
BMI | ||||||
Low weight/eutrophy | 1 | 1 | ||||
Overweight/obesity | <0.001 | 4.648 | 2.75–7.84 | <0.001 | 3.711 | 2.17–6.34 |
Land tenure | ||||||
Owner | 1 | 1 | ||||
Non-owner | 0.046 | 1.607 | 1.00–2.56 | 0.035 | 1.706 | 1.03–2.80 |
Variables | Crude Model | Adjusted Model | ||||
---|---|---|---|---|---|---|
p-Value | OR | 95% CI | p-Value | OR | 95% CI | |
Gender | ||||||
Male | 1 | 1 | ||||
Female | <0.003 | 1.782 | 1.21–2.61 | 0.026 | 1.647 | 1.06–2.55 |
Age (years) | ||||||
<30 | 1 | 1 | ||||
31–40 | 0.034 | 1.980 | 1.05–3.72 | 0.129 | 1.657 | 0.86–3.18 |
41–50 | <0.001 | 3.278 | 1.77–6.06 | 0.004 | 2.558 | 1.34–4.84 |
>50 | <0.001 | 4.437 | 2.37–8.28 | <0.001 | 3.127 | 1.62–6.02 |
BMI | ||||||
Low weight/eutrophy | 1 | 1 | ||||
Overweight/obesity | <0.001 | 5.997 | 3.69–9.72 | <0.001 | 5.014 | 3.06–8.20 |
Alcoholic | ||||||
No | 1 | 1 | ||||
Yes | 0.024 | 0.637 | 0.43–0.94 | 0.655 | 0.902 | 0.57–1.41 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cremonini, A.C.P.; Ferreira, J.R.S.; Martins, C.A.; do Prado, C.B.; Petarli, G.B.; Cattafesta, M.; Salaroli, L.B. Metabolic Syndrome and Associated Factors in Farmers in Southeastern Brazil: A Cross-Sectional Study. Int. J. Environ. Res. Public Health 2023, 20, 6328. https://doi.org/10.3390/ijerph20146328
Cremonini ACP, Ferreira JRS, Martins CA, do Prado CB, Petarli GB, Cattafesta M, Salaroli LB. Metabolic Syndrome and Associated Factors in Farmers in Southeastern Brazil: A Cross-Sectional Study. International Journal of Environmental Research and Public Health. 2023; 20(14):6328. https://doi.org/10.3390/ijerph20146328
Chicago/Turabian StyleCremonini, Ana Clara Petersen, Júlia Rabelo Santos Ferreira, Cleodice Alves Martins, Camila Bruneli do Prado, Glenda Blaser Petarli, Monica Cattafesta, and Luciane Bresciani Salaroli. 2023. "Metabolic Syndrome and Associated Factors in Farmers in Southeastern Brazil: A Cross-Sectional Study" International Journal of Environmental Research and Public Health 20, no. 14: 6328. https://doi.org/10.3390/ijerph20146328