Analysis of Codon Usage Bias in Chloroplast Genomes of Dryas octopetala var. asiatica (Rosaceae)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sequence of Chloroplast Genome of D. octopetala var. asiatica
2.2. Analysis of Codon Usage Characteristics
2.3. Analysis of the Source of Codon Usage Bias
2.4. Identification of Optimal Codons
3. Results
3.1. Annotation and Analysis of Protein-Coding Genes
3.2. Analysis of Codon Usage Bias
3.3. Analysis of the Source of Codon Usage Bias
3.4. Identification of Optimal Codons
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Duret, L. Evolution of synonymous codon usage in metazoans. Curr. Opin. Genet. Dev. 2002, 12, 640–649. [Google Scholar] [CrossRef] [PubMed]
- Novoa, E.M.; Ribas de Pouplana, L. Speeding with control: Codon usage, tRNAs, and ribosomes. Trends Genet. TIG 2012, 28, 574–581. [Google Scholar] [CrossRef] [PubMed]
- Wong, G.K.; Wang, J.; Tao, L.; Tan, J.; Zhang, J.; Passey, D.A.; Yu, J. Compositional gradients in Gramineae genes. Genome Res. 2002, 12, 851–856. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y. A code within the genetic code: Codon usage regulates co-translational protein folding. Cell Commun. Signal. CCS 2020, 18, 145. [Google Scholar] [CrossRef] [PubMed]
- Komar, A.A. A Code Within a Code: How Codons Fine-Tune Protein Folding in the Cell. Biochemistry. Biokhimiia 2021, 86, 976–991. [Google Scholar] [CrossRef] [PubMed]
- Quax, T.E.; Claassens, N.J.; Söll, D.; van der Oost, J. Codon Bias as a Means to Fine-Tune Gene Expression. Mol. Cell 2015, 59, 149–161. [Google Scholar] [CrossRef] [PubMed]
- Romero, H.; Zavala, A.; Musto, H. Codon usage in Chlamydia trachomatis is the result of strand-specific mutational biases and a complex pattern of selective forces. Nucleic Acids Res. 2000, 28, 2084–2090. [Google Scholar] [CrossRef] [PubMed]
- Fages-Lartaud, M.; Hundvin, K.; Hohmann-Marriott, M.F. Mechanisms governing codon usage bias and the implications for protein expression in the chloroplast of Chlamydomonas reinhardtii. Plant J. Cell Mol. Biol. 2022, 112, 919–945. [Google Scholar] [CrossRef]
- Raubeson, L.A.; Jansen, R.K. Chloroplast genomes of plants. In Plant Diversity and Evolution. Genotypic and Phenotypic Variation in Higher Plants; Henry, R.J., Ed.; CABI Publishing: Wallingford, UK, 2005; Volume 42, pp. 45–68. [Google Scholar]
- Green, B.R. Chloroplast genomes of photosynthetic eukaryotes. Plant J. Cell Mol. Biol. 2011, 66, 34–44. [Google Scholar] [CrossRef]
- Zhang, P.; Xu, W.; Lu, X.; Wang, L. Analysis of codon usage bias of chloroplast genomes in Gynostemma species. Physiol. Mol. Biol. Plants Int. J. Funct. Plant Biol. 2021, 27, 2727–2737. [Google Scholar] [CrossRef]
- Hao, J.; Liang, Y.; Ping, J.; Li, J.; Shi, W.; Su, Y.; Wang, T. Chloroplast gene expression level is negatively correlated with evolutionary rates and selective pressure while positively with codon usage bias in Ophioglossum vulgatum L. BMC Plant Biol. 2022, 22, 580. [Google Scholar] [CrossRef] [PubMed]
- Somaratne, Y.; Guan, D.L.; Wang, W.Q.; Zhao, L.; Xu, S.Q. The complete chloroplast genomes of two lespedeza species: Insights into codon usage bias, RNA editing sites, and phylogenetic relationships in Desmodieae (Fabaceae: Papilionoideae). Plants 2019, 9, 51. [Google Scholar] [CrossRef] [PubMed]
- Bjorbækmo, M.F.; Carlsen, T.; Brysting, A.; Vrålstad, T.; Høiland, K.; Ugland, K.I.; Geml, J.; Schumacher, T.; Kauserud, H. High diversity of root associated fungi in both alpine and arctic Dryas octopetala. BMC Plant Biol. 2010, 10, 244–255. [Google Scholar] [CrossRef] [PubMed]
- Billault-Penneteau, B.; Sandré, A.; Folgmann, J.; Parniske, M.; Pawlowski, K. Dryas as a model for studying the root symbioses of the Rosaceae. Front. Plant Sci. 2019, 10, 661. [Google Scholar] [CrossRef] [PubMed]
- Li, H.L.; Wang, W.; Li, R.Q.; Zhang, J.B.; Sun, M.; Naeem, R.; Su, J.X.; Xiang, X.G.; Mortimer, P.E.; Li, D.Z. Global versus Chinese perspectives on the phylogeny of the N-fixing clade. J. Syst. Evol. 2016, 54, 392–399. [Google Scholar] [CrossRef]
- Gardes, M.; Dahlberg, A. Mycorrhizal diversity in arctic and alpine tundra: An open question. New Phytol. 1996, 133, 147–157. [Google Scholar] [CrossRef]
- Mcgraw, J.B.; Turner, J.B.; Chandler, J.L.; Vavrek, M.C. Disturbances as hot spots of ecotypic variation: A case study with Dryas octopetala. Arct. Antarct. Alp. Res. 2014, 46, 542–547. [Google Scholar] [CrossRef]
- Panchen, Z.A.; Gorelick, R. Prediction of Arctic plant phenological sensitivity to climate change from historical records. Ecol. Evol. 2017, 7, 1325–1338. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Deng, J.; Tai, Z.; Jiang, L.; Han, J.; Meng, G.; Li, M.H. Leaf anatomy, morphology and photosynthesis of three tundra shrubs after 7-year experimental warming on changbai mountain. Plants 2019, 8, 271. [Google Scholar] [CrossRef]
- Yang, J.-B.; Li, D.-Z.; Li, H.-T. Highly effective sequencing whole chloroplast genomes of angiosperms by nine novel universal primer pairs. Mol. Ecol. Resour. 2015, 14, 1024–1031. [Google Scholar] [CrossRef]
- Zhang, S.-D.; Ling, L.-Z. Molecular structure and phylogenetic analyses of the plastomes of eight Sorbus Sensu Stricto species. Biomolecules 2022, 12, 1648. [Google Scholar] [CrossRef] [PubMed]
- Wright, F. The ‘effective number of codons’ used in a gene. Gene 1990, 87, 23–29. [Google Scholar] [CrossRef] [PubMed]
- Fuglsang, A. Accounting for background nucleotide composition when measuring codon usage bias: Brilliant idea, difficult in practice. Mol. Biol. Evol. 2006, 23, 1345–1347. [Google Scholar] [CrossRef] [PubMed]
- Liao, W. Deciphering Codon Usage Patterns in Genome of Cucumis sativus in Comparison with Nine Species of Cucurbitaceae. Agronomy 2021, 11, 2289. [Google Scholar] [CrossRef]
- Liu, H.; He, R.; Zhang, H.; Huang, Y.; Tian, M.; Zhang, J. Analysis of synonymous codon usage in Zea mays. Mol. Biol. Rep. 2010, 37, 677–684. [Google Scholar] [CrossRef]
- Duret, L. tRNA gene number and codon usage in the C. elegans genome are co-adapted for optimal translation of highly expressed genes. Trends Genet. TIG 2000, 16, 287–289. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Peng, J.; Wang, D.; Duan, A. Chloroplast genome phylogeny and codon preference of Docynia longiunguis. Chin. J. Biotechnol. 2022, 38, 328–342. [Google Scholar]
- Parvathy, S.T.; Udayasuriyan, V.; Bhadana, V. Codon usage bias. Mol. Biol. Rep. 2022, 49, 539–565. [Google Scholar] [CrossRef] [PubMed]
- Fuglsang, A. Impact of bias discrepancy and amino acid usage on estimates of the effective number of codons used in a gene, and a test for selection on codon usage. Gene 2008, 410, 82–88. [Google Scholar] [CrossRef] [PubMed]
- Tian, L.; Baima, Y.; Yang, C.; Ma, C. Analysis of Codon Usage Bias in Chloroplast Genome of Codonopsis convolvulacea Kurz var. vinciflora (Kom.) L. T. Shen. Mol. Plant Breed. 2023, 1–14. Available online: http://kns.cnki.net/kcms/detail/46.1068.S.20230130.1902.012.html (accessed on 6 July 2024).
- Suzuki, H.; Morton, B.R. Codon adaptation of plastid genes. PLoS ONE 2016, 11, e0154306. [Google Scholar] [CrossRef]
- Sablok, G.; Nayak, K.C.; Vazquez, F.; Tatarinova, T.V. Synonymous codon usage, GC(3), and evolutionary patterns across plastomes of three pooid model species: Emerging grass genome models for monocots. Mol. Biotechnol. 2011, 49, 116–128. [Google Scholar] [CrossRef]
- Wang, Z.; Cai, Q.; Wang, Y.; Li, M.; Wang, C.; Wang, Z.; Jiao, C.; Xu, C.; Wang, H.; Zhang, Z. Comparative analysis of codon bias in the chloroplast genomes of Theaceae species. Front. Genet. 2022, 13, 824610. [Google Scholar] [CrossRef]
- Wang, Z.; Xu, B.; Li, B.; Zhou, Q.; Wang, G.; Jiang, X.; Wang, C.; Xu, Z. Comparative analysis of codon usage patterns in chloroplast genomes of six Euphorbiaceae species. PeerJ 2020, 8, e8251. [Google Scholar] [CrossRef] [PubMed]
- Kawabe, A.; Miyashita, N.T. Patterns of codon usage bias in three dicot and four monocot plant species. Genes Genet. Syst. 2003, 78, 343–352. [Google Scholar] [CrossRef] [PubMed]
- Duan, H.; Zhang, Q.; Wang, C.; Li, F.; Tian, F.; Lu, Y.; Hu, Y.; Yang, H.; Cui, G. Analysis of codon usage patterns of the chloroplast genome in Delphinium grandiflorum L. reveals a preference for AT-ending codons as a result of major selection constraints. PeerJ 2021, 9, e10787. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Dang, Y.; Zhou, M.; Li, L.; Yu, C.H.; Fu, J.; Chen, S.; Liu, Y. Codon usage is an important determinant of gene expression levels largely through its effects on transcription. Proc. Natl. Acad. Sci. USA 2016, 113, e6117–e6125. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.M.; Wu, S.F.; Ren, D.M.; Zhu, Y.P.; He, F.C. The analysis method and progress in the study of codon bias. Hereditas 2007, 29, 420–426. [Google Scholar] [CrossRef]
Classification | Gene Group | Gene Name |
---|---|---|
Genes related to photosynthesis | Photosystem I | psaA, psaB, psaC |
Photosystem II | psbA, psbB, psbC, psbD, | |
Cytochrome b/f complex | petA, petB b, petD b | |
ATP synthase | atpA, atpB, atpE, atpF b, atpI | |
NADH-dehydrogenase | ndhA b, ndhB ab, ndhC, ndhD, ndhE, ndhF, ndhG, ndhH, ndhI, ndhJ, ndhK | |
Subunit of rubisco | rbcL | |
Self-replication genes | RNA polymerase | rpoA, rpoB, rpoC1 b, rpoC2 |
Small subunit of ribosome | rps2, rps3, rps4, rps7 a, rps8, rps11, rps12 ac, rps14, rps18, | |
Large subunit of ribosome | rpl2 ab, rpl14, rpl16 b, rpl20, rpl22, | |
Other genes | C-type cytochrome synthesis gene | ccsA |
Subunits of Acetyl-CoA-carboxylase | accD | |
Envelope membrane protein | cemA | |
Protease | ClpP c | |
Unknown genes | Conserved open reading frames | ycf1, ycf2 a, ycf3 c, ycf4 |
Amino Acid | Codon | Number | RSCU | Amino Acid | Codon | Number | RSCU |
---|---|---|---|---|---|---|---|
Phe | UUU | 796 | 1.34 | Tyr | UAU | 657 | 1.61 |
UUC | 392 | 0.66 | UAC | 161 | 0.39 | ||
Leu | UUA | 748 | 2.02 | His | CAU | 398 | 1.53 |
UUG | 460 | 1.24 | CAC | 122 | 0.47 | ||
CUU | 465 | 1.26 | Gln | CAA | 585 | 1.53 | |
CUC | 134 | 0.36 | CAG | 180 | 0.47 | ||
CUA | 277 | 0.75 | Asn | AAU | 796 | 1.53 | |
CUG | 139 | 0.38 | AAC | 244 | 0.47 | ||
Arg | AGA | 394 | 1.87 | Lys | AAA | 852 | 1.54 |
AGG | 123 | 0.58 | AAG | 257 | 0.46 | ||
Met | AUG | 490 | 1.00 | Asp | GAU | 706 | 1.61 |
Val | GUU | 437 | 1.47 | GAC | 173 | 0.39 | |
GUC | 125 | 0.42 | Glu | GAA | 870 | 1.51 | |
GUA | 468 | 1.57 | GAG | 284 | 0.49 | ||
GUG | 160 | 0.54 | Cys | UGU | 178 | 1.52 | |
Ser | UCU | 458 | 1.74 | UGC | 56 | 0.48 | |
UCC | 234 | 0.89 | Trp | UGG | 378 | 1.00 | |
UCA | 311 | 1.18 | Arg | CGU | 296 | 1.41 | |
UCG | 144 | 0.55 | CGC | 88 | 0.42 | ||
Pro | CCU | 355 | 1.61 | CGA | 280 | 1.33 | |
CCC | 159 | 0.72 | CGG | 83 | 0.39 | ||
CCA | 252 | 1.14 | Ser | AGU | 329 | 1.25 | |
CCG | 118 | 0.53 | AGC | 100 | 0.38 | ||
Thr | ACU | 442 | 1.63 | Gly | GGU | 493 | 1.33 |
ACC | 188 | 0.69 | GGC | 160 | 0.43 | ||
ACA | 344 | 1.27 | GGA | 586 | 1.58 | ||
ACG | 109 | 0.40 | GGG | 244 | 0.66 | ||
Ala | GCU | 536 | 1.85 | Ile | AUU | 929 | 1.49 |
GCC | 173 | 0.60 | AUC | 338 | 0.54 | ||
GCA | 328 | 1.13 | AUA | 603 | 0.97 | ||
GCG | 125 | 0.43 |
GC1 | GC2 | GC3 | GCall | ENC | |
---|---|---|---|---|---|
GC2 | 0.43 ** | ||||
GC3 | 0.24 * | 0.09 | |||
GCall | 0.84 ** | 0.77 ** | 0.49 ** | ||
ENC | 0.15 | −0.30 * | 0.37 ** | 0.04 | |
N | −0.14 | −0.27 * | 0.21 * | −0.15 | 0.18 |
No. | Codon | Amino Acid |
---|---|---|
1 | UCA *** | Ser |
2 | CCU *** | Pro |
3 | GCU * | Ala |
4 | AAU | Asn |
5 | GAU *** | Asp |
6 | GGU | Gly |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ling, L.; Zhang, S.; Yang, T. Analysis of Codon Usage Bias in Chloroplast Genomes of Dryas octopetala var. asiatica (Rosaceae). Genes 2024, 15, 899. https://doi.org/10.3390/genes15070899
Ling L, Zhang S, Yang T. Analysis of Codon Usage Bias in Chloroplast Genomes of Dryas octopetala var. asiatica (Rosaceae). Genes. 2024; 15(7):899. https://doi.org/10.3390/genes15070899
Chicago/Turabian StyleLing, Lizhen, Shudong Zhang, and Tao Yang. 2024. "Analysis of Codon Usage Bias in Chloroplast Genomes of Dryas octopetala var. asiatica (Rosaceae)" Genes 15, no. 7: 899. https://doi.org/10.3390/genes15070899