Investigating the Wound-Healing Potential of a Nanoemulsion–Gel Formulation of Pituranthos tortuosus Essential Oil
Abstract
:1. Introduction
2. Results and Discussion
2.1. Essential Oil Yield
2.2. Chemical Composition of the Essential Oils
2.3. Preparation and Characterization of the Nanoemulsion
2.3.1. Droplet Size Analysis and Distribution
2.3.2. Zeta Potential
2.3.3. Thermodynamic Stability of the Optimal NE
2.4. Gelification and Characterization of the Optimal Nanoemulsion Gel (NE/Gel)
2.4.1. pH Measurement
2.4.2. Rheology Study
2.5. In Vivo Wound-Healing Study
3. Conclusions
4. Materials and Methods
4.1. Plant Material and Extraction of Essential Oil from P. tortuousus
4.2. GC-MS Analysis of the EO
4.3. Nanoemulsion Preparation (NE)
4.4. Characterization of the Nanoemulsion
4.4.1. Particle Size Distribution and Polydispersity Index Determinations
4.4.2. Zeta Potential Measurement
4.4.3. Thermodynamic Stability Study
4.4.4. Transmission Electron Microscopy Study
4.5. Emulsion Preparation and Gelification
4.6. Gelification Process and NE/Gel Characterization
4.6.1. pH Measurement
4.6.2. Rheological Study
4.7. In Vivo Wound-Healing Study
4.8. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dąbrowska, A.K.; Spano, F.; Derler, S.; Adlhart, C.; Spencer, N.D.; Rossi, R.M. The Relationship between Skin Function, Barrier Properties, and Body-Dependent Factors. Skin. Res. Technol. 2018, 24, 165–174. [Google Scholar] [CrossRef]
- Velnar, T.; Bailey, T.; Smrkolj, V. The Wound Healing Process: An Overview of the Cellular and Molecular Mechanisms. J. Int. Med. Res. 2009, 37, 1528–1542. [Google Scholar] [CrossRef]
- Rice, J.B.; Desai, U.; Cummings, A.K.G.; Birnbaum, H.G.; Skornicki, M.; Parsons, N.B. Burden of Diabetic Foot Ulcers for Medicare and Private Insurers. Diabetes Care 2014, 37, 651–658. [Google Scholar] [CrossRef]
- Purohit, S.K.; Solanki, R.; Soni, M.K.; Mathur, V. Experimental Evaluation of Indian Aloe (Aloe Vera) Leaves Pulp as Topical Medicament on Wound Healing. Int. J. Pharmacol. Res. 2012, 2, 110–112. [Google Scholar] [CrossRef]
- Sikka, M.P.; Midha, V.K. 16—The Role of Biopolymers and Biodegradable Polymeric Dressings in Managing Chronic Wounds. In Advanced Textiles for Wound Care, 2nd ed.; Rajendran, S., Ed.; The Textile Institute Book Series; Woodhead Publishing: Oxford, UK, 2019; pp. 463–488. ISBN 978-0-08-102192-7. [Google Scholar]
- Modarresi, M.; Farahpour, M.-R.; Baradaran, B. Topical Application of Mentha Piperita Essential Oil Accelerates Wound Healing in Infected Mice Model. Inflammopharmacology 2019, 27, 531–537. [Google Scholar] [CrossRef]
- Ashtikar, M.; Wacker, M.G. Nanopharmaceuticals for Wound Healing—Lost in Translation? Adv. Drug Deliv. Rev. 2018, 129, 194–218. [Google Scholar] [CrossRef] [PubMed]
- Sood, A.; Granick, M.S.; Tomaselli, N.L. Wound Dressings and Comparative Effectiveness Data. Adv. Wound Care 2014, 3, 511–529. [Google Scholar] [CrossRef] [PubMed]
- Farahpour, M.R.; Vahid, M.; Oryan, A. Effectiveness of Topical Application of Ostrich Oil on the Healing of Staphylococcus Aureus- and Pseudomonas Aeruginosa-Infected Wounds. Connect. Tissue Res. 2018, 59, 212–222. [Google Scholar] [CrossRef] [PubMed]
- Pereira, M.; Vilela, G.; Costa, L.; Silva, R.; Fernandes, A.; da Fonseca, E.; Piccoli, R. Inibição Do Desenvolvimento Fúngico Através Da Utilização de Óleos Essenciais de Condimentos. Cienc. Agrotecnol. 2006, 30, 731–738. [Google Scholar] [CrossRef]
- Saghazadeh, S.; Rinoldi, C.; Schot, M.; Kashaf, S.S.; Sharifi, F.; Jalilian, E.; Nuutila, K.; Giatsidis, G.; Mostafalu, P.; Derakhshandeh, H.; et al. Drug Delivery Systems and Materials for Wound Healing Applications. Adv. Drug Deliver. Rev. 2018, 127, 138–166. [Google Scholar] [CrossRef]
- Orlowski, P.; Zmigrodzka, M.; Tomaszewska, E.; Ranoszek-Soliwoda, K.; Czupryn, M.; Antos-Bielska, M.; Szemraj, J.; Celichowski, G.; Grobelny, J.; Krzyzowska, M. Tannic Acid-Modified Silver Nanoparticles for Wound Healing: The Importance of Size. Int. J. Nanomed. 2018, 13, 991–1007. [Google Scholar] [CrossRef]
- Shedoeva, A.; Leavesley, D.; Upton, Z.; Fan, C. Wound Healing and the Use of Medicinal Plants. Evid. Based Complement. Altern. Med. 2019, 2019, 2684108. [Google Scholar] [CrossRef]
- Nethi, S.K.; Das, S.; Patra, C.R.; Mukherjee, S. Recent Advances in Inorganic Nanomaterials for Wound-Healing Applications. Biomater. Sci. 2019, 7, 2652–2674. [Google Scholar] [CrossRef]
- Pazyar, N.; Yaghoobi, R.; Rafiee, E.; Mehrabian, A.; Feily, A. Skin Wound Healing and Phytomedicine: A Review. Skin Pharmacol. Physiol. 2014, 27, 303–310. [Google Scholar] [CrossRef]
- Selvaraj, S.; Fathima, N.N. Fenugreek Incorporated Silk Fibroin Nanofibers—A Potential Antioxidant Scaffold for Enhanced Wound Healing. ACS Appl. Mater. Interfaces 2017, 9, 5916–5926. [Google Scholar] [CrossRef] [PubMed]
- Montenegro, L.; Pasquinucci, L.; Zappalà, A.; Chiechio, S.; Turnaturi, R.; Parenti, C. Rosemary Essential Oil-Loaded Lipid Nanoparticles: In Vivo Topical Activity from Gel Vehicles. Pharmaceutics 2017, 9, 48. [Google Scholar] [CrossRef] [PubMed]
- Bilia, A.R.; Guccione, C.; Isacchi, B.; Righeschi, C.; Firenzuoli, F.; Bergonzi, M.C. Retracted: Essential Oils Loaded in Nanosystems: A Developing Strategy for a Successful Therapeutic Approach. Evid. Based Complement. Altern. Med. 2021, 2021, 7259208. [Google Scholar] [CrossRef]
- Feyzioglu, G.C.; Tornuk, F. Development of Chitosan Nanoparticles Loaded with Summer Savory (Satureja hortensis L.) Essential Oil for Antimicrobial and Antioxidant Delivery Applications. LWT 2016, 70, 104–110. [Google Scholar] [CrossRef]
- Oberdörster, G.; Oberdörster, E.; Oberdörster, J. Nanotoxicology: An Emerging Discipline Evolving from Studies of Ultrafine Particles. Environ. Health Perspect 2005, 113, 823–839. [Google Scholar] [CrossRef] [PubMed]
- Brahimi, S.; Dahia, M.; Azouzi, B.; Nasri, M.; Laouer, H. Composition Chimique et Activité Antimicrobienne de l’huile Essentielle de Deverra Reboudii (Coss. & Durieu). Phytothérapie 2018, 18, 314–320. [Google Scholar] [CrossRef]
- Krifa, M.; Gharad, T.; Haouala, R. Biological Activities of Essential Oil, Aqueous and Organic Extracts of Pituranthos Tortuosus (Coss.) Maire. Sci. Hortic. 2011, 128, 61–67. [Google Scholar] [CrossRef]
- Louhaichi, M.; Salkini, A.K.; Estita, H.E.; Belkhir, S. Initial Assessment of Medicinal Plants Across the Libyan Mediterranean Coast. Adv. Environ. Biol. 2011, 5, 359–370. [Google Scholar]
- Mighri, H.; Sabri, K.; Eljeni, H.; Neffati, M.; Akrout, A. Chemical Composition and Antimicrobial Activity of Pituranthos chloranthus (Benth.) Hook and Pituranthos tortuosus (Coss.) Maire Essential Oils from Southern Tunisia. Adv. Biol. Chem. 2016, 5, 273–278. [Google Scholar] [CrossRef]
- Boulos, L. Flora of Egypt; Al Hadara Pub.: Cairo, Egypt, 1999; ISBN 978-977-5429-14-8. [Google Scholar]
- Guetat, A.; Boulila, A.; Boussaid, M. Phytochemical Profile and Biological Activities of Deverra tortuosa (Desf.)DC.: A Desert Aromatic Shrub Widespread in Northern Region of Saudi Arabia. Nat. Prod. Res. 2019, 33, 2708–2713. [Google Scholar] [CrossRef]
- Abdallah, H.M.; Ezzat, S.M. Effect of the Method of Preparation on the Composition and Cytotoxic Activity of the Essential Oil of Pituranthos tortuosus. Z. Naturforsch. C 2011, 66, 143–148. [Google Scholar] [CrossRef]
- Elshibani, F.; Alshalmani, S.; Mohammed, H.A. Pituranthos tortuosus Essential Oil from Libya: Season Effect on the Composition and Antioxidant Activity. J. Essent. Oil Bear. Plants 2020, 23, 1095–1104. [Google Scholar] [CrossRef]
- Abdel-Kader, M. New Ester and Furocoumarins from the Roots of Pituranthos tortuosus. J. Braz. Chem. Soc. 2003, 14, 48–51. [Google Scholar] [CrossRef]
- Oueslati, M.H.; Guetat, A.; Bouajila, J.; Alzahrani, A.K.; Basha, J. Deverra tortuosa (Desf.) DC from Saudi Arabia as a New Source of Marmin and Furanocoumarins Derivatives with α-Glucosidase, Antibacterial and Cytotoxic Activities. Heliyon 2021, 7, e06656. [Google Scholar] [CrossRef] [PubMed]
- Guesmi, F.; Ben Hadj, A.S.; Landoulsi, A. Investigation of Extracts from Tunisian Ethnomedicinal Plants as Antioxidants, Cytotoxins, and Antimicrobials. Biomed. Environ. Sci. 2017, 30, 811–824. [Google Scholar] [CrossRef]
- Ferreira, R.G.; Monteiro, M.C.; Silva, J.; Maia, J.G.S. Antifungal Action of the Dillapiole-Rich Oil of Piper Aduncum against Dermatomycoses Caused by Filamentous Fungi. Br. J. Med. Med. Res. 2016, 15, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Abdelgaleil, S.; Badawy, M.; Shawir, M.S.; Mohamed, M.I.E. Chemical Composition, Fumigant and Contact Toxicities of Essential Oils Isolated from Egyptian Plants against the Stored Grain Insects; Sitophilus oryzae L. and Tribolium castaneum (Herbst). Egypt. J. Biol. Pest Control. 2015, 25, 639. [Google Scholar]
- Cano, A.; Ettcheto, M.; Chang, J.-H.; Barroso, E.; Espina, M.; Kühne, B.A.; Barenys, M.; Auladell, C.; Folch, J.; Souto, E.B.; et al. Dual-Drug Loaded Nanoparticles of Epigallocatechin-3-Gallate (EGCG)/Ascorbic Acid Enhance Therapeutic Efficacy of EGCG in a APPswe/PS1dE9 Alzheimer’s Disease Mice Model. J. Control. Release 2019, 301, 62–75. [Google Scholar] [CrossRef] [PubMed]
- Naderi, N.; Karponis, D.; Mosahebi, A.; Seifalian, A.M. Nanoparticles in Wound Healing; from Hope to Promise, from Promise to Routine. Front. Biosci. 2018, 23, 1038–1059. [Google Scholar] [CrossRef]
- Mihai, M.M.; Dima, M.B.; Dima, B.; Holban, A.M. Nanomaterials for Wound Healing and Infection Control. Materials 2019, 12, 2176. [Google Scholar] [CrossRef]
- Zhang, J.; Zheng, T.; Alarçin, E.; Byambaa, B.; Guan, X.; Ding, J.; Zhang, Y.S.; Li, Z. Porous Electrospun Fibers with Self-Sealing Functionality: An Enabling Strategy for Trapping Biomacromolecules. Small 2017, 13, 1701724. [Google Scholar] [CrossRef] [PubMed]
- Jaiswal, M.; Dudhe, R.; Sharma, P.K. Nanoemulsion: An Advanced Mode of Drug Delivery System. 3 Biotech 2015, 5, 123–127. [Google Scholar] [CrossRef]
- Singh, T.G.; Dhiman, S.; Jindal, M.; Sandhu, I.S.; Chitkara, M. Chapter 13—Nanobiomaterials: Applications in Biomedicine and Biotechnology. In Fabrication and Self-Assembly of Nanobiomaterials; Grumezescu, A.M., Ed.; William Andrew Publishing: Norwich, NY, USA, 2016; pp. 401–429. ISBN 978-0-323-41533-0. [Google Scholar]
- Nastiti, C.M.R.R.; Ponto, T.; Abd, E.; Grice, J.E.; Benson, H.A.E.; Roberts, M.S. Topical Nano and Microemulsions for Skin Delivery. Pharmaceutics 2017, 9, 37. [Google Scholar] [CrossRef]
- Koshak, A.E.; Algandaby, M.M.; Mujallid, M.I.; Abdel-Naim, A.B.; Alhakamy, N.A.; Fahmy, U.A.; Alfarsi, A.; Badr-Eldin, S.M.; Neamatallah, T.; Nasrullah, M.Z.; et al. Wound Healing Activity of Opuntia Ficus-Indica Fixed Oil Formulated in a Self-Nanoemulsifying Formulation. Int. J. Nanomed. 2021, 16, 3889–3905. [Google Scholar] [CrossRef]
- Naskar, A.; Kim, K.-S. Recent Advances in Nanomaterial-Based Wound-Healing Therapeutics. Pharmaceutics 2020, 12, 499. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.; Badruddoza, A.Z.M.; Doyle, P.S. A General Route for Nanoemulsion Synthesis Using Low-Energy Methods at Constant Temperature. Langmuir 2017, 33, 7118–7123. [Google Scholar] [CrossRef] [PubMed]
- Gazolu-Rusanova, D.; Lesov, I.; Tcholakova, S.; Denkov, N.; Ahtchi, B. Food Grade Nanoemulsions Preparation by Rotor-Stator Homogenization. Food Hydrocoll. 2020, 102, 105579. [Google Scholar] [CrossRef]
- Abdelwahed, A.; Hayder, N.; Kilani, S.; Mahmoud, A.; Chibani, J.; Hammami, M.; Chekir-Ghedira, L.; Ghedira, K. Chemical Composition and Antimicrobial Activity of Essential Oils from Tunisian Pituranthos tortuosus (Coss.) Maire. Flavour Fragr. J. 2006, 21, 129–133. [Google Scholar] [CrossRef]
- The US Secretary of Commerce on behalf of the United States of America. Informatics. Available online: https://webbook.nist.gov/chemistry/index.html.fr (accessed on 2 October 2023).
- Al-Gaby, A.M.; Allam, R.F. Chemical Analysis, Antimicrobial Activity, and the Essential Oils from Some Wild Herbs in Egypt. J. Herbs Spices Med. Plants 2000, 7, 15–23. [Google Scholar] [CrossRef]
- Sparkman, O.D. Identification of Essential Oil Components by Gas Chromatography/Quadrupole Mass Spectroscopy Robert P. Adams. J. Am. Soc. Mass Spectrom. 2005, 16, 1902–1903. [Google Scholar] [CrossRef]
- Marongiu, B.; Porcedda, S.; Piras, A.; Sanna, G.; Murreddu, M.; Loddo, R. Extraction of Juniperus communis L. ssp. Nana Willd. Essential Oil by Supercritical Carbon Dioxide. Flavour Fragr. J. 2006, 21, 148–154. [Google Scholar] [CrossRef]
- Verma, D.D.; Verma, S.; Blume, G.; Fahr, A. Particle Size of Liposomes Influences Dermal Delivery of Substances into Skin. Int. J. Pharm. 2003, 258, 141–151. [Google Scholar] [CrossRef] [PubMed]
- Gurpret, K.; Singh, S.K. Review of Nanoemulsion Formulation and Characterization Techniques. Indian J. Pharm. Sci. 2018, 80, 781–789. [Google Scholar] [CrossRef]
- Vogt, A.; Rancan, F.; Ahlberg, S.; Nazemi, B.; Choe, C.S.; Darvin, M.E.; Hadam, S.; Blume-Peytavi, U.; Loza, K.; Diendorf, J.; et al. Interaction of Dermatologically Relevant Nanoparticles with Skin Cells and Skin. Beilstein J. Nanotechnol. 2014, 5, 2363–2373. [Google Scholar] [CrossRef] [PubMed]
- Zeb, A.; Arif, S.T.; Malik, M.; Shah, F.A.; Din, F.U.; Qureshi, O.S.; Lee, E.-S.; Lee, G.-Y.; Kim, J.-K. Potential of Nanoparticulate Carriers for Improved Drug Delivery via Skin. J. Pharm. Investig. 2019, 49, 485–517. [Google Scholar] [CrossRef]
- Mostafa, D.M.; Kassem, A.A.; Asfour, M.H.; Al Okbi, S.Y.; Mohamed, D.A.; Hamed, T.E.-S. Transdermal Cumin Essential Oil Nanoemulsions with Potent Antioxidant and Hepatoprotective Activities: In-Vitro and in-Vivo Evaluation. J. Mol. Liq. 2015, 212, 6–15. [Google Scholar] [CrossRef]
- Safaya, M.; Rotliwala, Y.C. Nanoemulsions: A Review on Low Energy Formulation Methods, Characterization, Applications and Optimization Technique. Mater. Today Proc. 2020, 27, 454–459. [Google Scholar] [CrossRef]
- Liu, Q.; Huang, H.; Chen, H.; Lin, J.; Wang, Q. Food-Grade Nanoemulsions: Preparation, Stability and Application in Encapsulation of Bioactive Compounds. Molecules 2019, 24, 4242. [Google Scholar] [CrossRef]
- Klang, V.; Matsko, N.B.; Valenta, C.; Hofer, F. Electron Microscopy of Nanoemulsions: An Essential Tool for Characterisation and Stability Assessment. Micron 2012, 43, 85–103. [Google Scholar] [CrossRef]
- Miastkowska, M.; Kulawik-Pióro, A.; Szczurek, M. Nanoemulsion Gel Formulation Optimization for Burn Wounds: Analysis of Rheological and Sensory Properties. Processes 2020, 8, 1416. [Google Scholar] [CrossRef]
- Thomas, L.; Zakir, F.; Mirza, M.A.; Anwer, K.; Ahmad, F.J.; Iqbal, Z. Development of Curcumin Loaded Chitosan Polymer Based Nanoemulsion Gel: In Vitro, Ex Vivo Evaluation and In Vivo Wound Healing Studies. Int. J. Biol. Macromol. 2017, 101, 569–579. [Google Scholar] [CrossRef]
- Yoon, W.H.; Lee, K.H. Rheological Properties and Efficacy of the Formulation of Hyaluronic Acid with Tamarind Seed Polysaccharide for Arthritis. Biorheology 2019, 56, 31–38. [Google Scholar] [CrossRef] [PubMed]
- Qwist, P.K.; Sander, C.; Okkels, F.; Jessen, V.; Baldursdottir, S.; Rantanen, J. On-Line Rheological Characterization of Semi-Solid Formulations. Eur. J. Pharm. Sci. 2019, 128, 36–42. [Google Scholar] [CrossRef] [PubMed]
- Shanley, A. Topical Formulation: Moving from Art to Science. Pharm. Technol. 2016, 2016, s26–s29. [Google Scholar]
- Devaux, S.; Castela, A.; Archier, E.; Gallini, A.; Joly, P.; Misery, L.; Aractingi, S.; Aubin, F.; Bachelez, H.; Cribier, B.; et al. Adherence to Topical Treatment in Psoriasis: A Systematic Literature Review. J. Eur. Acad. Dermatol. Venereol. 2012, 26 (Suppl. S3), 61–67. [Google Scholar] [CrossRef] [PubMed]
- Guest, S.; Ma, A.; Mehrabyan, A.; Essick, G.; Hopkinson, A.; McGlone, F. Perception of Fluids with Diverse Rheology Applied to the Underarm versus Forearm Skin. Somatosens. Mot. Res. 2012, 29, 89–102. [Google Scholar] [CrossRef] [PubMed]
- Mastropietro, D.J. Rheology in Pharmaceutical Formulations-A Perspective. J. Dev. Drugs 2013, 2, 1–6. [Google Scholar] [CrossRef]
- Park, B.-I.; Kim, B.-S.; Kim, K.-J.; You, Y.-O. Sabinene Suppresses Growth, Biofilm Formation, and Adhesion of Streptococcus Mutans by Inhibiting Cariogenic Virulence Factors. J. Oral Microbiol. 2019, 11, 1632101. [Google Scholar] [CrossRef]
- Shareef, S.; Al-Medhtiy, M.; Abdel, I.; Ibrahim, A.; Alzahrani, A.; Abduljabbar, A.; Galali, Y.; Shakir Agha, N.; Aziz, P.; Thabit, M.; et al. Gastroprophylactic Effects of P-Cymene in Ethanol-Induced Gastric Ulcer in Rats. Processes 2022, 10, 1314. [Google Scholar] [CrossRef]
- Wu, T.; Mazhar, Z.; Alsayrafi, D.; Garelnabi, M. P-Cymene Modulate Oxidative Stress and Inflammation in Murine Macrophages: Potential Implication in Atherosclerosis. Cardiovasc. Hematol. Agents Med. Chem. 2020, 18, 151–157. [Google Scholar] [CrossRef] [PubMed]
- De Araújo-Filho, H.G.; Dos Santos, J.F.; Carvalho, M.T.B.; Picot, L.; Fruitier-Arnaudin, I.; Groult, H.; Quintans-Júnior, L.J.; Quintans, J.S.S. Anticancer Activity of Limonene: A Systematic Review of Target Signaling Pathways. Phytother. Res. 2021, 35, 4957–4970. [Google Scholar] [CrossRef]
- Santana, H.S.R.; de Carvalho, F.O.; Silva, E.R.; Santos, N.G.L.; Shanmugam, S.; Santos, D.N.; Wisniewski, J.O.; Junior, J.S.C.; Nunes, P.S.; Araujo, A.A.S.; et al. Anti-Inflammatory Activity of Limonene in the Prevention and Control of Injuries in the Respiratory System: A Systematic Review. Curr. Pharm. Des. 2020, 26, 2182–2191. [Google Scholar] [CrossRef]
- Souto, E.B.; Cano, A.; Martins-Gomes, C.; Coutinho, T.E.; Zielińska, A.; Silva, A.M. Microemulsions and Nanoemulsions in Skin Drug Delivery. Bioengineering 2022, 9, 158. [Google Scholar] [CrossRef]
- Algahtani, M.S.; Ahmad, M.Z.; Shaikh, I.A.; Abdel-Wahab, B.A.; Nourein, I.H.; Ahmad, J. Thymoquinone Loaded Topical Nanoemulgel for Wound Healing: Formulation Design and In-Vivo Evaluation. Molecules 2021, 26, 3863. [Google Scholar] [CrossRef]
- Sengupta, P.; Chatterjee, B. Potential and Future Scope of Nanoemulgel Formulation for Topical Delivery of Lipophilic Drugs. Int. J. Pharm. 2017, 526, 353–365. [Google Scholar] [CrossRef] [PubMed]
- Alyoussef, A.; El-Gogary, R.I.; Ahmed, R.F.; Farid, O.A.; Bakeer, R.M.; Nasr, M. The Beneficial Activity of Curcumin and Resveratrol Loaded in Nanoemulgel for Healing of Burn-Induced Wounds. J. Drug Deliv. Sci. Technol. 2021, 62, 102360. [Google Scholar] [CrossRef]
- Umesh, B.T.; Thoppil, J.E. Comparison of Chemical Constituents of Tissue Cultured and Field Grown Plants of Duchesnea indica, (Andr.) Focke. J. Pharmacogn. Phytochem. 2014, 3, 68–70. [Google Scholar]
- Davies, N.W. Gas Chromatographic Retention Indices of Monoterpenes and Sesquiterpenes on Methyl Silicon and Carbowax 20M Phases. J. Chromatogr. 1990, 503, 1–24. [Google Scholar] [CrossRef]
- Haddaji, N.; Bahloul, B.; Bahia, W.; Bechambi, O.; Mahdhi, A. Development of Nanotechnology-Based Drug Delivery Systems for Controlling Clinical Multidrug-Resistant Staphylococcus Aureus and Escherichia Coli Associated with Aerobic Vaginitis. Pharmaceutics 2023, 15, 2133. [Google Scholar] [CrossRef] [PubMed]
- Zheng, T.; Bott, S.; Huo, Q. Techniques for Accurate Sizing of Gold Nanoparticles Using Dynamic Light Scattering with Particular Application to Chemical and Biological Sensing Based on Aggregate Formation. ACS Appl. Mater. Interfaces 2016, 8, 21585–21594. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.S.; Alam, M.S.; Alam, N.; Siddiqui, M.R. Preparation, Characterization and Stability Study of Dutasteride Loaded Nanoemulsion for Treatment of Benign Prostatic Hypertrophy. Iran J. Pharm. Res. 2014, 13, 1125–1140. [Google Scholar]
- Spanou, K.; Barbosa, A.I.; Detsi, A.; Costa Lima, S.A.; Reis, S. Development and Characterization of Gel-like Matrix Containing Genistein for Skin Application. J. Drug Deliv. Sci. Technol. 2023, 90, 105119. [Google Scholar] [CrossRef]
- Chang, A.C.; Dearman, B.; Greenwood, J.E. A Comparison of Wound Area Measurement Techniques: Visitrak versus Photography. Eplasty 2011, 11, e18. [Google Scholar]
N° | Compounds | * LRI | Lit LRI | ** P. tortuos EO ± STDEVA | N° | Compounds | Lit LRI | * LRI | ** P. tortuosus EO ± STDEVA |
---|---|---|---|---|---|---|---|---|---|
1 | α-Thujene | 933 | 930 | 0.80 ± 0.06 | 24 | Bornyl acetate | 1289 | 1287 | 0.80 ± 0.10 |
2 | α-Pinene | 941 | 939 | 2.10 ± 0.15 | 25 | p-Cymen-7-ol (syn. cumin alcohol) | 1291 | 1290 | 0.90 ± 0.21 |
3 | Sabinene | 977 | 975 | 8.70 ± 0.81 | 26 | Carvacrol | 1299 | 1299 | 1.70 ± 0.10 |
4 | β-Pinene | 982 | 980 | 0.60 ± 0.06 | 27 | Pinanediol | 1320 | 1317 | 0.40 ± 0.12 |
5 | Myrcene | 992 | 991 | 0.60 ± 0.06 | 28 | p-Mentha-1,4-dien-7-ol | 1330 | 1331 | 0.40 ± 0.06 |
6 | α-Phellandrene | 1006 | 1003 | 0.30 ± 0.06 | 29 | α-Longipinene | 1334 | 1338 | 0.90 ± 0.15 |
7 | α-Terpinene | 1020 | 1017 | 0.90 ± 0.06 | 30 | Methyl eugenol | 1404 | 1403 | 0.40 ± 0.06 |
8 | p-Cymene | 1028 | 1026 | 6.00 ± 0.26 | 31 | β-Bisabolene | 1506 | 1508 | 0.50 ± 0.06 |
9 | Limonene | 1032 | 1029 | 5.20 ± 0.38 | 32 | Spathulenol | 1578 | 1576 | 0.70 ± 0.06 |
10 | γ-Terpinene | 1063 | 1060 | 2.50 ± 0.15 | 33 | Dillapiole | 1621 | 1623 | 13.00 ± 0.62 |
11 | Terpinolene | 1090 | 1089 | 1.10 ± 0.06 | 34 | β-Eudesmol | 1651 | 1650 | 1.00 ± 0.12 |
12 | cis-p-Menth- 2-en-1-ol | 1123 | 1122 | 1.80 ± 0.10 | 35 | (Z)-3-Butylidenephthalide | 1673 | 1677 | 8.50 ± 0.64 |
13 | α-Campholenal | 1125 | 1226 | 0.40 ± 0.06 | 36 | (E)-3-Butylidenephthalide | 1718 | 1716 | 3.90 ± 0.47 |
14 | trans-p-Menth- 2-en-1-ol | 1142 | 1141 | 0.90 ± 0.06 | 37 | (Z)-Ligustilide | 1741 | 1737 | 6.40 ± 0.62 |
15 | Camphor | 1145 | 1146 | 0.40 ± 0.06 | 38 | Hexahydrofarnesylacetone | 1845 | 1845 | 0.70 ± 0.10 |
16 | Sabinaketone | 1159 | 1159 | 0.80 ± 0.06 | Monoterpene hydrocarbons | 28.90 ± 1.97 | |||
17 | 4-Terpineol | 1179 | 1177 | 16.20 ± 1.46 | Oxygenated monoterpenes | 28.90 ± 1.37 | |||
18 | p-Cymen-8-ol | 1185 | 1183 | 1.40 ± 0.06 | Sesquiterpene hydrocarbons | 1.40 ± 0.20 | |||
19 | α-Terpineol | 1191 | 1189 | 1.10 ± 0.10 | Oxygenated sesquiterpenes | 1.60 ± 0.15 | |||
20 | p-Mentha-1,5- dien-7-ol | 1193 | 1194 | 0.30 ± 0.00 | Phenylpropanoids | 13.40 ± 0.68 | |||
21 | Myrtenal | 1194 | 1196 | 0.50 ± 0.06 | Apocarotenes | 0.70 ± 0.10 | |||
22 | Carvone | 1244 | 1243 | 0.50 ± 0.00 | Non-terpene derivatives | 18.90 ± 1.74 | |||
23 | trans-Ascaridol glicol | 1271 | 1269 | 0.40 ± 0.06 | Total identified | 93.80 ± 0.51 |
Composition (w/w) | Nanoemulsion (NE) | Blank NE |
---|---|---|
EO % | 1 | 0 |
Triacetin % | 10 | 10 |
Span 80% | 5.6 | 5.6 |
Ethanol % | 1 | 1 |
Tween 80% | 14.4 | 14.4 |
Deionized water % | 68 | 69 |
Group | Titer |
---|---|
G1 | NE/Gel preparation |
G2 | Blank NE/Gel (without EO) |
G3 | Conventional Emulsion/Gel “EmulGel” |
G4 | Non treated |
G5 | Commercialized medicinal cream (API: ß-sitostérol) “MEBO ®” |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bahloul, B.; Ben Bnina, E.; Hamdi, A.; Castillo Henríquez, L.; Baccar, D.; Kalboussi, N.; Abbassi, A.; Mignet, N.; Flamini, G.; Vega-Baudrit, J.R. Investigating the Wound-Healing Potential of a Nanoemulsion–Gel Formulation of Pituranthos tortuosus Essential Oil. Gels 2024, 10, 155. https://doi.org/10.3390/gels10030155
Bahloul B, Ben Bnina E, Hamdi A, Castillo Henríquez L, Baccar D, Kalboussi N, Abbassi A, Mignet N, Flamini G, Vega-Baudrit JR. Investigating the Wound-Healing Potential of a Nanoemulsion–Gel Formulation of Pituranthos tortuosus Essential Oil. Gels. 2024; 10(3):155. https://doi.org/10.3390/gels10030155
Chicago/Turabian StyleBahloul, Badr, Enis Ben Bnina, Assia Hamdi, Luis Castillo Henríquez, Dhaou Baccar, Nesrine Kalboussi, Aïmen Abbassi, Nathalie Mignet, Guido Flamini, and José Roberto Vega-Baudrit. 2024. "Investigating the Wound-Healing Potential of a Nanoemulsion–Gel Formulation of Pituranthos tortuosus Essential Oil" Gels 10, no. 3: 155. https://doi.org/10.3390/gels10030155