Preparation and Characterization of a Hypoglycemic Complex of Gallic Acid–Antarctic Krill Polypeptide Based on Polylactic Acid–Hydroxyacetic Acid (PLGA) and High-Pressure Microjet Microencapsulation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of GA-AKP Microemulsions
2.3. Preparation of GA-AKP-Ns
2.4. Characterization of GA-AKP Microemulsions
2.4.1. Microemulsion Particle Size, PDI, Zeta Potential Determination
2.4.2. Centrifugal Stability
2.4.3. Microemulsion Viscosity Measurement
2.4.4. Encapsulation Rate of GA and AKP
2.5. Characterization of GA-AKP Nanocapsules
2.5.1. Microscopic Morphology of Nanocapsules
2.5.2. Internal Drug Distribution of Nanocapsules
2.5.3. Fourier Transform Infrared Spectrometry (FTIR) Analysis
2.5.4. In Vitro Dissolution Experiment and Drug Release Kinetics of Nanocapsules
2.5.5. Moisture Absorption, Thermal and Storage Stability of Nanocapsules
2.6. Data Processing
3. Results
3.1. Characterization of GA-AKP Microemulsions
3.1.1. Effect of PLGA Mass Concentrations on Physicochemical Properties of Microemulsions
3.1.2. Effect of Jet Pressure on Physicochemical Properties of Microemulsions
3.1.3. Effect of Jet Cycles on Physicochemical Properties of Microemulsions
3.2. Microscopic Morphology of Nanocapsules
3.3. Laser Confocal Microscopy of Nanocapsules
3.4. FTIR Spectra of Nanocapsules
3.5. In Vitro Simulated Release of Nanocapsules
3.6. Nanocapsule GA-AKP Release Kinetic Equation
3.7. The Stability of the Nanocapsule
3.7.1. Thermal Stability
3.7.2. Hygroscopic Stability
3.7.3. Storage Stability of Nanocapsules
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rassoul, M.; Arash, K.; Taco, N. Modification of grass pea protein isolate (Lathyrus sativus L.) using high intensity ultrasound treatment: Structure and functional properties. Food Res. Int. 2022, 158, 111520. [Google Scholar] [CrossRef]
- Wang, S.S.; Wang, X.Y.; Liu, M.P.; Zhang, L.H.; Ge, Z.Z.; Zhao, G.Y.; Zong, W. Preparation and characterization of Eucommia ulmoides seed oil O/W nanoemulsion by dynamic high-pressure microfluidization. LWT 2020, 121, 108960. [Google Scholar] [CrossRef]
- Zhao, M.; van Straten, D.; Broekman, M.L.; Préat, V.; Schiffelers, R.M. Nanocarrier-based drug combination therapy for glioblastoma. Theranostics 2020, 10, 1355–1372. [Google Scholar] [CrossRef] [PubMed]
- Alotaibi, B.; El-Masry, T.A.; Elekhnawy, E.; El-Kadem, A.H.; Saleh, A.; Negm, W.A.; Abdelkader, D.H. Aqueous core epigallocatechin gallate PLGA nanocapsules: Characterization, antibacterial activity against uropathogens, and in vivo reno-protective effect in cisplatin induced nephrotoxicity. Drug Deliv. 2022, 29, 1848–1862. [Google Scholar] [CrossRef] [PubMed]
- Pang, H.; Huang, X.; Xu, Z.P.; Chen, C.; Han, F.Y. Progress in oral insulin delivery by PLGA nanoparticles for the management of diabetes. Drug Deliv. 2022, 28, 103393. [Google Scholar] [CrossRef] [PubMed]
- Ren, S.K.; Wang, C.X.; Guo, L.; Xu, C.C.; Wang, Y.; Sun, C.J.; Cui, H.X.; Zhao, X. Preparation and Sustained-Release Performance of PLGA Microcapsule Carrier System. Nanomaterials 2021, 11, 1758. [Google Scholar] [CrossRef] [PubMed]
- Agnihotri, S.A.; Mallikarjuna, N.N.; Aminabhavi, T.M. Recent advances on chitosan-based micro- and nanoparticles in drug delivery. J. Control. Release 2004, 100, 5–28. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Cheng, Y.; Wang, H.; Ye, B.F.; Shang, L.R.; Zhao, Y.J.; Gu, Z.Z. Multifunctional inverse opal particles for drug delivery and monitoring. Nanoscale 2015, 7, 10590–10594. [Google Scholar] [CrossRef] [PubMed]
- Lei, Y.F.; Hamada, Y.; Li, J.; Cong, L.M.; Wang, N.X.; Li, Y.; Zheng, W.F.; Jiang, X.Y. Targeted tumor delivery and controlled release of neuronal drugs with ferritin nanoparticles to regulate pancreatic cancer progression. J. Control. Release 2016, 232, 131–142. [Google Scholar] [CrossRef]
- Maurya, V.K.; Bashir, K.; Aggarwal, M. Vitamin D microencapsulation and fortification: Trends and technologies. J. Steroid Biochem. Mol. Biol. 2020, 196, 105489. [Google Scholar] [CrossRef]
- Tolve, R.B.; Cela, N.; Condelli, N.; Cairano, M.D.; Caruso, M.C.; Galgano, F. Microencapsulation as a Tool for the Formulation of Functional Foods: The Phytosterols’ Case Study. Foods 2020, 9, 470. [Google Scholar] [CrossRef] [PubMed]
- Tarone, A.G.; Cazarin, C.B.B.; Junior, M.R.M. Anthocyanins: New techniques and challenges in microencapsulation. Food Res. Int. 2020, 133, 109092. [Google Scholar] [CrossRef] [PubMed]
- Bakry, A.M.; Abbas, S.; Ali, B.; Majeed, H.; Abouelwafa, M.Y.; Mousa, A.; Liang, L. Microencapsulation of Oils: A Comprehensive Review of Benefits, Techniques, and Applications. Compr. Rev. Food. Sci. Food Saf. 2016, 15, 143–182. [Google Scholar] [CrossRef]
- Roopchand, D.E.; Kuhn, P.; Poulev, A.; Oren, A.; Lila, M.A.; Fridlender, B.; Raskin, I. Biochemical analysis and in vivo hypoglycemic activity of a grape polyphenol-soybean flour complex. J. Agric. Food Chem. 2012, 60, 8860–8865. [Google Scholar] [CrossRef] [PubMed]
- He, H.-L.; Chen, X.-L.; Wu, H.; Sun, C.-Y.; Zhang, Y.-Z.; Zhou, B.-C. High throughput and rapid screening of marine protein hydrolysates enriched in peptides with angiotensin-I-converting enzyme inhibitory activity by capillary electrophoresis. Bioresour. Technol. 2007, 98, 3499–3505. [Google Scholar] [CrossRef]
- Liu, L.L.; Zhang, X.D.; Zhang, M.P.Y.; Zhang, M.J.; Cheng, W.W.; Xu, B.C. Effect of Catechin on Yolk Immunoglobulin Structure and Properties: A Polyphenol–Protein Interaction Approach. Foods 2023, 12, 462. [Google Scholar] [CrossRef]
- Li, Y.N.; Yan, D.; Fu, F.F.; Liu, Y.X.; Zhang, B.; Wang, J.; Shang, L.R.; Gu, Z.Z.; Zhao, Y.J. Composite core-shell microparticles from microfluidics for synergistic drug delivery. Sci. China Mater. 2017, 60, 543–553. [Google Scholar] [CrossRef]
- Wu, M.X.; Yang, Q.X.; Wu, Y.W.; Jie, O.Y. Inhibitory effects of acorn (Quercus variabilis Blume) kernel-derived polyphenols on the activities of α-amylase, α-glucosidase, and dipeptidyl peptidase IV. Food Biosci. 2021, 43, 101224. [Google Scholar] [CrossRef]
- Zhang, Y.; Jiao, L.N.; Wu, Z.Y.; Gu, P.F.; Feng, Z.; Xu, S.W.; Liu, Z.G.; Yang, Y.; Wang, D.Y. Fabrication and characterization of Chinese yam polysaccharides PLGA nanoparticles stabilized Pickering emulsion as an efficient adjuvant. Int. J. Biol. Macromol. 2022, 209, 513–524. [Google Scholar] [CrossRef]
- Bai, Y.; Sun, Y.H.; Li, X.; Ren, J.Y.; Sun, C.H.; Chen, X.; Dong, X.P.; Qi, H. Phycocyanin/lysozyme nanocomplexes to stabilize Pickering emulsions for fucoxanthin encapsulation. Food Res. Int. 2023, 173, 113386. [Google Scholar] [CrossRef]
- Wei, X.L.; Li, J.; Eid, M.; Li, B. Fabrication and characterization of emulsions stabilized by tannic acid-wheat starch complexes. Food Hydrocoll. 2020, 107, 105728. [Google Scholar] [CrossRef]
- Xie, F.; Fang, Y.; Liu, X.; Cong, X.; Luo, Y.; Zhou, J.; Din, Z.-U.; Cheng, S.; Cai, J. Transformation of W/O/W emulsions and O/W/O emulsions for co-loading selenium-enriched peptide and vitamin E: Design and characteristics. J. Food Eng. 2024, 360, 111702. [Google Scholar] [CrossRef]
- Wang, N.; Wang, T.; Yu, Y.J.; Xing, K.W.; Qin, L.X.; Yu, D.Y. Dynamic high-pressure microfluidization assist in stabilizing hemp seed protein-gum Arabic bilayer emulsions: Rheological properties and oxidation kinetic model. Ind. Crop. Prod. 2023, 203, 117201. [Google Scholar] [CrossRef]
- Guo, X.J.; Chen, M.S.; Li, Y.T.; Dai, T.T.; Shuai, X.X.; Chen, J.; Liu, C.M. Modification of food macromolecules using dynamic high pressure microfluidization: A review. Trends Food Sci. Technol. 2020, 100, 223–234. [Google Scholar] [CrossRef]
- Jafari, S.M.; He, Y.; Bhandari, B. Effectiveness of encapsulating biopolymers to produce sub-micron emulsions by high energy emulsification techniques. Food Res. Int. 2007, 40, 862–873. [Google Scholar] [CrossRef]
- Trujillo-Cayado, L.A.; Alfaro, M.C.; Muñoz, J.; Raymundo, A.; Sousa, I. Development and rheological properties of ecological emulsions formulated with a biosolvent and two microbial polysaccharides. Colloids Surf. B Biointerfaces 2016, 141, 53–58. [Google Scholar] [CrossRef] [PubMed]
- Aouzelleg, A. High pressure control of protein structure and functionality. Nutr. Food Sci. 2014, 44, 41–46. [Google Scholar] [CrossRef]
- Williams, P.A. Food Emulsions: Principles, Practice, and Techniques. Int. J. Food Sci. Technol. 2001, 36, 223–224. [Google Scholar] [CrossRef]
- Meng, Q.Y.; Zhong, S.L.; He, S.H.; Gao, Y.; Cui, X.J. Constructing of pH and reduction dual-responsive folic acid-modified hyaluronic acid-based microcapsules for dual-targeted drug delivery via sonochemical method. Colloid Interface Sci. Commun. 2021, 44, 100503. [Google Scholar] [CrossRef]
- Wu, Q.-X.; Wang, D.-D.; Su, T.; Cheng, X.-D.; Xu, X.; Chen, Y. Self-assembly of polyelectrolyte complexes microcapsules with natural polysaccharides for sustained drug release. Cellulose 2017, 24, 4949–4962. [Google Scholar] [CrossRef]
- Jiang, Z.Y.; Zhao, S.J.; Yang, M.K.; Song, M.Y.; Li, J.; Zheng, J.K. Structurally stable sustained-release microcapsules stabilized by self-assembly of pectin-chitosan-collagen in aqueous two-phase system. Food Hydrocoll. 2022, 125, 107413. [Google Scholar] [CrossRef]
- Luo, Y.X.; Wang, F.L.; Yuan, X.Y.; Wang, K.X.; Sun, Q.J.; Wang, H.C.; Pu, C.F.; Tang, W.T. Walnut peptide loaded proliposomes with hydroxyapatite as a carrier: Fabrication, environmental stability, and in vitro digestion attribute. Food Res. Int. 2022, 162, 112057. [Google Scholar] [CrossRef] [PubMed]
- Karim, K.; Negin, S.; Reza, M.; Sadegh, A.M. Preparation and characterization of magnetic nanohydrogel based on chitosan for 5-fluorouracil drug delivery and kinetic study. Int. J. Biol. Macromol. 2022, 202, 191–198. [Google Scholar] [CrossRef]
- Zhu, W.W.; Long, J.J.; Shi, M.W. Release Kinetics Model Fitting of Drugs with Different Structures from Viscose Fabric. Materials 2023, 16, 3282. [Google Scholar] [CrossRef] [PubMed]
- Sezlev Bilecen, D.; Rodriguez-Cabello, J.C.; Uludag, H.; Hasirci, V. Construction of a PLGA based, targeted siRNA delivery system for treatment of osteoporosis. J. Biomater. Sci. Polym. Ed. 2017, 28, 1859–1873. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.Q.; Chen, X.X.; Wang, Y.; Guo, F.H.; Hu, S.; Hu, J.X.; Xiong, H.; Zhao, Q. Characteristics of rice dreg protein isolate treated by high-pressure microfluidization with and without proteolysis. Food Chem. 2021, 358, 129861. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Wei, Y.; Liao, W.Y.; Tong, Z.; Wang, Y.; Liu, J.F.; Gao, Y.X. Impact of trehalose on physicochemical stability of β-carotene high loaded microcapsules fabricated by wet-milling coupled with spray drying. Food Hydrocoll. 2021, 121, 106977. [Google Scholar] [CrossRef]
- Zhao, M.M.; Bai, J.W.; Bu, X.Y.; Yin, Y.T.; Wang, L.B.; Yang, Y.; Xu, Y.Q. Characterization of selenized polysaccharides from Ribes nigrum L. and its inhibitory effects on α-amylase and α-glucosidase. Carbohydr. Polym. 2021, 259, 117729. [Google Scholar] [CrossRef]
- Worku, D.D.; Admassu, E.S.; Debella, H.A.; Frehiwot, T.; Samuel, W.; Abiy, A.; Meron, S. Antihyperglycemic, Vasodilator, and Diuretic Activities of Microencapsulated Bioactive Product from Moringa stenopetala Leaves Extract. J. Food Qual. 2020, 2020, 8882042. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, M.; Chen, P.; Lin, Y.; Miao, S.; Bao, H. Preparation and Characterization of a Hypoglycemic Complex of Gallic Acid–Antarctic Krill Polypeptide Based on Polylactic Acid–Hydroxyacetic Acid (PLGA) and High-Pressure Microjet Microencapsulation. Foods 2024, 13, 1177. https://doi.org/10.3390/foods13081177
Li M, Chen P, Lin Y, Miao S, Bao H. Preparation and Characterization of a Hypoglycemic Complex of Gallic Acid–Antarctic Krill Polypeptide Based on Polylactic Acid–Hydroxyacetic Acid (PLGA) and High-Pressure Microjet Microencapsulation. Foods. 2024; 13(8):1177. https://doi.org/10.3390/foods13081177
Chicago/Turabian StyleLi, Mengjie, Puyu Chen, Yichen Lin, Song Miao, and Hairong Bao. 2024. "Preparation and Characterization of a Hypoglycemic Complex of Gallic Acid–Antarctic Krill Polypeptide Based on Polylactic Acid–Hydroxyacetic Acid (PLGA) and High-Pressure Microjet Microencapsulation" Foods 13, no. 8: 1177. https://doi.org/10.3390/foods13081177