Effects of 12 Weeks of Combined Exercise Training in Normobaric Hypoxia on Arterial Stiffness, Inflammatory Biomarkers, and Red Blood Cell Hemorheological Function in Obese Older Women
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Study Design
2.3. Body Composition
2.4. Blood Pressure and Arterial Stiffness
2.5. Biomarkers of Inflammation and Oxygen Transport
2.6. Red Blood Cell Hemorheological Function
2.7. Statistical Analysis
3. Results
3.1. Body Composition
3.2. Blood Pressure and Arterial Stiffness
3.3. Biomarkers of Inflammation and Oxygen Transport
3.4. Red Blood Cell Hemorheological Function
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Malenfant, J.H.; Batsis, J.A. Obesity in the geriatric population—A global health perspective. J. Glob. Health Rep. 2019, 3, e2019045. [Google Scholar] [CrossRef] [PubMed]
- Opoku, A.A.; Abushama, M.; Konje, J.C. Obesity and menopause. Best. Pract. Res. Clin. Obstet. Gynaecol. 2023, 88, 102348. [Google Scholar] [CrossRef] [PubMed]
- Powell-Wiley, T.M.; Poirier, P.; Burke, L.E.; Després, J.P.; Gordon-Larsen, P.; Lavie, C.J.; Lear, S.A.; Ndumele, C.E.; Neeland, I.J.; Sanders, P.; et al. Obesity and Cardiovascular Disease: A Scientific Statement From the American Heart Association. Circulation 2021, 143, e984–e1010. [Google Scholar] [CrossRef]
- Kim, T.N. Elderly Obesity: Is It Harmful or Beneficial? J. Obes. Metab. Syndr. 2018, 27, 84–92. [Google Scholar] [CrossRef]
- Park, H.Y.; Kim, J.; Park, M.Y.; Chung, N.; Hwang, H.; Nam, S.S.; Lim, K. Exposure and Exercise Training in Hypoxic Conditions as a New Obesity Therapeutic Modality: A Mini Review. J. Obes. Metab. Syndr. 2018, 27, 93–101. [Google Scholar] [CrossRef]
- Park, H.Y.; Jung, W.S.; Kim, S.W.; Jung, K.; Lim, K. Comparison of Vascular Function, Cardiometabolic Parameters, Hemorheological Function, and Cardiorespiratory Fitness Between Middle-Aged Korean Women with and without Obesity—A Pilot Study. Front. Physiol. 2022, 13, 809029. [Google Scholar] [CrossRef] [PubMed]
- Para, I.; Albu, A.; Porojan, M.D. Adipokines and Arterial Stiffness in Obesity. Medicina 2021, 57, 653. [Google Scholar] [CrossRef]
- Kim, S.W.; Jung, W.S.; Park, W.; Park, H.Y. Twelve Weeks of Combined Resistance and Aerobic Exercise Improves Cardiometabolic Biomarkers and Enhances Red Blood Cell Hemorheological Function in Obese Older Men: A Randomized Controlled Trial. Int. J. Environ. Res. Public. Health 2019, 16, 5020. [Google Scholar] [CrossRef] [PubMed]
- Park, W.; Jung, W.S.; Hong, K.; Kim, Y.Y.; Kim, S.W.; Park, H.Y. Effects of Moderate Combined Resistance- and Aerobic-Exercise for 12 Weeks on Body Composition, Cardiometabolic Risk Factors, Blood Pressure, Arterial Stiffness, and Physical Functions, among Obese Older Men: A Pilot Study. Int. J. Environ. Res. Public. Health 2020, 17, 7233. [Google Scholar] [CrossRef]
- Perone, F.; Pingitore, A.; Conte, E.; Halasz, G.; Ambrosetti, M.; Peruzzi, M.; Cavarretta, E. Obesity and Cardiovascular Risk: Systematic Intervention Is the Key for Prevention. Healthcare 2023, 11, 902. [Google Scholar] [CrossRef]
- Rai, R.H.; Singh, R.B.; Mehta, V.; Sakshi; Asif, M.; Goyal, K.; Balodhi, A.; Manglik, P.; Sharma, A.; Chahal, A. Impact of exercise training duration on obesity and cardiometabolic biomarkers: A systematic review. J. Diabetes Metab. Disord. 2023, 22, 155–174. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Zhao, W.; Li, S.; Ding, Y.; Wang, Y.; Ji, X. Intermittent Hypoxia Conditioning: A Potential Multi-Organ Protective Therapeutic Strategy. Int. J. Med. Sci. 2023, 20, 1551–1561. [Google Scholar] [CrossRef] [PubMed]
- De Groote, E.; Deldicque, L. Is Physical Exercise in Hypoxia an Interesting Strategy to Prevent the Development of Type 2 Diabetes? A Narrative Review. Diabetes Metab. Syndr. Obes. 2021, 14, 3603–3616. [Google Scholar] [CrossRef]
- Zhao, Y.; Xiong, W.; Li, C.; Zhao, R.; Lu, H.; Song, S.; Zhou, Y.; Hu, Y.; Shi, B.; Ge, J. Hypoxia-induced signaling in the cardiovascular system: Pathogenesis and therapeutic targets. Signal Transduct. Target. Ther. 2023, 8, 431. [Google Scholar] [CrossRef]
- Serebrovskaya, T.V.; Xi, L. Intermittent hypoxia training as non-pharmacologic therapy for cardiovascular diseases: Practical analysis on methods and equipment. Exp. Biol. Med. 2016, 241, 1708–1723. [Google Scholar] [CrossRef]
- Camacho-Cardenosa, A.; Camacho-Cardenosa, M.; Brooks, D.; Timón, R.; Olcina, G.; Brazo-Sayavera, J. Effects training in hypoxia on cardiometabolic parameters in obese people: A systematic review of randomized controlled trial. Aten. Primaria 2019, 51, 397–405. [Google Scholar] [CrossRef]
- Park, H.Y.; Kim, J.W.; Nam, S.S. Metabolic, Cardiac, and Hemorheological Responses to Submaximal Exercise under Light and Moderate Hypobaric Hypoxia in Healthy Men. Biology 2022, 11, 144. [Google Scholar] [CrossRef]
- Coppel, J.; Hennis, P.; Gilbert-Kawai, E.; Grocott, M.P. The physiological effects of hypobaric hypoxia versus normobaric hypoxia: A systematic review of crossover trials. Extrem. Physiol. Med. 2015, 4, 2. [Google Scholar] [CrossRef] [PubMed]
- Park, H.Y.; Jung, W.S.; Kim, S.W.; Kim, J.; Lim, K. Effects of Interval Training Under Hypoxia on Hematological Parameters, Hemodynamic Function, and Endurance Exercise Performance in Amateur Female Runners in Korea. Front. Physiol. 2022, 13, 919008. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, X.; Noviana, M.; Hou, M. Nitric oxide in red blood cell adaptation to hypoxia. Acta Biochim. Biophys. Sin. 2018, 50, 621–634. [Google Scholar] [CrossRef]
- Viscor, G.; Torrella, J.R.; Corral, L.; Ricart, A.; Javierre, C.; Pages, T.; Ventura, J.L. Physiological and Biological Responses to Short-Term Intermittent Hypobaric Hypoxia Exposure: From Sports and Mountain Medicine to New Biomedical Applications. Front. Physiol. 2018, 9, 814. [Google Scholar] [CrossRef] [PubMed]
- Aroor, A.R.; Jia, G.; Sowers, J.R. Cellular mechanisms underlying obesity-induced arterial stiffness. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2018, 314, R387–R398. [Google Scholar] [CrossRef] [PubMed]
- Jia, G.; Aroor, A.R.; DeMarco, V.G.; Martinez-Lemus, L.A.; Meininger, G.A.; Sowers, J.R. Vascular stiffness in insulin resistance and obesity. Front. Physiol. 2015, 6, 231. [Google Scholar] [CrossRef] [PubMed]
- Kasapis, C.; Thompson, P.D. The effects of physical activity on serum C-reactive protein and inflammatory markers: A systematic review. J. Am. Coll. Cardiol. 2005, 45, 1563–1569. [Google Scholar] [CrossRef]
- Pinto, A.; Di Raimondo, D.; Tuttolomondo, A.; Buttà, C.; Milio, G.; Licata, G. Effects of physical exercise on inflammatory markers of atherosclerosis. Curr. Pharm. Des. 2012, 18, 4326–4349. [Google Scholar] [CrossRef]
- Green, D.J.; Maiorana, A.; O’Driscoll, G.; Taylor, R. Effect of exercise training on endothelium-derived nitric oxide function in humans. J. Physiol. 2004, 561, 1–25. [Google Scholar] [CrossRef]
- Millet, G.P.; Debevec, T.; Brocherie, F.; Malatesta, D.; Girard, O. Therapeutic Use of Exercising in Hypoxia: Promises and Limitations. Front. Physiol. 2016, 7, 224. [Google Scholar] [CrossRef]
- Pham, K.; Parikh, K.; Heinrich, E.C. Hypoxia and Inflammation: Insights From High-Altitude Physiology. Front. Physiol. 2021, 12, 676782. [Google Scholar] [CrossRef]
- Ramakrishnan, S.; Anand, V.; Roy, S. Vascular endothelial growth factor signaling in hypoxia and inflammation. J. Neuroimmune Pharmacol. 2014, 9, 142–160. [Google Scholar] [CrossRef] [PubMed]
- Wahl, P.; Schmidt, A.; Demarees, M.; Achtzehn, S.; Bloch, W.; Mester, J. Responses of angiogenic growth factors to exercise, to hypoxia and to exercise under hypoxic conditions. Int. J. Sports Med. 2013, 34, 95–100. [Google Scholar] [CrossRef]
- Boutouyrie, P.; Chowienczyk, P.; Humphrey, J.D.; Mitchell, G.F. Arterial Stiffness and Cardiovascular Risk in Hypertension. Circ. Res. 2021, 128, 864–886. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.W.; Jung, W.S.; Chung, S.; Park, H.Y. Exercise intervention under hypoxic condition as a new therapeutic paradigm for type 2 diabetes mellitus: A narrative review. World J. Diabetes 2021, 12, 331–343. [Google Scholar] [CrossRef] [PubMed]
- Popel, A.S.; Johnson, P.C. Microcirculation and Hemorheology. Annu. Rev. Fluid. Mech. 2005, 37, 43–69. [Google Scholar] [CrossRef] [PubMed]
- Nader, E.; Skinner, S.; Romana, M.; Fort, R.; Lemonne, N.; Guillot, N.; Gauthier, A.; Antoine-Jonville, S.; Renoux, C.; Hardy-Dessources, M.D.; et al. Blood Rheology: Key Parameters, Impact on Blood Flow, Role in Sickle Cell Disease and Effects of Exercise. Front. Physiol. 2019, 10, 1329. [Google Scholar] [CrossRef]
- Park, H.Y.; Jung, W.S.; Kim, S.W.; Lim, K. Effects of Interval Training Under Hypoxia on the Autonomic Nervous System and Arterial and Hemorheological Function in Healthy Women. Int. J. Womens Health 2022, 14, 79–90. [Google Scholar] [CrossRef]
- Kang, J.; Ratamess, N. Which comes first? Resistance before aerobic exercise or vice versa? ACSM’s Health Fit. J. 2014, 18, 9–14. [Google Scholar] [CrossRef]
- Uyuklu, M.; Cengiz, M.; Ulker, P.; Hever, T.; Tripette, J.; Connes, P.; Nemeth, N.; Meiselman, H.J.; Baskurt, O.K. Effects of storage duration and temperature of human blood on red cell deformability and aggregation. Clin. Hemorheol. Microcirc. 2009, 41, 269–278. [Google Scholar] [CrossRef]
- Baskurt, O.K.; Meiselman, H.J. Analyzing shear stress-elongation index curves: Comparison of two approaches to simplify data presentation. Clin. Hemorheol. Microcirc. 2004, 31, 23–30. [Google Scholar]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences; Academic Press: Cambridge, MA, USA, 2013. [Google Scholar]
- St-Onge, M.P.; Gallagher, D. Body composition changes with aging: The cause or the result of alterations in metabolic rate and macronutrient oxidation? Nutrition 2010, 26, 152–155. [Google Scholar] [CrossRef]
- Malandrino, N.; Bhat, S.Z.; Alfaraidhy, M.; Grewal, R.S.; Kalyani, R.R. Obesity and Aging. Endocrinol. Metab. Clin. 2023, 52, 317–339. [Google Scholar] [CrossRef]
- Bagińska, M.; Kałuża, A.; Tota, Ł.; Piotrowska, A.; Maciejczyk, M.; Mucha, D.; Ouergui, I.; Kubacki, R.; Czerwińska-Ledwig, O.; Ambroży, D.; et al. The Impact of Intermittent Hypoxic Training on Aerobic Capacity and Biometric-Structural Indicators among Obese Women-A Pilot Study. J. Clin. Med. 2024, 13, 380. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Cheng, L.; Duolikun, D.; Yao, Q. Aerobic Exercise Training Under Normobaric Hypoxic Conditions to Improve Glucose and Lipid Metabolism in Overweight and Obese Individuals: A Systematic Review and Meta-Analysis. High Alt. Med. Biol. 2023, 24, 312–320. [Google Scholar] [CrossRef]
- Törpel, A.; Peter, B.; Schega, L. Effect of Resistance Training Under Normobaric Hypoxia on Physical Performance, Hematological Parameters, and Body Composition in Young and Older People. Front. Physiol. 2020, 11, 335. [Google Scholar] [CrossRef] [PubMed]
- Guardado, I.M.; Ureña, B.S.; Cardenosa, A.C.; Cardenosa, M.C.; Camacho, G.O.; Andrada, R.T. Effects of strength training under hypoxic conditions on muscle performance, body composition and haematological variables. Biol. Sport 2020, 37, 121–129. [Google Scholar] [CrossRef]
- Xu, X.; Wang, B.; Ren, C.; Hu, J.; Greenberg, D.A.; Chen, T.; Xie, L.; Jin, K. Recent Progress in Vascular Aging: Mechanisms and Its Role in Age-related Diseases. Aging Dis. 2017, 8, 486–505. [Google Scholar] [CrossRef] [PubMed]
- Pinckard, K.; Baskin, K.K.; Stanford, K.I. Effects of Exercise to Improve Cardiovascular Health. Front. Cardiovasc. Med. 2019, 6, 69. [Google Scholar] [CrossRef]
- Chen, H.; Chen, C.; Spanos, M.; Li, G.; Lu, R.; Bei, Y.; Xiao, J. Exercise training maintains cardiovascular health: Signaling pathways involved and potential therapeutics. Signal Transduct. Target. Ther. 2022, 7, 306. [Google Scholar] [CrossRef]
- Bradley, S.M.; Michos, E.D.; Miedema, M.D. Physical Activity, Fitness, and Cardiovascular Health: Insights From Publications in JAMA Network Open. JAMA Netw. Open 2019, 2, e198343. [Google Scholar] [CrossRef]
- Kresnajati, S.; Lin, Y.Y.; Mündel, T.; Bernard, J.R.; Lin, H.F.; Liao, Y.H. Changes in Arterial Stiffness in Response to Various Types of Exercise Modalities: A Narrative Review on Physiological and Endothelial Senescence Perspectives. Cells 2022, 11, 3544. [Google Scholar] [CrossRef]
- Pal, S.; Radavelli-Bagatini, S.; Ho, S. Potential benefits of exercise on blood pressure and vascular function. J. Am. Soc. Hypertens. 2013, 7, 494–506. [Google Scholar] [CrossRef]
- Drożdż, D.; Drożdż, M.; Wójcik, M. Endothelial dysfunction as a factor leading to arterial hypertension. Pediatr. Nephrol. 2023, 38, 2973–2985. [Google Scholar] [CrossRef] [PubMed]
- Macedo, F.N.; Mesquita, T.R.; Melo, V.U.; Mota, M.M.; Silva, T.L.; Santana, M.N.; Oliveira, L.R.; Santos, R.V.; Miguel Dos Santos, R.; Lauton-Santos, S.; et al. Increased Nitric Oxide Bioavailability and Decreased Sympathetic Modulation Are Involved in Vascular Adjustments Induced by Low-Intensity Resistance Training. Front. Physiol. 2016, 7, 265. [Google Scholar] [CrossRef] [PubMed]
- Scarfò, G.; Daniele, S.; Chelucci, E.; Rizza, A.; Fusi, J.; Freggia, G.; Costa, B.; Taliani, S.; Artini, P.; Martini, C.; et al. Regular exercise delays microvascular endothelial dysfunction by regulating antioxidant capacity and cellular metabolism. Sci. Rep. 2023, 13, 17671. [Google Scholar] [CrossRef] [PubMed]
- Martinez, M.W.; Kim, J.H.; Shah, A.B.; Phelan, D.; Emery, M.S.; Wasfy, M.M.; Fernandez, A.B.; Bunch, T.J.; Dean, P.; Danielian, A.; et al. Exercise-Induced Cardiovascular Adaptations and Approach to Exercise and Cardiovascular Disease: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2021, 78, 1453–1470. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.L.; Lin, Y.Y.; Mündel, T.; Chou, C.C.; Liao, Y.H. Effects of Acute Interval Exercise on Arterial Stiffness and Cardiovascular Autonomic Regulatory Responses: A Narrative Review of Potential Impacts of Aging. Front. Cardiovasc. Med. 2022, 9, 864173. [Google Scholar] [CrossRef]
- Raberin, A.; Burtscher, J.; Burtscher, M.; Millet, G.P. Hypoxia and the Aging Cardiovascular System. Aging Dis. 2023, 14, 2051–2070. [Google Scholar] [CrossRef]
- Bruunsgaard, H. Effects of tumor necrosis factor-alpha and interleukin-6 in elderly populations. Eur. Cytokine Netw. 2002, 13, 389–391. [Google Scholar]
- Huang, E.J.; Sung, F.C.; Hung, P.H.; Muo, C.H.; Wu, M.M.; Yeh, C.C. The Association of Erythropoietin and Age-Related Macular Degeneration in Hemodialysis Patients: A Nationwide Population-Based Cohort Study. Int. J. Mol. Sci. 2022, 23, 9634. [Google Scholar] [CrossRef]
- Locksley, R.M.; Killeen, N.; Lenardo, M.J. The TNF and TNF receptor superfamilies: Integrating mammalian biology. Cell 2001, 104, 487–501. [Google Scholar] [CrossRef]
- Khalafi, M.; Sakhaei, M.H.; Symonds, M.E.; Noori Mofrad, S.R.; Liu, Y.; Korivi, M. Impact of Exercise in Hypoxia on Inflammatory Cytokines in Adults: A Systematic Review and Meta-analysis. Sports Med. Open 2023, 9, 50. [Google Scholar] [CrossRef]
- Tee, C.C.L.; Cooke, M.B.; Chong, M.C.; Yeo, W.K.; Camera, D.M. Mechanisms for Combined Hypoxic Conditioning and Divergent Exercise Modes to Regulate Inflammation, Body Composition, Appetite, and Blood Glucose Homeostasis in Overweight and Obese Adults: A Narrative Review. Sports Med. 2023, 53, 327–348. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, T.; Narazaki, M.; Kishimoto, T. IL-6 in inflammation, immunity, and disease. Cold Spring Harb. Perspect. Biol. 2014, 6, a016295. [Google Scholar] [CrossRef] [PubMed]
- Suresh, S.; Rajvanshi, P.K.; Noguchi, C.T. The Many Facets of Erythropoietin Physiologic and Metabolic Response. Front. Physiol. 2019, 10, 1534. [Google Scholar] [CrossRef]
- De Smet, S.; van Herpt, P.; D’Hulst, G.; Van Thienen, R.; Van Leemputte, M.; Hespel, P. Physiological Adaptations to Hypoxic vs. Normoxic Training during Intermittent Living High. Front. Physiol. 2017, 8, 347. [Google Scholar] [CrossRef] [PubMed]
- Sinex, J.A.; Chapman, R.F. Hypoxic training methods for improving endurance exercise performance. J. Sport. Health Sci. 2015, 4, 325–332. [Google Scholar] [CrossRef]
- Wojan, F.; Stray-Gundersen, S.; Massoudian, S.D.; Lalande, S. Brief exposure to intermittent hypoxia increases erythropoietin levels in older adults. J. Appl. Physiol. (1985) 2023, 135, 88–93. [Google Scholar] [CrossRef]
- Scholz, H.; Schurek, H.J.; Eckardt, K.U.; Bauer, C. Role of erythropoietin in adaptation to hypoxia. Experientia 1990, 46, 1197–1201. [Google Scholar] [CrossRef]
- Haase, V.H. Regulation of erythropoiesis by hypoxia-inducible factors. Blood Rev. 2013, 27, 41–53. [Google Scholar] [CrossRef]
- Apte, R.S.; Chen, D.S.; Ferrara, N. VEGF in Signaling and Disease: Beyond Discovery and Development. Cell 2019, 176, 1248–1264. [Google Scholar] [CrossRef]
- Liu, Y.; Cox, S.R.; Morita, T.; Kourembanas, S. Hypoxia regulates vascular endothelial growth factor gene expression in endothelial cells. Identification of a 5′ enhancer. Circ. Res. 1995, 77, 638–643. [Google Scholar] [CrossRef]
- Yadav, S.; Deepika; Maurya, P.K. A Systematic Review of Red Blood Cells Biomarkers in Human Aging. J. Gerontol. A Biol. Sci. Med. Sci. 2024, 79. [Google Scholar] [CrossRef] [PubMed]
- Simmonds, M.J.; Meiselman, H.J.; Baskurt, O.K. Blood rheology and aging. J. Geriatr. Cardiol. 2013, 10, 291–301. [Google Scholar] [CrossRef] [PubMed]
- Mairbäurl, H. Red blood cells in sports: Effects of exercise and training on oxygen supply by red blood cells. Front. Physiol. 2013, 4, 332. [Google Scholar] [CrossRef]
- Raberin, A.; Burtscher, J.; Connes, P.; Millet, G.P. Hypoxia and hemorheological properties in older individuals. Ageing Res. Rev. 2022, 79, 101650. [Google Scholar] [CrossRef] [PubMed]
- Ugurel, E.; Piskin, S.; Aksu, A.C.; Eser, A.; Yalcin, O. From Experiments to Simulation: Shear-Induced Responses of Red Blood Cells to Different Oxygen Saturation Levels. Front. Physiol. 2019, 10, 1559. [Google Scholar] [CrossRef]
- Grygorczyk, R.; Orlov, S.N. Effects of Hypoxia on Erythrocyte Membrane Properties-Implications for Intravascular Hemolysis and Purinergic Control of Blood Flow. Front. Physiol. 2017, 8, 1110. [Google Scholar] [CrossRef]
Variables | NMX | HPX | p Value |
---|---|---|---|
Age (years) | 68.08 ± 0.90 | 67.83 ± 1.03 | 0.533 |
Height (cm) | 161.76 ± 5.78 | 163.23 ± 5.92 | 0.546 |
Weight (kg) | 70.41 ± 5.30 | 72.86 ± 5.74 | 0.289 |
BMI (kg·m−2) | 26.87 ± 0.38 | 27.31 ± 0.66 | 0.061 |
Percentage body fat (%) | 32.35 ± 1.91 | 33.23 ± 2.07 | 0.289 |
Program | Contents | Phase (Weeks) | Rep | Duration (min) | Intensity |
---|---|---|---|---|---|
Warm-up | Dynamic stretching (upper and lower body) | 1–12 | - | 5 | |
Resistance exercise | Squats, incline chest presses, seated row, push presses, split squats, and pull-aparts (rest for 90 s per set) | 1–4 | 10 (3 set) | Approximately 35 | OMNI Resistance Exercise Scale of Perceived Exertion: 7–8 |
5–8 | 12 (3 set) | ||||
9–12 | 15 (3 set) | ||||
Rest | - | 1–12 | - | 15 | |
Aerobic exercise | Treadmill and bicycle (30 min for each exercise) | 1–12 | - | 60 | HRmax: 60–70% |
Cool-down | Static stretching (upper and lower body) | 1–12 | - | 5 |
Variables | Group | Pre | Post | Mean Change (95% CI) | F-Value (ηp2) | ||
---|---|---|---|---|---|---|---|
Group | Time | Interaction | |||||
Weight (kg) | NMX | 70.41 ± 5.30 | 68.53 ± 4.76 | −1.88 *** (−2.68–−1.08) | 0.284 (0.013) | 86.760 ††† (0.798) | 14.798 ††† (0.402) |
HPX | 72.86 ± 5.74 | 68.33 ± 5.11 | −4.53 *** (−5.82–−3.24) | ||||
BMI (kg·m−2) | NMX | 26.87 ± 0.38 | 26.17 ± 0.49 | −0.71 *** (−0.99–−0.43) | 0.054 (0.002) | 103.405 ††† (0.825) | 17.229 ††† (0.439) |
HPX | 27.31 ± 0.66 | 25.62 ± 0.89 | −1.68 *** (−2.12–−1.25) | ||||
Fat-free mass (kg) | NMX | 45.06 ± 3.39 | 45.23 ± 3.14 | 0.17 (−0.33–0.66) | 2.243 (0.093) | 9.783 †† (0.308) | 5.617 † (0.203) |
HPX | 46.63 ± 3.67 | 47.83 ± 3.57 | 1.20 ** (0.38–2.02) | ||||
Percentage body fat (%) | NMX | 32.35 ± 1.91 | 30.80 ± 1.62 | −1.55 *** (−1.86–−1.24) | 0.408 (0.018) | 431.735 ††† (0.952) | 93.026 ††† (0.809) |
HPX | 33.23 ± 2.07 | 29.00 ± 1.53 # | −4.23 *** (−4.76–−3.70) |
Variables | Group | Pre | Post | Mean Change(95% CI) | F-Value (ηp2) | ||
---|---|---|---|---|---|---|---|
Group | Time | Interaction | |||||
SBP (mmHg) | NMX | 137.68 ± 3.31 | 135.10 ± 2.79 | −2.58 *** (−3.29–−1.88) | 4.211 (0.161) | 323.418 ††† (0.936) | 44.410 ††† (0.669) |
HPX | 136.33 ± 4.04 | 130.70 ± 3.67 ## | −5.63 *** (−6.34–−4.91) | ||||
DBP (mmHg) | NMX | 92.91 ± 3.46 | 92.72 ± 3.54 | −0.19 (−0.73–0.35) | 2.467 (0.101) | 223.983 ††† (0.911) | 191.061 ††† (0.897) |
HPX | 93.07 ± 3.46 | 88.24 ± 3.08 ## | −4.83 *** (−5.33–−4.32) | ||||
MAP (mmHg) | NMX | 107.83 ± 2.66 | 106.84 ± 2.50 | −0.99 *** (−1.38–−0.60) | 5.967 † (0.213) | 598.183 ††† (0.965) | 272.335 ††† (0.925) |
HPX | 107.49 ± 2.44 | 102.39 ± 2.06 ### | −5.09 *** (−5.48–−4.70) | ||||
PP (mmHg) | NMX | 44.78 ± 4.52 | 42.38 ± 4.60 | −2.39 *** (−3.36–−1.42) | 0.121 (0.005) | 27.425 ††† (0.555) | 6.821 † (0.237) |
HPX | 43.26 ± 5.80 | 42.46 ± 5.45 | −0.80 (−1.72–0.12) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, W.; Park, H.-Y.; Kim, S.-W. Effects of 12 Weeks of Combined Exercise Training in Normobaric Hypoxia on Arterial Stiffness, Inflammatory Biomarkers, and Red Blood Cell Hemorheological Function in Obese Older Women. Healthcare 2024, 12, 1887. https://doi.org/10.3390/healthcare12181887
Park W, Park H-Y, Kim S-W. Effects of 12 Weeks of Combined Exercise Training in Normobaric Hypoxia on Arterial Stiffness, Inflammatory Biomarkers, and Red Blood Cell Hemorheological Function in Obese Older Women. Healthcare. 2024; 12(18):1887. https://doi.org/10.3390/healthcare12181887
Chicago/Turabian StylePark, Wonil, Hun-Young Park, and Sung-Woo Kim. 2024. "Effects of 12 Weeks of Combined Exercise Training in Normobaric Hypoxia on Arterial Stiffness, Inflammatory Biomarkers, and Red Blood Cell Hemorheological Function in Obese Older Women" Healthcare 12, no. 18: 1887. https://doi.org/10.3390/healthcare12181887