A Data Analytics Approach to Assess the Functional and Physical Performance of Female Soccer Players: A Cohort Design
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Procedure
Data Collection
2.4. Outcome Measures
2.4.1. Anthropometry
2.4.2. Countermovement Jump
2.4.3. Hop Test
2.4.4. Linear Sprint
2.4.5. Repeated-Sprint Ability Test by Bangsbo with a Change-of-Direction Test
2.5. Functional Assessment
2.5.1. Overhead Squat (DS)
2.5.2. Single-Leg Squat Test (SLS)
2.5.3. Dumbbell Hip-Hinge (HHD)
2.5.4. Thomas Test (TT)
2.5.5. Hip Extension (with Knee Extension and Knee Flexion) (HEKE and HEKF)
2.5.6. Internal and External Hip Rotators (IHR and EHR)
2.5.7. Statistical Procedures
3. Results
3.1. Overhead Squat
3.2. Single-Leg Squat Test
3.3. Dumbbell Hip-Hinge
3.4. Thomas Test
3.5. Hip Extension (with Knee Extension and Knee Flexion)
3.6. Internal and External Hip Rotators
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FIFA. Women’s Football Member Associations Survey Report; FIFA: Paris, France, 2019; pp. 1–113. [Google Scholar]
- UEFA. Women’s Football across the National Associations 2016/17; UEFA: Basel, Switzerland, 2017; pp. 1–93. [Google Scholar]
- Randell, R.K.; Clifford, T.; Drust, B.; Moss, S.L.; Unnithan, V.B.; Croix, M.B.A.D.S.; Datson, N.; Martin, D.; Mayho, H.; Carter, J.M.; et al. Physiological Characteristics of Female Soccer Players and Health and Performance Considerations: A Narrative Review. Sports Med. 2021, 51, 1377–1399. [Google Scholar] [CrossRef] [PubMed]
- Manson, S.A.; Brughelli, M.; Harris, N.K. Physiological characteristics of international female soccer players. J. Strength Cond. Res. 2014, 28, 308–318. [Google Scholar] [CrossRef] [PubMed]
- Vescovi, J.D. Sprint profile of professional female soccer players during competitive matches: Female Athletes in Motion (FAiM) study. J. Sports Sci. 2012, 30, 1259–1265. [Google Scholar] [CrossRef] [PubMed]
- Datson, N.; Drust, B.; Weston, M.; Jarman, I.H.; Lisboa, P.J.; Gregson, W. Match Physical Performance of Elite Female Soccer Players During International Competition. J. Strength Cond. Res. 2017, 31, 2379–2387. [Google Scholar] [CrossRef]
- Haugen, T.A.; Tønnessen, E.; Seiler, S. Speed and countermovement-jump characteristics of elite female soccer players, 1995–2010. Int. J. Sports Physiol. Perform. 2012, 7, 340–349. [Google Scholar] [CrossRef]
- Stepinski, M.; Ceylan, H.I.; Zwierko, T. Seasonal variation of speed, agility and power performance in elite female soccer players: Effect of functional fitness. Phys. Act. Rev. 2020, 8, 16–25. [Google Scholar] [CrossRef]
- Haugen, T.A.; Tønnessen, E.; Seiler, S. Anaerobic performance testing of professional soccer players 1995–2010. Int. J. Sports Physiol. Perform. 2013, 8, 148–156. [Google Scholar] [CrossRef]
- Mohr, M.; Krustrup, P.; Andersson, H.; Kirkendal, D.; Bangsbo, J. Match activities of elite women soccer players at different performance levels. J. Strength Cond. Res. 2008, 22, 341–349. [Google Scholar] [CrossRef]
- Gonçalves, L.; Clemente, F.; Barrera, J.; Sarmento, H.; González-Fernández, F.; Rico-González, M.; Carral, J. Exploring the determinants of repeated-sprint ability in adult women soccer players. Int. J. Environ. Res. Public Health. 2021, 18, 4595. [Google Scholar] [CrossRef]
- Lockie, R.G.; Liu, T.M.; Stage, A.A.; Lazar, A.; Giuliano, D.V.; Hurley, J.M.; Torne, I.A.; Beiley, M.D.; Birmingham-Babauta, S.A.; Stokes, J.J.; et al. Assessing Repeated-Sprint Ability in Division I Collegiate Women Soccer Players. J. Strength Cond. Res. 2020, 34, 2015–2023. [Google Scholar] [CrossRef]
- Girard, O.; Mendez-Villanueva, A.; Bishop, D. Repeated-sprint ability-part I: Factors contributing to fatigue. Sports Med. 2011, 41, 673–694. [Google Scholar] [CrossRef] [PubMed]
- Ramos, G.P.; Nakamura, F.Y.; Pereira, L.A.; Junior, W.B.; Mahseredjian, F.; Wilke, C.F.; Garcia, E.S.; Coimbra, C.C. Movement Patterns of a U-20 National Women’s Soccer Team during Competitive Matches: Influence of Playing Position and Performance in the First Half. Int. J. Sports Med. 2017, 38, 747–754. [Google Scholar] [CrossRef] [PubMed]
- Datson, N.; Hulton, A.; Andersson, H.; Lewis, T.; Weston, M.; Drust, B.; Gregson, W. Applied physiology of female soccer: An update. Sports Med. 2014, 44, 1225–1240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bret, C.; Rahmani, A.; Dufour, A.B.; Messonnier, L.; Lacour, J.R. Leg strength and stiffness as ability factors in 100 m sprint running. J. Sports Med. Phys. Fit. 2002, 42, 274–281. [Google Scholar]
- Kale, M.; Aşçi, A.; Bayrak, C.; Açikada, C. Relationships among jumping performances and sprint parameters during maximum speed phase in sprinters. J. Strength Cond. Res. 2009, 23, 2272–2279. [Google Scholar] [CrossRef] [Green Version]
- Sentsomedi, K.R.; Puckree, T. Epidemiology of injuries in female high school soccer players. Afr. Health Sci. 2016, 16, 298–305. [Google Scholar] [CrossRef] [Green Version]
- Vescovi, J.D.; Fernandes, E.; Klas, A. Physical Demands of Women’s Soccer Matches: A Perspective Across the Developmental Spectrum. Front. Sports Act. Living 2021, 3, 634696. [Google Scholar] [CrossRef]
- Fältström, A.; Kvist, J.; Bittencourt, N.F.N.; Mendonça, L.D.; Hägglund, M. Clinical Risk Profile for a Second Anterior Cruciate Ligament Injury in Female Soccer Players After Anterior Cruciate Ligament Reconstruction. Am. J. Sports Med. 2021, 49, 1421–1430. [Google Scholar] [CrossRef]
- Giza, E.; Mithöfer, K.; Farrell, L.; Zarins, B.; Gill, T. Injuries in women’s professional soccer. Br. J. Sports Med. 2005, 39, 212–216. [Google Scholar] [CrossRef] [Green Version]
- Ueberschär, O.; Fleckenstein, D.; Warschun, F.; Kränzler, S.; Walter, N.; Hoppe, M.W. Measuring biomechanical loads and asymmetries in junior elite long-distance runners through triaxial inertial sensors. Sport Orthop. Traumatol. 2019, 35, 296–308. [Google Scholar] [CrossRef]
- Pajek, M.B.; Hedbávný, P.; Kalichová, M.; Čuk, I. The asymmetry of lower limb load in balance beam routines. Sci. Gymnast. J. 2016, 8, 5–13. [Google Scholar]
- Afonso, J.; Bessa, C.; Pinto, F.; Riberio, D.; Moura, B.; Rocha, T.; Vinícius, M.; Canário-Lemos, R.; Peixoto, R.; Clemente, F.M. Asymmetry as a Foundational and Functional Requirement in Human Movement; Injury prevention: From symmetry to asymmetry, to critical thresholds; Springer: Singapore, 2020; pp. 27–31. [Google Scholar]
- Azevedo, R.R.; da Rocha, E.S.; Franco, P.S.; Carpes, F.P. Plantar pressure asymmetry and risk of stress injuries in the foot of young soccer players. Phys. Ther. Sport 2017, 24, 39–43. [Google Scholar] [CrossRef] [PubMed]
- Hughes, T.; Sergeant, J.C.; van der Windt, D.A.; Riley, R.; Callaghan, M.J. Periodic Health Examination and Injury Prediction in Professional Football (Soccer): Theoretically, the Prognosis is Good. Sport Med. 2018, 48, 2443–2448. [Google Scholar] [CrossRef] [Green Version]
- McCall, A.; Carling, C.; Davison, M.; Nedelec, M.; Le Gall, F.; Berthoin, S.; Dupont, G. Injury risk factors, screening tests and preventative strategies: A systematic review of the evidence that underpins the perceptions and practices of 44 football (soccer) teams from various premier leagues. Br. J. Sports Med. 2015, 49, 583–589. [Google Scholar] [CrossRef] [PubMed]
- Alahmad, T.A.; Kearney, P.; Cahalan, R. Injury in elite women’s soccer: A systematic review. Phys. Sportsmed. 2020, 48, 259–265. [Google Scholar] [CrossRef] [PubMed]
- Bangsbo, J. The physiology of soccer--with special reference to intense intermittent exercise. Acta Physiol. Scand. Suppl. 1994, 619, 1–155. [Google Scholar]
- Charmant, J. Kinovea (Version 0.8.27) [Computer Software]. 2018. Available online: http://www.kinovea.org/ (accessed on 1 September 2021).
- de Blas, X.; Padullés, J.M.; López del Amo, J.L.; Guerra-Balic, M. Creation and validation of chronojump-boscosystem: A free tool to measure vertical jumps. Rev. Int. Cienc. Deport. 2012, 8, 334–356. [Google Scholar] [CrossRef]
- Rosch, D.; Hodgson, R.; Peterson, L.; Graf-Baumann, T.; Junge, A.; Chomiak, J.; Dvorak, J. Assessment and evaluation of football performance. Am. J. Sports Med. 2000, 28 (Suppl. 5), S29–S39. [Google Scholar] [CrossRef]
- Samozino, P.; Rabita, G.; Dorel, S.; Slawinski, J.; Peyrot, N.; de Villarreal, E.S.; Morin, J.-B. A simple method for measuring power, force, velocity properties, and mechanical effectiveness in sprint running. Scand. J. Med. Sci. Sports. 2016, 26, 648–658. [Google Scholar] [CrossRef]
- Buchheit, M.; Samozino, P.; Glynn, J.A.; Michael, B.S.; Al Haddad, H.; Mendez-Villanueva, A.; Morin, J.-B. Mechanical determinants of acceleration and maximal sprinting speed in highly trained young soccer players. J. Sports Sci. 2014, 32, 1906–1913. [Google Scholar] [CrossRef]
- Cook, G.; Burton, L.; Hoogenboom, B.J.; Voight, M. Functional Movement screening: The use of fundamental movement as an assessment of function-part 1. Int. J. Sports Phys. Ther. 2014, 9, 396. [Google Scholar] [PubMed]
- Cook, G.; Burton, L.; Hoogenboom, B.J.; Voight, M. Functional Movement screening: The use of fundamental movement as an assessment of function-part 2. Int. J. Sports Phys. Ther. 2014, 9, 549. [Google Scholar] [PubMed]
- Schneiders, A.G.; Davidsson, A.; Horman, E.; Sullivan, J.S. Functional movement screen normative values in a young, active population. Int. J. Sports Phys. Ther. 2011, 6, 75–82. [Google Scholar]
- Herrington, L.; Myer, G.; Horsley, I. Task based rehabilitation protocol for elite athletes following Anterior Cruciate ligament reconstruction: A clinical commentary. Phys. Ther. Sport 2013, 14, 188–198. [Google Scholar] [CrossRef]
- Liebenson, D.C. The hip hinge. J. Bodyw. Mov. Ther. 2003, 7, 148–150. [Google Scholar] [CrossRef]
- Magee, D.J. Orthopedic Physical Assessment, 6th ed.; W.B. Saunders Company: Philadelphia, PA, USA, 2013. [Google Scholar]
- Cohen, J.A. Power primer. Psychol. Bull. 1992, 112, 155–159. [Google Scholar] [CrossRef] [PubMed]
- Sawilowsky, S. New effect size rules of thumb. J. Mod. Appl. Stat. Methods. 2009, 8, 467–474. [Google Scholar] [CrossRef]
- Parchmann, C.J.; McBride, J.M. Relationship between functional movement screen and athletic performance. J. Strength Cond. Res. 2011, 25, 3378–3384. [Google Scholar] [CrossRef]
- McFarland, I.T.; Dawes, J.J.; Elder, C.L.; Lockie, R.G. Relationship of two vertical jumping tests to sprint and change of direction speed among male and female collegiate soccer players. Sports 2016, 4, 11. [Google Scholar] [CrossRef] [Green Version]
- Castagna, C.; Castellini, E. Vertical jump performance in Italian male and female national team soccer players. J. Strength Cond. Res. 2013, 27, 1156–1161. [Google Scholar] [CrossRef]
- Merino-Muñoz, P.; Vidal-Maturana, F.; Aedo-Muñoz, E.; Villaseca-Vicuña, R.; Pérez-Contreras, J. Relationship between vertical jump, linear sprint and change of direction in Chilean female soccer players. J. Phys. Ed. Sport 2021, 21, 2737–2744. [Google Scholar] [CrossRef]
- Van den Tillaar, R. Comparison of step-by-step kinematics in repeated 30-m sprints in female soccer players. J. Strength Cond. Res. 2018, 32, 1923–1928. [Google Scholar] [CrossRef] [PubMed]
- Castagna, C.; D’Ottavio, S.; Gabrielli, P.R.; Póvoas, S. Sprint endurance abilities in elite female soccer players. Int. J. Sports Phys. Perf. 2020, 15, 1168–1174. [Google Scholar] [CrossRef] [PubMed]
- Morgan, O.A.; Whitehead, J.C. Willingness to pay for soccer player development in the United States. J. Sports Econ. 2018, 19, 279–296. [Google Scholar] [CrossRef]
- Koźlenia, D.; Domaradzki, J. The Impact of Physical Performance on Functional Movement Screen Scores and Asymmetries in Female University Physical Education Students. Int. J. Environ. Res. Public Health 2021, 18, 8872. [Google Scholar] [CrossRef]
- Bernardes-Marques, V.; Menezes-Medeiros, T.; de Souza Stigger, F.; Yuzo Nakamura, F.; Manfredini Baroni, B. The functional movement screen (FMSTM) in elite young soccer players between 14 and 20 years: Composite score, individual-test scores and asymmetries. Int. J. Sports Phys. Ther. 2017, 12, 977–985. [Google Scholar] [CrossRef]
- López-Valenciano, A.; Ayala, F.; Vera-García, F.J.; De Ste Croix, M.; Hernández-Sánchez, S.; Ruiz-Pérez, I.; Cejudo, A.; Santonja, F. Comprehensive profile of hip, knee and ankle ranges of motion in professional football players. J. Sports Med. Phys. Fit. 2019, 59, 102–109. [Google Scholar] [CrossRef]
- Rohman, E.; Steubs, J.T.; Tompkins, M. Changes in involved and uninvolved limb function during rehabilitation after anterior cruciate ligament reconstruction: Implications for Limb Symmetry Index measures. Am. J. Sports Med. 2015, 43, 1391–1398. [Google Scholar] [CrossRef]
- Raya-González, J.; Clemente, F.M.; Castillo, D. Analyzing the Magnitude of Interlimb Asymmetries in Young Female Soccer Players: A Preliminary Study. Int. J. Environ. Res. Public Health 2021, 18, 475. [Google Scholar] [CrossRef]
- Amiri-Khorasani, M.; Abu Osman, N.A.; Yusof, A. Acute effect of static and dynamic stretching on hip dynamic range of motion during instep kicking in professional soccer players. J. Strength Cond. Res. 2011, 25, 1647–1652. [Google Scholar] [CrossRef]
Female Soccer Players (n = 16) | ||||
---|---|---|---|---|
Assessment | LCI 95% | CI 95% | UCI 95% | |
Anthropometric measurements | ||||
Age (yrs) | 21.00 ± 4.32 | 18.88 | 2.12 | 23.12 |
Mass (kg) | 60.07 ± 7.01 | 56.64 | 3.43 | 63.50 |
Height (cm) | 164.63 ± 5.71 | 161.83 | 2.80 | 167.43 |
Body Mass Index (kg/m2) | 22.11 ± 2.00 | 21.13 | 0.98 | 23.09 |
Lean Mass (%) | 28.82 ± 3.98 | 26.87 | 1.95 | 30.77 |
Muscle (%) | 30.56 ± 1.94 | 29.61 | 0.95 | 31.51 |
Countermovement jump | ||||
CMJ (cm) | 23.80 ± 2.27 | 22.68 | 1.11 | 24.91 |
Hop Test | ||||
Dominant (cm) | 121.92 ± 7.57 | 118.21 | 3.71 | 125.63 |
Non-Dominant (cm) | 123.89 ± 9.28 | 119.34 | 4.55 | 128.44 |
Linear Sprinting (30 m) | ||||
Time (s) | 5.20 ± 0.18 | 5.12 | 0.09 | 5.29 |
Stride frequency (n) | 3.76 ± 0.21 | 3.65 | 0.10 | 3.86 |
Stride length (m) | 1.54 ± 0.09 | 1.49 | 0.04 | 1.58 |
Force–power–velocity | ||||
PMax (W/kg) | 13.43 ± 1.88 | 12.51 | 0.92 | 14.35 |
Maximal Speed | 6.97 ± 0.31 | 6.82 | 0.15 | 7.12 |
RSA test | ||||
Pmin (s) | 138.16 ± 22.06 | 127.35 | 10.81 | 148.97 |
Pmax (s) | 165.72 ± 22.16 | 154.86 | 10.86 | 176.58 |
FI (%) | 0.55 ± 0.19 | 0.46 | 0.64 | 0.09 |
Thomas Test | |||||||
---|---|---|---|---|---|---|---|
Frontal View | Frontal View | ||||||
RA | LA | Right hip angle | Left hip angle | % of difference | Right knee angle | Left knee angle | % of difference |
Mean ± SD | 92.19 ± 6.29 | 102.13 ± 7.71 | 4.44 ± 2.60 | 96.28 ± 4.86 | 105.25 ± 7.54 | 4.20 ± 2.27 | |
Hip Extension (with Knee Extension and Knee Flexion) | |||||||
Internal Rotation | External Rotation | ||||||
Hip extension (right knee flexion at 90°) | Hip extension (left knee flexion at 90°) | % of difference | Hip extension (right knee extension) | Hip extension (left knee extension) | % of difference | ||
Mean ± SD | 28.22 ± 6.74 | 32.97 ± 8.19 | 2.87 ± 1.74 | 36.13 ± 6.02 | 38.00 ± 9.66 | 2.12 ± 2.25 | |
Internal and External Hip Rotators | |||||||
Internal Rotation | External Rotation | ||||||
Right internal rotation | Left internal rotation | % of difference | Right external rotation | Left external rotation | % of difference | ||
Mean ± SD | 38.09 ± 7.00 | 36.19 ± 9.89 | 2.56 ± 2.18 | 42.75 ± 7.02 | 43.28 ± 8.29 | 2.20 ± 2.28 |
Female Soccer Players (n = 16) | ||||||
---|---|---|---|---|---|---|
Thomas Test | Hip Ext. | Int. and Ext. Hip Rotators | ||||
% Dif of Hip Angle | % Dif of Knee Angle | % Dif of Hip Ext. (Knee Flexion) | % Dif of Hip Ext. (Knee Ext.) | % Dif of Int. Rotation | % Dif of Ext. Rotation | |
Time (s) | r = −0.57 | r = 0.03 | r = −0.01 | r = −0.30 | r = 0.34 | r = −0.02 |
p= 0.02 * | p = 0.90 | p = 0.98 | p = 0.26 | p = 0.20 | p = 0.94 | |
Stride distance | r = 0.32 | r = 0.07 | r = −0.2721 | r = 0.13 | r = 0.18 | r = 0.08 |
p = 0.23 | p = 0.80 | p = 0.32 | p = 0.64 | p = 0.50 | p = 0.75 | |
Stride frequency | r = 0.06 | r = −0.01 | r = 0.28 | r = 0.02 | r = −0.44 | r = −0.05 |
p = 0.82 | p = 0.94 | p = 0.30 | p = 0.93 | p = 0.10 | p = 0.85 | |
Max sprint | r = 0.53 | r = 0.12 | r = −0.22 | r = −0.01 | r = −0.33 | r = 0.12 |
p = 0.04 * | p = 0.65 | p = 0.42 | p = 0.99 | p = 0.22 | p = 0.65 | |
Pmax (w/kg) | r = 0.13 | r = −0.17 | r = 0.17 | r = 0.34 | r = −0.31 | r = −0.47 |
p = 0.62 | p = 0.54 | p = 0.52 | p = 0.21 | p = 0.25 | p = 0.07 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
González-Fernández, F.T.; Castillo-Rodríguez, A.; Rodríguez-García, L.; Clemente, F.M.; Silva, A.F. A Data Analytics Approach to Assess the Functional and Physical Performance of Female Soccer Players: A Cohort Design. Int. J. Environ. Res. Public Health 2022, 19, 8941. https://doi.org/10.3390/ijerph19158941
González-Fernández FT, Castillo-Rodríguez A, Rodríguez-García L, Clemente FM, Silva AF. A Data Analytics Approach to Assess the Functional and Physical Performance of Female Soccer Players: A Cohort Design. International Journal of Environmental Research and Public Health. 2022; 19(15):8941. https://doi.org/10.3390/ijerph19158941
Chicago/Turabian StyleGonzález-Fernández, Francisco Tomás, Alfonso Castillo-Rodríguez, Lorena Rodríguez-García, Filipe Manuel Clemente, and Ana Filipa Silva. 2022. "A Data Analytics Approach to Assess the Functional and Physical Performance of Female Soccer Players: A Cohort Design" International Journal of Environmental Research and Public Health 19, no. 15: 8941. https://doi.org/10.3390/ijerph19158941