Exploring the Relationship between Ridesharing and Public Transit Use in the United States
Abstract
:1. Introduction
2. Literature Review
3. Data
3.1. Data Source
3.2. Descriptive Analysis of Ridesharing Use
3.3. Variable Definitions and Descriptive Statistics
4. Methodology
4.1. Model Selection
4.2. Zero-Inflated Negative Binomial Regression Model
4.2.1. Distribution of the ZINB Model
4.2.2. ZINB Mixed Model
4.2.3. ZINB Model Application
5. Results
5.1. Results for the Relationship between Ridesharing and Public Transit Use
5.2. Results Varying by Population Density
5.3. Results Varying by the Number of Vehicles in the Household
6. Discussion
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- United States Environmental Protection Agency (EPA). Inventory of U.S. Greenhouse Gas Emissions and Sinks. 2018. Available online: https://www.epa.gov/ghgemissions/inventory-us-greenhouse-gas-emissions-and-sinks (accessed on 25 June 2018).
- Adie Tomer. America’s Commuting Choices: 5 Major Takeaways from 2016 Census Data. 2017. Available online: https://www.brookings.edu/blog/the-avenue/2017/10/03/americans-commuting-choices-5-major-takeaways-from-2016-census-data/ (accessed on 16 May 2018).
- Nielsen, J.R.; Hovmøller, H.; Blyth, P.L.; Sovacool, B.K. Of “white crows” and “cash savers:” A qualitative study of travel behavior and perceptions of ridesharing in Denmark. Transp. Res. Part A Policy Pract. 2015, 78, 113–123. [Google Scholar] [CrossRef]
- Erdoğan, S.; Cirillo, C.; Tremblay, J.M. Ridesharing as a green commute alternative: A campus case study. Int. J. Sustain. Trans. 2015, 9, 377–388. [Google Scholar] [CrossRef]
- Chan, N.D.; Shaheen, S.A. Ridesharing in North America: Past, present, and future. Trans. Rev. 2012, 32, 93–112. [Google Scholar] [CrossRef]
- Yu, B.; Ma, Y.; Xue, M.; Tang, B.; Wang, B.; Yan, J.; Wei, Y.M. Environmental benefits from ridesharing: A case of Beijing. Appl. Energy 2017, 191, 141–152. [Google Scholar] [CrossRef]
- Fagnant, D.J.; Kockelman, K.M. The travel and environmental implications of shared autonomous vehicles, using agent-based model scenarios. Transp. Res. C Emerg. Technol. 2014, 40, 1–13. [Google Scholar] [CrossRef]
- Li, Z.; Hong, Y.; Zhang, Z. Do ride-sharing services affect traffic congestion? An empirical study of uber entry. Soc. Sci. Res. Netw. 2016, 2002, 1–29. [Google Scholar]
- Jacobson, S.H.; King, D.M. Fuel saving and ridesharing in the US: Motivations, limitations, and opportunities. Transp. Res. Part D Transp. Environ. 2009, 14, 14–21. [Google Scholar] [CrossRef]
- Furuhata, M.; Dessouky, M.; Ordóñez, F.; Brunet, M.E.; Wang, X.; Koenig, S. Ridesharing: The state-of-the-art and future directions. Transp. Res. Part B Methodol. 2013, 57, 28–46. [Google Scholar] [CrossRef]
- Beirão, G.; Cabral, J.S. Understanding attitudes towards public transport and private car: A qualitative study. Transp. Policy 2007, 14, 478–489. [Google Scholar] [CrossRef]
- Kyle Shelton. Can Public Transit and Ride-Share Companies Get Along? 2016. Available online: http://theconversation.com/can-public-transit-and-ride-share-companies-get-along-64269 (accessed on 2 July 2018).
- Bian, Z.; Liu, X. A Detour-Based Pricing Mechanism for First-Mile Ridesharing in Connection With Rail Public Transit. In Proceedings of the 2018 Joint Rail Conference (American Society of Mechanical Engineers), Pittsburgh, PA, USA, 18–20 April 2018; p. V001T04A003. [Google Scholar]
- Murray, G. Ridesharing as a Complement to Transit. In Transportation Research Board; Transportation Research Board: Washington, WA, USA, 2012; Volume 98. [Google Scholar]
- Babar, Y.; Burtch, G. Examining the Impact of Ridehailing Services on Public Transit Use, SSRN Working Paper. 2017. Available online: https://ssrn.com/abstract=3042805 (accessed on 11 August 2018).
- Stiglic, M.; Agatz, N.; Savelsbergh, M.; Gradisar, M. Enhancing urban mobility: Integrating ride-sharing and public transit. Comput. Oper. Res. 2018, 90, 12–21. [Google Scholar] [CrossRef] [Green Version]
- Rayle, L.; Shaheen, S.; Chan, N.; Dai, D.; Cervero, R. App-Based, On-Demand Ride Services: Comparing Taxi and Ridesourcing Trips and User Characteristics in San Francisco; University of California: Berkeley, CA, USA, 2014. [Google Scholar]
- Masoud, N.; Jayakrishnan, R. A real-time algorithm to solve the peer-to-peer ride-matching problem in a flexible ridesharing system. Transp. Res. Part B Methodol. 2017, 106, 218–236. [Google Scholar] [CrossRef]
- Pelzer, D.; Xiao, J.; Zehe, D.; Lees, M.H.; Knoll, A.C.; Aydt, H. A partition-based match making algorithm for dynamic ridesharing. IEEE Trans. Intell. Transp. Syst. 2015, 16, 2587–2598. [Google Scholar] [CrossRef]
- Zhang, J.; Wen, D.; Zeng, S. A discounted trade reduction mechanism for dynamic ridesharing pricing. IEEE Transactions Intell. Transp. Syst. 2016, 17, 1586–1595. [Google Scholar] [CrossRef]
- Liu, Y.; Li, Y. Pricing scheme design of ridesharing program in morning commute problem. Transp. Res. C Emerg. Technol. 2017, 79, 156–177. [Google Scholar] [CrossRef]
- Sánchez, D.; Martínez, S.; Domingo-Ferrer, J. Co-utile P2P ridesharing via decentralization and reputation management. Transp. Res. C Emerg. Technol. 2016, 73, 147–166. [Google Scholar] [CrossRef]
- Li, Y.; Chen, R.; Chen, L.; Xu, J. Towards social-aware ridesharing group query services. IEEE Trans. Serv. Comput. 2017, 10, 646–659. [Google Scholar] [CrossRef]
- Burtch, G.; Carnahan, S.; Greenwood, B.N. Can you gig it? An empirical examination of the gig economy and entrepreneurial activity. Manag. Sci. 2018. [Google Scholar] [CrossRef]
- Caulfield, B. Estimating the environmental benefits of ride-sharing: A case study of Dublin. Transp. Res. Part D: Transp. Environ. 2009, 14, 527–531. [Google Scholar] [CrossRef] [Green Version]
- Yin, B.; Liu, L.; Coulombel, N.; Viguie, V. Appraising the environmental benefits of ride-sharing: The Paris region case study. J. Clean. Prod. 2018, 177, 888–898. [Google Scholar] [CrossRef]
- Ding, C.; Wang, D.; Liu, C.; Zhang, Y.; Yang, J. Exploring the influence of built environment on travel mode choice considering the mediating effects of car ownership and travel distance. Transp. Res. Part A Policy Pract. 2017, 100, 65–80. [Google Scholar] [CrossRef]
- Schneider, R.J. Theory of routine mode choice decisions: An operational framework to increase sustainable transportation. Transp. Policy 2013, 25, 28–137. [Google Scholar] [CrossRef]
- Liu, Y.; Sheng, H.; Mundorf, N.; Redding, C.; Ye, Y. Integrating norm activation model and theory of planned behavior to understand sustainable transport behavior: Evidence from China. Int. J. Environ. Res. Public Health 2017, 14, 1593. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.; Kockelman, K.M.; Xiong, X. Models for anticipating non-motorized travel choices, and the role of the built environment. Transp. Policy 2014, 35, 117–126. [Google Scholar] [CrossRef] [Green Version]
- Efthymiou, D.; Antoniou, C.; Waddell, P. Factors affecting the adoption of vehicle sharing systems by young drivers. Transp. Policy 2013, 29, 64–73. [Google Scholar] [CrossRef]
- Zolnik, E.J. The effect of gasoline prices on ridesharing. J. Transp. Geogr. 2015, 47, 47–58. [Google Scholar] [CrossRef]
- Dias, F.F.; Lavieri, P.S.; Garikapati, V.M.; Astroza, S.; Pendyala, R.M.; Bhat, C.R. A behavioral choice model of the use of car-sharing and ride-sourcing services. Transportation 2017, 44, 1307–1323. [Google Scholar] [CrossRef]
- Rayle, L.; Dai, D.; Chan, N.; Cervero, R.; Shaheen, S. Just a better taxi? A survey-based comparison of taxis, transit, and ridesourcing services in San Francisco. Transp. Policy 2016, 45, 168–178. [Google Scholar] [CrossRef]
- U.S. Department of Transportation, Federal Highway Administration 2017 National Household Travel Survey. Available online: http://nhts.ornl.gov (accessed on 2 May2018).
- Lord, D.; Mannering, F. The statistical analysis of crash-frequency data: A review and assessment of methodological alternatives. Transp. Res. Part A Policy Pract. 2010, 44, 291–305. [Google Scholar] [CrossRef] [Green Version]
- Cameron, A.C.; Trivedi, P.K. Regression Analysis of Count Data; Cambridge University Press: Cambridge, UK, 2013; Volume 53. [Google Scholar]
- Ver Hoef, J.M.; Boveng, P.L. Quasi-Poisson vs. negative binomial regression: How should we model overdispersed count data? Ecology 2007, 88, 2766–2772. [Google Scholar] [CrossRef] [PubMed]
- uur, A.F.; Ieno, E.N.; Walker, N.J.; Saveliev, A.A.; Smith, G.M. Zero-truncated and zero-inflated models for count data. In Mixed effects models and extensions in ecology with R; Springer: New York, NY, USA, 2009; pp. 261–293. [Google Scholar]
- Fang, R.; Wagner, B.D.; Harris, J.K.; Fillon, S.A. Zero-inflated negative binomial mixed model: An application to two microbial organisms important in oesophagitis. Epidemiol. Infect. 2016, 144, 2447–2455. [Google Scholar] [CrossRef] [PubMed]
- Dong, C.; Clarke, D.B.; Yan, X.; Khattak, A.; Huang, B. Multivariate random-parameters zero-inflated negative binomial regression model: An application to estimate crash frequencies at intersections. Accid. Anal. Prev. 2014, 70, 320–329. [Google Scholar] [CrossRef] [PubMed]
- Shen, S.; Neyens, D.M. Factors affecting teen drivers' crash-related length of stay in the hospital. J. Transp. Health 2017, 4, 162–170. [Google Scholar] [CrossRef]
- Greene, W.H. Accounting for Excess Zeros and Sample Selection in Poisson and Negative Binomial Regression Models; NYU Working Paper No. EC-94-10; New York University: New York, NY, USA, 1994. [Google Scholar]
- Zhu, M.; Liu, X.Y.; Wang, X. An Online Ride-Sharing Path-Planning Strategy for Public Vehicle Systems. IEEE Trans. Intell. Transp. Syst. 2018, 99, 1–12. [Google Scholar] [CrossRef]
- Taylor, B.D.; Morris, E.A. Public transportation objectives and rider demographics: Are transit’s priorities poor public policy? Transportation 2015, 42, 347–367. [Google Scholar] [CrossRef]
- Van Lierop, D.; Badami, M.G.; El-Geneidy, A.M. What influences satisfaction and loyalty in public transport? A review of the literature. Transp. Rev. 2018, 38, 52–72. [Google Scholar] [CrossRef]
- Chakrabarti, S. How can public transit get people out of their cars? An analysis of transit mode choice for commute trips in Los Angeles. Transp. Policy 2017, 54, 80–89. [Google Scholar] [CrossRef]
- Masoud, N.; Lloret-Batlle, R.; Jayakrishnan, R. Using bilateral trading to increase ridership and user permanence in ridesharing systems. Transp. Res. Part E Logist. Transp. Rev. 2017, 102, 60–77. [Google Scholar] [CrossRef]
Variable | Definition | Type | Obs. | Mean | Std. Dev. | Min | Max |
---|---|---|---|---|---|---|---|
Dependent variable | |||||||
Rideshare | Frequency of ridesharing use in the past 30 days | Ordinal | 226,824 | 0.301 | 1.732 | 0 | 99 |
Independent variable | |||||||
Ptused | Frequency of public transit use in the past 30 days | Ordinal | 226,824 | 0.879 | 4.297 | 0 | 240 |
Control variables | |||||||
Personal demographics | |||||||
Female | If respondent is female | Dummy | 226,824 | 0.531 | 0.499 | 0 | 1 |
Age | Respondent’s age (years) | Ordinal | 226,824 | 53.022 | 18.256 | 16 | 92 |
Education | Respondent’s education level: 1 = less than high school, 2 = high school/General Educational Development (GED), 3 = some college/associate, 4 = bachelor, 5 = graduate/professional | Ordinal | 226,824 | 3.330 | 1.185 | 1 | 5 |
White | If respondent’s race is white | Dummy | 226,824 | 0.825 | 0.380 | 0 | 1 |
Worker | If respondent is a worker | Dummy | 226,824 | 0.549 | 0.498 | 0 | 1 |
Driver | If respondent is a driver | Dummy | 226,824 | 0.920 | 0.271 | 0 | 1 |
Household socio-economic characteristics | |||||||
HHincome | Household income level: 1 = less than $10k, 2 = $10k–$15k, 3 = $15k–$25k, 4 = $25k–$35k, 5 = $35k–$50k, 6 = $50k–$75k, 7 = $75k–$100k, 8 = $100k–$125k, 9 = $125k–$150k, 10 = $150k–$200k, 11 = $200k or more | Ordinal | 226,824 | 6.303 | 2.588 | 1 | 11 |
Hhvehcount | Number of vehicles in the household | Ordinal | 226,824 | 2.240 | 1.238 | 0 | 12 |
Homerent | If the house is a rental | Dummy | 226,824 | 0.211 | 0.408 | 0 | 1 |
Geographic characteristics at the home location | |||||||
Pdensity | Population density (persons per square mile) in the census block group of household’s home location in log | Continuous | 226,824 | 7.150 | 1.758 | 3.9 | 10.3 |
Rail | If the home location has rail service | Dummy | 226,824 | 0.157 | 0.364 | 0 | 1 |
Urban | If home is located in an urban area | Dummy | 226,824 | 0.766 | 0.424 | 0 | 1 |
Seasons | |||||||
Spring | March, April, or May | Dummy | 226,824 | 0.205 | 0.404 | 0 | 1 |
Summer | June, July, or August | Dummy | 226,824 | 0.259 | 0.438 | 0 | 1 |
Fall | September, October, or November | Dummy | 226,824 | 0.267 | 0.442 | 0 | 1 |
Winter | December, January, or February | Dummy | 226,824 | 0.270 | 0.444 | 0 | 1 |
Variables | Coef. | Std. Err. | z-Value | p-Value | Marginal Effects |
---|---|---|---|---|---|
non-zero state (not always 0) | |||||
Ptused | 0.012 *** | 0.002 | 7.30 | 0.000 | 1.2% |
Female | −0.098 *** | 0.021 | −4.57 | 0.000 | −9.3% |
Age | −0.010 *** | 0.001 | −12.59 | 0.000 | −1.0% |
Education | −0.034 ** | 0.012 | −2.74 | 0.006 | −3.4% |
White | 0.013 | 0.027 | 0.49 | 0.621 | 1.3% |
Worker | 0.008 | 0.029 | 0.29 | 0.772 | 0.8% |
Driver | −0.446 *** | 0.044 | −10.07 | 0.000 | −36.0% |
HHincome | 0.059 *** | 0.005 | 12.73 | 0.000 | 6.0% |
HHvehcount | −0.082 *** | 0.009 | −8.80 | 0.000 | −7.9% |
Homerent | 0.232 *** | 0.026 | 8.77 | 0.000 | 26.1% |
Pdensity | 0.139 *** | 0.010 | 13.84 | 0.000 | 14.9% |
Rail | 0.110 *** | 0.025 | 4.44 | 0.000 | 11.6% |
Urban | −0.363 *** | 0.055 | −6.62 | 0.000 | −30.5% |
Spring | 0.137 *** | 0.031 | 4.48 | 0.000 | 14.7% |
Summer | −0.086 ** | 0.029 | −2.91 | 0.004 | −8.2% |
Winter | 0.009 | 0.028 | 0.33 | 0.738 | 0.9% |
Intercept | 0.562 *** | 0.104 | 5.39 | 0.000 | |
zero state (odds of always 0) | |||||
Ptused | −0.059 *** | 0.003 | −18.23 | 0.000 | −5.7% |
Female | 0.112 *** | 0.023 | 4.93 | 0.000 | 11.9% |
Age | 0.040 *** | 0.001 | 50.69 | 0.000 | 4.1% |
Education | −0.464 *** | 0.012 | −38.42 | 0.000 | −37.1% |
White | −0.145 *** | 0.029 | −4.95 | 0.000 | −13.5% |
Worker | −0.361 *** | 0.028 | −12.97 | 0.000 | −30.3% |
Driver | −0.354 *** | 0.050 | −7.04 | 0.000 | −29.8% |
HHincome | −0.245 *** | 0.005 | −45.22 | 0.000 | −21.7% |
HHvehcount | 0.210 *** | 0.012 | 18.16 | 0.000 | 23.4% |
Homerent | −0.610 *** | 0.029 | −20.87 | 0.000 | −45.6% |
Pdensity | −0.264 *** | 0.011 | −24.68 | 0.000 | −23.2% |
Rail | −0.316 *** | 0.028 | −11.40 | 0.000 | −27.1% |
Urban | −0.236 *** | 0.050 | −4.72 | 0.000 | −21.0% |
Spring | 0.078 * | 0.033 | 2.41 | 0.016 | 8.2% |
Summer | 0.120 *** | 0.032 | 3.81 | 0.000 | 12.8% |
Winter | −0.078 ** | 0.030 | −2.58 | 0.010 | −7.5% |
Intercept | 6.098 *** | 0.105 | 57.82 | 0.000 | |
Number of obs. | 226,824 | ||||
Nonzero obs. | 17,030 | ||||
Zero obs. | 209,794 | ||||
Log likelihood | −83,927.93 | ||||
LR chi2 | 1766.91 *** |
Variables | High Population Density (Dependent Variable: Rideshare) | Low Population Density (Dependent Variable: Rideshare) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Coef. | Std. Err. | z-Value | p-Value | Marginal Effects | Coef. | Std. Err. | z-Value | p-Value | Marginal Effects | |
non-zero state (not always 0) | non-zero state (not always 0) | |||||||||
Ptused | 0.011 *** | 0.002 | 6.44 | 0.000 | 1.1% | 0.009 * | 0.004 | 2.24 | 0.025 | 0.9% |
Female | −0.080 *** | 0.024 | −3.29 | 0.001 | −7.7% | −0.095 | 0.049 | −1.94 | 0.053 | −9.1% |
Age | −0.011 *** | 0.001 | −11.43 | 0.000 | −1.1% | −0.012 *** | 0.002 | −7.46 | 0.000 | −1.2% |
Education | −0.023 | 0.014 | −1.56 | 0.118 | −2.2% | 0.056 * | 0.026 | 2.12 | 0.034 | 5.8% |
White | 0.077 * | 0.030 | 2.56 | 0.010 | 8.0% | −0.302 *** | 0.069 | −4.38 | 0.000 | −26.1% |
Worker | 0.024 | 0.034 | 0.72 | 0.473 | 2.5% | 0.11 | 0.059 | 1.86 | 0.063 | 11.7% |
Driver | −0.460 *** | 0.048 | −9.63 | 0.000 | −36.8% | 0.213 * | 0.100 | 2.13 | 0.033 | 23.7% |
HHincome | 0.074 *** | 0.005 | 13.97 | 0.000 | 7.6% | 0.060 *** | 0.010 | 5.78 | 0.000 | 6.2% |
HHvehcount | −0.139 *** | 0.011 | −12.68 | 0.000 | −13.0% | −0.016 | 0.019 | −0.83 | 0.407 | −1.6% |
Homerent | 0.284 *** | 0.029 | 9.83 | 0.000 | 32.8% | 0.243 *** | 0.067 | 3.61 | 0.000 | 27.5% |
Rail | 0.182 *** | 0.026 | 7.01 | 0.000 | 20.0% | 0.146 * | 0.065 | 2.26 | 0.024 | 15.8% |
Spring | 0.106 ** | 0.035 | 3.00 | 0.003 | 11.1% | 0.197 ** | 0.069 | 2.86 | 0.004 | 21.8% |
Summer | −0.087 ** | 0.034 | −2.60 | 0.009 | −8.4% | −0.022 | 0.068 | −0.32 | 0.750 | −2.1% |
Winter | 0.018 | 0.032 | 0.56 | 0.575 | 1.8% | 0.019 | 0.065 | 0.29 | 0.770 | 1.9% |
Intercept | 1.332 *** | 0.089 | 14.89 | 0.000 | −0.525 ** | 0.161 | −3.26 | 0.001 | ||
zero state (odds of always 0) | zero state (odds of always 0) | |||||||||
Ptused | −0.050 *** | 0.003 | −15.39 | 0.000 | −4.9% | −1.794 *** | 0.151 | −11.91 | 0.000 | −83.4% |
Female | 0.116 *** | 0.028 | 4.20 | 0.000 | 12.3% | 0.138 ** | 0.054 | 2.58 | 0.010 | 14.8% |
Age | 0.045 *** | 0.001 | 46.39 | 0.000 | 4.6% | 0.035 *** | 0.002 | 19.60 | 0.000 | 3.6% |
Education | −0.468 *** | 0.015 | −31.81 | 0.000 | −37.4% | −0.457 *** | 0.028 | −16.42 | 0.000 | −36.7% |
White | −0.206 *** | 0.034 | −6.06 | 0.000 | −18.6% | 0.11 | 0.076 | 1.44 | 0.150 | 11.6% |
Worker | −0.427 *** | 0.034 | −12.65 | 0.000 | −34.8% | −0.285 *** | 0.063 | −4.52 | 0.000 | −24.8% |
Driver | −0.328 *** | 0.056 | −5.81 | 0.000 | −27.9% | 0.102 | 0.145 | 0.70 | 0.485 | 10.7% |
HHincome | −0.232 *** | 0.006 | −35.83 | 0.000 | −20.7% | −0.311 *** | 0.013 | −24.20 | 0.000 | −26.7% |
HHvehcount | 0.254 *** | 0.015 | 17.25 | 0.000 | 28.9% | 0.238 *** | 0.023 | 10.15 | 0.000 | 26.8% |
Homerent | −0.643 *** | 0.034 | −18.98 | 0.000 | −47.4% | −0.723 *** | 0.077 | −9.44 | 0.000 | −51.5% |
Rail | −0.489 *** | 0.031 | −15.77 | 0.000 | −38.7% | −0.205 * | 0.081 | −2.52 | 0.012 | −18.5% |
Spring | 0.091 * | 0.040 | 2.29 | 0.022 | 9.5% | 0.128 | 0.075 | 1.70 | 0.088 | 13.7% |
Summer | 0.118 ** | 0.038 | 3.10 | 0.002 | 12.6% | 0.267 *** | 0.074 | 3.59 | 0.000 | 30.7% |
Winter | −0.091 * | 0.037 | −2.50 | 0.013 | −8.7% | 0.004 | 0.072 | 0.06 | 0.953 | 0.4% |
Intercept | 3.324 *** | 0.091 | 36.38 | 0.000 | 3.390 *** | 0.198 | 17.12 | 0.000 | ||
Number of obs. | 106,532 | 120,292 | ||||||||
Nonzero obs. | 12,432 | 4598 | ||||||||
Zero obs. | 94,100 | 115,694 | ||||||||
Log likelihood | −58,812.48 | −24,951.1 | ||||||||
LR chi2 | 1241.85 *** | 202.11 *** |
Variables | Low Number of Household Vehicles (Dependent Variable: RIDESHARE) | High Number of Household Vehicles (Dependent Variable: Rideshare) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Coef. | Std. Err. | z-Value | p-Value | Marginal Effects | Coef. | Std. Err. | z-Value | p-Value | Marginal Effects | |
non-zero state (not always 0) | non-zero state (not always 0) | |||||||||
Ptused | 0.012 *** | 0.002 | 6.97 | 0.000 | 1.3% | 0.005 | 0.004 | 1.45 | 0.147 | 0.5% |
Female | −0.085 *** | 0.024 | −3.52 | 0.000 | −8.2% | −0.082 | 0.050 | −1.65 | 0.098 | −7.9% |
Age | −0.009 *** | 0.001 | −9.40 | 0.000 | −0.9% | −0.014 *** | 0.002 | −7.93 | 0.000 | −1.4% |
Education | −0.025 | 0.014 | −1.74 | 0.082 | −2.5% | 0.032 | 0.027 | 1.19 | 0.233 | 3.3% |
White | 0.034 | 0.030 | 1.13 | 0.259 | 3.5% | −0.061 | 0.067 | −0.91 | 0.361 | −5.9% |
Worker | 0.044 | 0.034 | 1.29 | 0.196 | 4.5% | 0.038 | 0.061 | 0.63 | 0.529 | 3.9% |
Driver | −0.511 *** | 0.046 | −11.19 | 0.000 | −40.0% | 0.176 | 0.127 | 1.39 | 0.165 | 19.2% |
HHincome | 0.057 *** | 0.005 | 11.05 | 0.000 | 5.8% | 0.070 *** | 0.011 | 6.31 | 0.000 | 7.3% |
Homerent | 0.249 *** | 0.028 | 8.80 | 0.000 | 28.3% | 0.352 *** | 0.078 | 4.49 | 0.000 | 42.2% |
Pdensity | 0.155 *** | 0.011 | 13.70 | 0.000 | 16.8% | 0.106 *** | 0.023 | 4.53 | 0.000 | 11.2% |
Rail | 0.121 *** | 0.028 | 4.35 | 0.000 | 12.9% | 0.075 | 0.057 | 1.30 | 0.193 | 7.8% |
Urban | −0.219 ** | 0.070 | −3.14 | 0.002 | −19.7% | −0.306 ** | 0.105 | −2.93 | 0.003 | −26.4% |
Spring | 0.121 *** | 0.035 | 3.50 | 0.000 | 12.8% | 0.205 ** | 0.072 | 2.85 | 0.004 | 22.8% |
Summer | −0.062 | 0.033 | −1.86 | 0.063 | −6.0% | −0.142 * | 0.068 | −2.08 | 0.037 | −13.3% |
Winter | −0.001 | 0.031 | −0.02 | 0.986 | −0.1% | 0.091 | 0.066 | 1.39 | 0.164 | 9.6% |
Intercept | 0.126 | 0.118 | 1.06 | 0.288 | −0.942 *** | 0.222 | −4.24 | 0.000 | ||
zero state (odds of always 0) | zero state (odds of always 0) | |||||||||
Ptused | −0.052 *** | 0.003 | −16.39 | 0.000 | −5.1% | −1.615 *** | 0.171 | −9.47 | 0.000 | −80.1% |
Female | 0.121 *** | 0.026 | 4.59 | 0.000 | 12.9% | 0.115 * | 0.057 | 2.03 | 0.043 | 12.2% |
Age | 0.043 *** | 0.001 | 46.39 | 0.000 | 4.4% | 0.031 *** | 0.002 | 15.85 | 0.000 | 3.1% |
Education | −0.445 *** | 0.014 | −31.65 | 0.000 | −35.9% | −0.520 *** | 0.030 | −17.26 | 0.000 | −40.6% |
White | −0.126 *** | 0.033 | −3.78 | 0.000 | −11.8% | −0.205 ** | 0.078 | −2.63 | 0.009 | −18.6% |
Worker | −0.323 *** | 0.033 | −9.79 | 0.000 | −27.6% | −0.458 *** | 0.067 | −6.83 | 0.000 | −36.7% |
Driver | −0.248 *** | 0.053 | −4.68 | 0.000 | −22.0% | −0.027 | 0.185 | −0.15 | 0.883 | −2.7% |
HHincome | −0.219 *** | 0.006 | −36.08 | 0.000 | −19.7% | −0.271 *** | 0.014 | −19.79 | 0.000 | −23.8% |
Homerent | −0.630 *** | 0.032 | −19.80 | 0.000 | −46.7% | −0.589 *** | 0.091 | −6.45 | 0.000 | −44.5% |
Pdensity | −0.284 *** | 0.012 | −22.84 | 0.000 | −24.8% | −0.301 *** | 0.027 | −11.32 | 0.000 | −26.0% |
Rail | −0.372 *** | 0.032 | −11.55 | 0.000 | −31.0% | −0.235 ** | 0.074 | −3.17 | 0.002 | −21.0% |
Urban | −0.185 ** | 0.065 | −2.86 | 0.004 | −16.9% | −0.327 ** | 0.106 | −3.09 | 0.002 | −27.9% |
Spring | 0.085 * | 0.038 | 2.25 | 0.024 | 8.9% | 0.081 | 0.081 | 0.99 | 0.322 | 8.4% |
Summer | 0.145 *** | 0.037 | 3.97 | 0.000 | 15.6% | 0.108 | 0.080 | 1.36 | 0.175 | 11.5% |
Winter | −0.079 * | 0.035 | −2.26 | 0.024 | −7.6% | 0.004 | 0.076 | 0.05 | 0.960 | 0.4% |
Intercept | 6.062 *** | 0.119 | 51.10 | 0.000 | 7.182 *** | 0.278 | 25.85 | 0.000 | ||
Number of obs. | 153,158 | 73,666 | ||||||||
Nonzero obs. | 12,826 | 4204 | ||||||||
Zero obs. | 140,332 | 69,462 | ||||||||
Log likelihood | −62,206.96 | −21,514.84 | ||||||||
LR chi2 | 1381.96 *** | 183.07 *** |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Zhang, Y. Exploring the Relationship between Ridesharing and Public Transit Use in the United States. Int. J. Environ. Res. Public Health 2018, 15, 1763. https://doi.org/10.3390/ijerph15081763
Zhang Y, Zhang Y. Exploring the Relationship between Ridesharing and Public Transit Use in the United States. International Journal of Environmental Research and Public Health. 2018; 15(8):1763. https://doi.org/10.3390/ijerph15081763
Chicago/Turabian StyleZhang, Yuanyuan, and Yuming Zhang. 2018. "Exploring the Relationship between Ridesharing and Public Transit Use in the United States" International Journal of Environmental Research and Public Health 15, no. 8: 1763. https://doi.org/10.3390/ijerph15081763