Identification and Biological Characterization of Green Alga on Oil-Tea Camellia Leaves
Abstract
:1. Introduction
2. Materials and Methods
2.1. Oil-Tea Camellia, Green Alga, and Main Reagents
2.2. Measurement of Photosynthetic Properties
2.3. Observation of the Anatomical Structure of Oil-Tea Camellia Leaves
2.4. Green Algal Cultivation
2.5. Green Alga Isolation and Purification
2.6. Plotting Green Alga Growth Curves on Oil-Tea Camellia
2.7. The Impact of pH on the Growth of Green Alga on Oil-Tea Camellia
2.8. Molecular Characterization of Algal Strains
2.9. Statistical Analysis
3. Results
3.1. Characteristics of Symptoms
3.2. Effects of Green Alga on Photosynthetic Characteristics of Oil-Tea Camellia
3.3. Anatomical Structure of the Leaf Blade
3.4. Isolation and Morphological Observation of Algal Strain
3.5. Green Alga Growth Curves on Oil-Tea Camellia
3.6. Effect of pH on the Growth of Green Alga on Oil-Tea Camellia
3.7. Phylogenetic Analysis of Algal Strains
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Deng, X.L.; Xie, G.S. Development of Refining Squeezing Tea Oil. Chem. Bioeng. 2008, 25, 46–48. [Google Scholar]
- Zhang, D.; Stack, L.; Zhang, R.; Yu, J.; Ruter, J.M. Teaoil Camellia-Eastern “Olive” for the World. Acta Hortic. 2006, 769, 43–48. [Google Scholar] [CrossRef]
- Lee, C.P.; Yen, G.C. Antioxidant Activity and Bioactive Compounds of Tea Seed (Camellia oleifera Abel.) Oil. J. Agric. Food Chem. 2006, 54, 779–784. [Google Scholar] [CrossRef] [PubMed]
- Shi, T.; Wu, G.; Jin, Q.; Wang, X. Camellia Oil Authentication: A Comparative Analysis and Recent Analytical Techniques Developed for Its Assessment. A Review. Trends Food Sci. Technol. 2020, 97, 88–99. [Google Scholar] [CrossRef]
- Chen, Y.; Deng, S.; Chen, L.; Ma, L.; He, H.; Wang, X.; Peng, S.; Liu, C.; Wang, R.; Xu, Y.; et al. A New View on the Development of Oil Tea Camellia Industry. J. Nanjing For. Univ. 2020, 44, 1–10. [Google Scholar] [CrossRef]
- Tan, X.; Yan, C.; Zhong, Q.; Wan, X.; Yuan, Y.; Guo, H.; Cao, L.; Wang, J.; Ge, X.; Wang, J.; et al. Breeding, Promotion and Application of Improved Oil-Tea Cultivar in China. World For. Res. 2023, 36, 108–113. [Google Scholar] [CrossRef]
- Li, Y. Studies on Cephaleuros Virescens Groun on Camilla oleifera. J. Wuhan Univ. Sci. Ed. 1983, 1, 61–65. [Google Scholar]
- He, M.; Yang, W.; Shen, T. Occurrence Regularity and Spatial Distribution of Camellia Algal Spot. J. Jinhua Polytech. 2017, 17, 69–72. [Google Scholar]
- Chen, L.; Chen, T.; Liu, Y.; Wang, Y. Identification of Pathogenic Form and DNA Sequence of Algal Spot of Tea Tree in Guizhou Province. Seed 2019, 38, 103–104. [Google Scholar] [CrossRef]
- Zheng, B. Algae-Spot Disease in Cinnamomum Cassia. For. Pest Dis. 2004, 2, 8–10. [Google Scholar]
- Chen, Y.; Shi, T.; Cai, J.; Li, C.; Li, B.; Huang, G. Survey and Pathogen Identification of a New Algae Spot Disease on Cassava in China. Chin. J. Trop. Crops 2016, 37, 1787–1792. [Google Scholar]
- Cai, Z.; Shi, Y.; Dai, L.; Liu, Y.; Li, L.; Jiang, G.; Yao, Y.; Mu, H. The Foliicolous Parasitic Alga Cephaleuros Virescens on Hevea Brasiliensis. J. Northwest For. Univ. 2020, 35, 183–188. [Google Scholar] [CrossRef]
- Vasconcelos, C.V.; Pereira, F.T.; Duarte, E.A.A.; De Oliveira, T.A.S.; Peixoto, N.; Carvalho, D.D.C. Physiological and Molecular Characterization of Cephaleuros Virescens Occurring in Mango Trees. Plant Pathol. J. 2018, 34, 157–162. [Google Scholar] [CrossRef] [PubMed]
- Reddy, D.; Srilatha, P.; Murthy, K.G.; Reddy, M.; Reddy, I.V.; Neelima, P.; Pavani, T.; Snehalatha, G.; Sravanthi, D. First Report of Cephaleuros Virescens Causing Algal Leaf Spot of Averrhoa Carambola in India. Plant Dis. 2023, 107, 3641. [Google Scholar] [CrossRef]
- Wu, Z.; Xu, Z.; Chen, X.; Jin, G.; Li, S.; Shen, Y.; Lang, X.; Hu, Z.; Chen, L. Species and Control of Insect Pests and Major Diseases of Torreya Grandis “Merrillii”. J. Zhejiang For. Coll. 2005, 22, 545–552. [Google Scholar] [CrossRef]
- Ye, X.; Qian, Y.; Ye, W.; Shen, H.; Zeng, Y.; Yu, W.; Dai, W. Biological Characteristics and Species Identification of Chlorella Sp. with Torreya Grandis “Merrillii”. J. Zhejiang AF Univ. 2019, 36, 629–637. [Google Scholar] [CrossRef]
- Liu, A.; Ye, B.; Chen, Y.; Song, Q.; Li, H.; Shen, J.; Zhang, X. Isolation and Identification of Pathogens of Algal Spots of Torreya Grandis Cv. ‘Merrillii’ and Screening of the Algicides. Sci. Silvae Sin. 2024, 60, 111–119. [Google Scholar]
- Wang, D.; Li, D. Studies on the Identification and Growth Characteristics of the Pathogen of Valencia Orange Green Spot. Chin. Agric. Ence Bull. 2005, 21, 288–291. [Google Scholar]
- Zhang, J.; Zhang, L.; Wang, Q.; Liu, J.; Sun, Y. Diurnal Regulation of Leaf Photosynthesis Is Related to Leaf-Age-Dependent Changes in Assimilate Accumulation in Camellia Oleifera. Plants 2023, 12, 2161. [Google Scholar] [CrossRef]
- Chen, L.; Chen, Y.; Peng, S. Research Progress on Photosynthetic Characteristics of Camellia oleifera and the Prospect of Its High Photosynthetic Efficiency Breeding. Hunan For. Sci. Technol. 2010, 37, 33–39. [Google Scholar]
- Wang, R.; Chen, Y.Z.; Yang, X.H.; He, G.F.; Li, J. Literature Review of Researches on Photosynthesis in Camellia oleifera L.and Its Affecting Factors. Nonwood For. Res. 2007, 25, 78–83. [Google Scholar] [CrossRef]
- Duan, W.J.; Shen, Y.F.; Cao, Z.H.; Shu, Q.L.; Hu, J.J.; Li, C.S. Effect of Foliar Fertilizer on Leaf Anatomy Structure and Photosynthetic Characteristics of Camellia Oleifera Container Seedlings. J. Northwest F Univ. Sci. Ed. 2015, 43, 92–97. [Google Scholar]
- Li, C.; Wang, R.; Liang, Y. Research Progress on the Regulation of Vascular Lignification on Defense against Bacterial Wilt of Plants. J. Zhejiang Univ. Agric. Life Sci. 2023, 49, 633–643. [Google Scholar] [CrossRef]
- Hu, Q.; Xiao, S.; Wang, X.; Ao, C.; Zhang, X.; Zhu, L. GhWRKY1-like Enhances Cotton Resistance to Verticillium Dahliae via an Increase in Defense-Induced Lignification and S Monolignol Content. Plant Sci. 2021, 305, 110833. [Google Scholar] [CrossRef]
- Bryan, J.H.D. Differential Staining with a Mixture of Safranin and Fast Green FCF. Stain Technol. 2009, 30, 153–157. [Google Scholar] [CrossRef]
- Hu, H.J.; Wei, Y.X. The Freshwater Algae of China-Systematics, Taxonomy and Ecology, 1st ed.; Science Press: Beijing, China, 2006; Volume 14. [Google Scholar]
- Qelbinur, E.; Ai, S.; Nurgul, R. Morphological and Molecular Identification of Four Groups Desert Green Algae. Food Mach. 2017, 33, 25–29. [Google Scholar]
- Sunpapao, A.; Thithuan, N.; Bunjongsiri, P.; Arikit, S. Cephaleuros Parasiticus, Associated with Algal Spot Disease on Psidium Guajava in Thailand. Australas. Plant Dis. Notes 2016, 11, 12. [Google Scholar] [CrossRef]
- Miedes, E.; Vanholme, R.; Boerjan, W.; Molina, A. The Role of the Secondary Cell Wall in Plant Resistance to Pathogens. Front. Plant Sci. 2014, 5, 358. [Google Scholar] [CrossRef]
- Pazarlar, S.; Cetinkaya, N.; Bor, M.; Ozdemir, F. Ozone Triggers Different Defence Mechanisms against Powdery Mildew (Blumeria graminis DC. Speer f. Sp. tritici) in Susceptible and Resistant Wheat Genotypes. Funct. Plant Biol. FPB 2017, 44, 1016–1028. [Google Scholar] [CrossRef]
- Guo, W.; Bian, S.; Ye, J.; Zhao, J.; Yang, S.; Chen, B.; Li, Q. Observation on Cell Ultrastructure of Pumpkin Seedling Leaves Infected by Powdery Mildew Fungus. Plant Physiol. J. 2024, 60, 663–672. [Google Scholar] [CrossRef]
- Shi, H.; Liu, Z.; Zhu, L.; Zhang, C.; Chen, Y.; Zhou, Y.; Li, F.; Li, X. Overexpression of Cotton (Gossypium Hirsutum) Dirigent1 Gene Enhances Lignification That Blocks the Spread of Verticillium Dahliae. Acta Biochim. Biophys. Sin. 2012, 44, 555–564. [Google Scholar] [CrossRef]
- Gallego-Giraldo, L.; Jikumaru, Y.; Kamiya, Y.; Tang, Y.; Dixon, R.A. Selective Lignin Downregulation Leads to Constitutive Defense Response Expression in Alfalfa ( Medicago Sativa L.). New Phytol. 2011, 190, 627–639. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Xu, H.; Zhao, Y.; Wu, H.; Lin, J. Plant Lignification and Its Regulation. Sci. Sin. Vitae 2020, 50, 111–122. [Google Scholar] [CrossRef]
- Pröschold, T.; Darienko, T. The Green Puzzle Stichococcus (Trebouxiophyceae, Chlorophyta): New Generic and Species Concept among This Widely Distributed Genus. Phytotaxa 2020, 441, 113–142. [Google Scholar] [CrossRef]
- Safafar, H.; Van Wagenen, J.; Møller, P.; Jacobsen, C. Carotenoids, Phenolic Compounds and Tocopherols Contribute to the Antioxidative Properties of Some Microalgae Species Grown on Industrial Wastewater. Mar. Drugs 2015, 13, 7339–7356. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Zhang, J.; Li, H.; Hu, R.; Yao, X.; Liu, Y.; Zhou, Y.; Lyu, T. Towards High-Quality Biodiesel Production from Microalgae Using Original and Anaerobically-Digested Livestock Wastewater. Chemosphere 2021, 273, 128578. [Google Scholar] [CrossRef]
- Li, G.; Hu, R.; Wang, N.; Yang, T.; Xu, F.; Li, J.; Wu, J.; Huang, Z.; Pan, M.; Lyu, T. Cultivation of Microalgae in Adjusted Wastewater to Enhance Biofuel Production and Reduce Environmental Impact: Pyrolysis Performances and Life Cycle Assessment. J. Clean. Prod. 2022, 355, 131768. [Google Scholar] [CrossRef]
- Suresh Kumar, K.; Dahms, H.-U.; Won, E.-J.; Lee, J.-S.; Shin, K.-H. Microalgae–A Promising Tool for Heavy Metal Remediation. Ecotoxicol. Environ. Saf. 2015, 113, 329–352. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhao, P.; Hu, P.; Peng, L.; Hao, L.; Cheng, C.; Liu, L.; Zhang, R. Optimization of Cultural Conditions of Isochrysis Galbana Parks 3011 and Its Mass-Cultural. Food Sci. 2006, 27, 253–257. [Google Scholar] [CrossRef]
- Ouyang, Z.; Wen, X.; Geng, Y.; Mei, H.; Hu, H.; Zhang, G.; Li, Y. The Effects of Light Intensities, Temperatures, pH and Salinities on Photosynthesis of Chlorella. Plant Sci. J. 2010, 28, 49–55. [Google Scholar] [CrossRef]
- Zhang, J.; Jiang, L.; Wu, D.; Yin, Y.; Guo, H. Effects of Environmental Factors on the Growth and Microcystin Production of Microcystis Aeruginosa under TiO2 Nanoparticles Stress. Sci. Total Environ. 2020, 734, 139443. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Zhang, G.; Wen, X.; Geng, Y.; Li, Y. Effects of Ph on the Photosynthesis, Growth and Lipid Production of Chlorella Sp.Xq-200419. Acta Hydrobiol. Sin. 2014, 38, 1084–1091. [Google Scholar] [CrossRef]
- Zhao, N.; Feng, M.; Zhu, L. Toxic Effects of Chromium(Cr~(6+)) on Chlorella Vulgaris and Scenedesmus Obliquus at Different pH. J. Southeast Univ. 2010, 29, 382–386. [Google Scholar]
- Yuan, L.; Song, W.; Xiao, L.; Jiang, L.; Yang, L. The Overall Orthogonal Design Study of Multifactor Interaction on the Growth of Microcystis Aeruginosa in the Presence of Adnascent Pseudomonas Sp. J. Nanjing Univ. Sci. 2008, 44, 77–83. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, Q.; Liu, Y.; Xu, Y.; Yu, Z.; Wu, K.; Gong, H.; Yang, Y.; Song, W.; Jia, X. Identification and Biological Characterization of Green Alga on Oil-Tea Camellia Leaves. Horticulturae 2024, 10, 1047. https://doi.org/10.3390/horticulturae10101047
Cao Q, Liu Y, Xu Y, Yu Z, Wu K, Gong H, Yang Y, Song W, Jia X. Identification and Biological Characterization of Green Alga on Oil-Tea Camellia Leaves. Horticulturae. 2024; 10(10):1047. https://doi.org/10.3390/horticulturae10101047
Chicago/Turabian StyleCao, Qiulin, Yanju Liu, Yufen Xu, Zhaoyan Yu, Kunlin Wu, Han Gong, Yaodong Yang, Weiwei Song, and Xiaocheng Jia. 2024. "Identification and Biological Characterization of Green Alga on Oil-Tea Camellia Leaves" Horticulturae 10, no. 10: 1047. https://doi.org/10.3390/horticulturae10101047