Possibilities of the Development of Edible Insect-Based Foods in Europe
Abstract
:1. Introduction
2. Regulations Concerning Insect Production and Sales in the World and in Europe
- –
- Dried crickets (Gryllodes sigillatus), EFSA-Q-2018-00263;
- –
- Whole and grinded lesser mealworm (Alphitobius diaperinus) larvae products, EFSA-Q-2018-00282;
- –
- Locusta migratoria, EFSA-Q-2018-00513,
- –
- Acheta domesticus, EFSA-Q-2018-00543,
- –
- Mealworm (Tenebrio Molitor), EFSA-Q-2018-00746
- –
- Whole and ground mealworms (Tenebrio molitor) larvae, EFSA-Q-2019-00101;
- –
- Whole and ground grasshoppers (Locusta migratoria), EFSA-Q-2019-00115;
- –
- Whole and ground crickets (Acheta domesticus), EFSA-Q-2019-00121;
- –
- Defatted whole cricket (Acheta domesticus) powder, EFSA-Q-2019-00589;
- –
- Tenebrio molitor (mealworm) flour, EFSA-Q-2019-00748;
- –
- Dried Acheta domesticus, EFSA-Q-2020-00748 [18].
3. Description of Selected Insects
3.1. Grasshopper (Orthoptera)
3.2. Cricket (Orthoptera)
3.3. Locust (Othoptera)
3.4. Mealworm (Coleoptera)
3.5. Buffalo Worms (Coleoptera)
3.6. Silkworms
4. Insect Consumption Preferences in Europe
5. Hazards Related to the Production and Consumption of Insects in Europe
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Feng, Y.; Chen, X.-M.; Zhao, M.; He, Z.; Sun, L.; Wang, C.-Y.; Ding, W.-F. Edible insects in China: Utilization and prospects. Insect Sci. 2018, 25, 184–198. [Google Scholar] [CrossRef]
- Müller, A. Insects as Food in Laos and Thailand: A Case of “Westernisation”? Asian J. Soc. Sci. 2019, 47, 204–223. [Google Scholar] [CrossRef]
- Raheem, D.; Carrascosa, C.; Oluwole, O.B.; Nieuwland, M.; Saraiva, A.; Millán, R.; Raposo, A. Traditional consumption of and rearing edible insects in Africa, Asia and Europe. Crit. Rev. Food Sci. Nutr. 2019, 59, 2169–2188. [Google Scholar] [CrossRef]
- Payne, C.L.R.; Scarborough, P.; Rayner, M.; Nonaka, K. A systematic review of nutrient composition data available for twelve commercially available edible insects, and comparison with reference values. Trends Food Sci. Technol. 2016, 47, 69–77. [Google Scholar] [CrossRef]
- Sogari, G.; Liu, A.; Li, J. Understanding Edible Insects as Food in Western and Eastern Societies. Adv. Bus. Strategy Compet. Advant. 2018, 166–181. [Google Scholar] [CrossRef] [Green Version]
- Yen, A.L. Insects as food and feed in the Asia Pacific region: Current perspectives and future directions. J. Insects Food Feed. 2015, 1, 33–55. [Google Scholar] [CrossRef]
- Carcea, M. Quality and nutritional/textural properties of durum wheat pasta enriched with cricket powder. Foods 2020, 9, 1298. [Google Scholar] [CrossRef]
- Dobermann, D.; Swift, J.A.; Field, L.M. Opportunities and hurdles of edible insects for food and feed. Nutr. Bull. 2017, 42, 293–308. [Google Scholar] [CrossRef] [Green Version]
- Halloran, A.; Flore, R.; Vantomme, P.; Roos, N. Edible Insects in Sustainable Food Systems; Springer Nature: Cham, Switzerland, 2018. [Google Scholar] [CrossRef]
- Livestock in the Balance THE STATE OF FOOD AND AGRICULTURE. Published Online 2009. Available online: http://www.fao.org/catalog/inter-e.htm (accessed on 1 December 2020).
- The European Parliament and the Council of the European Union. Regulation (EC) No 258/97 of the European Parliament and of the Council (27 January 1991) concerning novel foods and novel food ingredients. Off. J. Eur. Comm 1997, L43, 1–6. [Google Scholar]
- Risk profile related to production and consumption of insects as food and feed. EFSA J. 2015, 13, 4257. [CrossRef] [Green Version]
- The European Parliament and the Council of the European Union. Regulation (EC) No 178/2002 of the European Parliament and of the Council (28 January 2002) laying down the general principles and requirements of food law, establishing the European Food Safety Authority and laying down procedures in matters of food safety. Off. J. Eur. Comm 2002, L31, 1–24. [Google Scholar]
- The European Parliament and the Council of the European Union. Regulation (EU) 2015/2283 of the European Parliament and of the Council (25 November 2015) on novel foods, amending Regulation (EU) No 1169/2011 of the European Parliament and of the Council and repealing Regulation (EC) No 258/97 of the European Parliament and of the Council and Commission Regulation (EC) No 1852/2001. Off. J. Eur. Union 2015, L327, 1–22. [Google Scholar]
- Bird&Bird. Briefing Note: Impact of the CJEU Judgement on the Novel Food Status of Edible Insects in the EU. Available online: https://ipiff.org/wp-content/uploads/2020/10/Briefing-note-Impact-of-the-CJEU-judgement-on-the-novel-food-status-of-edible-insects-in-the-EU.pdf (accessed on 3 December 2020).
- European Commission. Commission Implementing Regulation (EU) 2017/2470 (20 December 2017) establishing the Union list of novel foods in accordance with Regulation (EU) 2015/2283 of the European Parliament and of the Council on novel foods. Off. J. Eur. Union 2017, L351, 72–201. [Google Scholar]
- European Commission. Commission Delegated Regulation (EU) 2019/625 (4 March 2019) supplementing Regulation (EU) 2017/625 of the European Parliament and of the Council with regard to requirements for the entry into the Union of consignments of certain animals and goods intended for human consumption. Off. J. Eur. Union 2019, L131, 18–30. [Google Scholar]
- Register of Questions out of Service | European Food Safety Authority. Available online: https://www.efsa.europa.eu/en/register-of-questions (accessed on 29 January 2021).
- Durst, P.B.; Johnson, D.V.; Leslie, R.N.; Shono, K. Forest Insects as Food: Humans Bite Back. In Proceedings of the a Workshop on Asia-Pacific Resources and Their Potential for Development, Chiang Mai, Thailand, 19–21 February 2008. [Google Scholar]
- Rumpold, B.A.; Schlüter, O.K. Nutritional composition and safety aspects of edible insects. Mol. Nutr. Food Res. 2013, 57, 802–823. [Google Scholar] [CrossRef]
- Jonas-Levi, A.; Martinez, J.J.I. The high level of protein content reported in insects for food and feed is overestimated. J. Food Compos. Anal. 2017, 62, 184–188. [Google Scholar] [CrossRef]
- Kouřimská, L.; Adámková, A. Nutritional and sensory quality of edible insects. NFS J. 2016, 4, 22–26. [Google Scholar] [CrossRef] [Green Version]
- Gravel, A.; Doyen, A. The use of edible insect proteins in food: Challenges and issues related to their functional properties. Innov. Food Sci. Emerg. Technol. 2020, 59. [Google Scholar] [CrossRef]
- Gahukar, R.T. Entomophagy and human food security. Int. J. Trop. Insect Sci. 2011, 31, 129–144. [Google Scholar] [CrossRef] [Green Version]
- Shockley, M.; Dossey, A.T. Insects for Human Consumption. In Mass Production of Beneficial Organisms: Invertebrates and Entomopathogens; Elsevier Inc.: Amsterdam, The Netherlands, 2013; pp. 617–652. [Google Scholar] [CrossRef]
- van Huis, A.; Oonincx, D.G.A.B. The environmental sustainability of insects as food and feed. A review. Agron. Sustain. Dev. 2017, 37, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Finke, M.D. Estimate of chitin in raw whole insects. Zoo Biol. 2007, 26, 105–115. [Google Scholar] [CrossRef]
- Siulapwa, N.; Mwambungu, A.; Lungu, E.; Sichilima, W. Nutritional Value of Four Common Edible Insects in Zambia. Int. J. Sci. Res. 2014, 3, 876–884. [Google Scholar]
- Jantzen da Silva Lucas, A.; Quadro Oreste, E.; Leão Gouveia Costa, H.; Martín López, H.; Dias Medeiros Saad, C.; Prentice, C. Extraction, physicochemical characterization, and morphological properties of chitin and chitosan from cuticles of edible insects. Food Chem. 2020. [Google Scholar] [CrossRef]
- Blásquez, J.R.-E.; Moreno, J.M.P.; Camacho, V.H.M. Could Grasshoppers Be a Nutritive Meal? Food Nutr. Sci. 2012, 03, 164–175. [Google Scholar] [CrossRef] [Green Version]
- Kinyuru, J.N.; Kenji, G.M.; Muhoho, S.N.; Ayieko, M. Nutritional Potential of Longhorn Grasshopper (Ruspolia Differens) Consumed in Siaya District, Kenya. J. Agric. Sci. Technol. 2010, 12, 32–46. [Google Scholar]
- Lehtovaara, V.; Valtonen, A.; Sorjonen, J.; Hiltunen, M.; Rutaro, K.; Malinga, G.; Nyeko, P.; Roininen, H. The fatty acid contents of the edible grasshopper Ruspolia differens can be manipulated using artificial diets. J. Insects Food Feed. 2017, 3, 253–262. [Google Scholar] [CrossRef]
- Ademolu, K.O.; Idowu, A.B.; Olatunde, G.O. Nutritional Value Assessment of Variegated Grasshopper, Zonocerus variegatus (L.) (Acridoidea: Pygomorphidae), During Post-Embryonic Development. Afr. Entomol. 2010, 18, 360–364. [Google Scholar] [CrossRef]
- Zamudio-Flores, P.B.; Hernández-Gonzaléz, M.; García-Cano, V.G. Food supplements from a Grasshopper: A developmental stage-wise evaluation of amino acid profile, protein and vitamins in Brachystola magna (Girard). Emir. J. Food Agric. 2019, 31, 561–568. [Google Scholar] [CrossRef]
- Das, M.; Mandal, S.K. Oxya hyla hyla (Orthoptera: Acrididae) as an Alternative Protein Source for Japanese Quail. Int. Sch. Res. Not. 2014, 2014, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Ssepuuya, G.; Aringo, R.O.; Mukisa, I.M.; Nakimbugwe, D. Effect of processing, packaging and storage-temperature based hurdles on the shelf stability of sautéed ready-to-eat Ruspolia nitidula. J. Insects Food Feed. 2016, 2, 245–253. [Google Scholar] [CrossRef]
- Mutungi, C.; Irungu, F.G.; Nduko, J.; Mutua, F.; Affognon, H.D.; Nakimbugwe, D.; Ekesi, S.; Fiaboe, K.K.M. Critical Reviews in Food Science and Nutrition Postharvest processes of edible insects in Africa: A review of processing methods, and the implications for nutrition, safety and new products development. Crit. Rev. Food Sci. Nutr. 2017, 18, 41. [Google Scholar] [CrossRef] [Green Version]
- Kinyuru, J.N.; Kenji, G.M.; Njoroge, S.M.; Ayieko, M. Effect of processing methods on the in vitro protein digestibility and vitamin content of edible winged termite (Macrotermes subhylanus) and grasshopper (Ruspolia differens). Food Bioprocess Technol. 2010, 3, 778–782. [Google Scholar] [CrossRef]
- Kim, H.-S.; Kim, Y.-J.; Chon, J.-W.; Kim, D.-H.; Song, K.-Y.; Kim, H.; Seo, K.-H. Organoleptic Evaluation of the High-Protein Yoghurt containing the Edible Insect Oxya chinensis sinuosa (Grasshopper): A Preliminary Study. J. Milk Sci. Biotechnol. 2017, 35, 266–269. [Google Scholar] [CrossRef] [Green Version]
- Collavo, A.; Glew, R.H.; Huang, Y.-S.; Chuang, L.-T.; Bosse, R.; Paoletti, M.G. Housekricket Smallscale Farming in Ecological Implications of Minilivestock: Potential of Insects, Rodents, Frogs and Snails. View Project; Science Publisher: Enfield, NH, USA, 2005; pp. 515–540. [Google Scholar]
- Montowska, M.; Kowalczewski, P.Ł.; Rybicka, I.; Fornal, E. Nutritional value, protein and peptide composition of edible cricket powders. Food Chem. 2019, 289, 130–138. [Google Scholar] [CrossRef] [PubMed]
- Kulma, M.; Kouřimská, L.; Plachý, V.; Božik, M.; Adámková, A.; Vrabec, V. Effect of sex on the nutritional value of house cricket, Acheta domestica L. Food Chem. 2019, 272, 267–272. [Google Scholar] [CrossRef] [PubMed]
- Carolyne, K.; John, N.K.; Samuel, I.; Nanna, R. Use of house cricket to address food security in Kenya: Nutrient and chitin composition of farmed crickets as influenced by age. Afr. J. Agric. Res. 2017, 12, 3189–3197. [Google Scholar] [CrossRef] [Green Version]
- Osimani, A.; Milanović, V.; Cardinali, F.; Roncolini, A.; Garofalo, C.; Clementi, F.; Pasquini, M.; Mozzon, M.; Foligni, R.; Raffaelli, N.; et al. Bread enriched with cricket powder (Acheta domesticus): A technological, microbiological and nutritional evaluation. Innov. Food Sci. Emerg. Technol. 2018, 48, 150–163. [Google Scholar] [CrossRef]
- Burt, K.G.; Kotao, T.; Lopez, I.; Koeppel, J.; Goldstein, A.; Samuel, L.; Stopler, M. Acceptance of Using Cricket Flour as a Low Carbohydrate, High Protein, Sustainable Substitute for All-Purpose Flour in Muffins. J. Culin. Sci. Technol. 2020, 18, 201–213. [Google Scholar] [CrossRef]
- González, C.M.; Garzón, R.; Rosell, C.M. Insects as ingredients for bakery goods. A comparison study of H. illucens, A. domestica and T. molitor flours. Innov. Food Sci. Emerg. Technol. 2019, 51, 205–210. [Google Scholar] [CrossRef]
- Barton, A.; Richardson, C.D.; McSweeney, M.B. Consumer attitudes toward entomophagy before and after evaluating cricket (Acheta domesticus)-based protein powders. J. Food Sci. 2020, 85, 781–788. [Google Scholar] [CrossRef]
- Nissen, L.; Samaei, S.P.; Babini, E.; Gianotti, A. Gluten free sourdough bread enriched with cricket flour for protein fortification: Antioxidant improvement and Volatilome characterization. Food Chem. 2020, 333, 127410. [Google Scholar] [CrossRef]
- da Rosa Machado, C.; Thys, R.C.S. Cricket powder (Gryllus assimilis) as a new alternative protein source for gluten-free breads. Innov. Food Sci. Emerg. Technol. 2019, 56, 102180. [Google Scholar] [CrossRef]
- Hall, F.G.; Jones, O.G.; O’Haire, M.E.; Liceaga, A.M. Functional properties of tropical banded cricket (Gryllodes sigillatus) protein hydrolysates. Food Chem. 2017, 224, 414–422. [Google Scholar] [CrossRef] [PubMed]
- Zielińska, E.; Baraniak, B.; Karaś, M.; Rybczyńska, K.; Jakubczyk, A. Selected species of edible insects as a source of nutrient composition. Food Res. Int. 2015, 77, 460–466. [Google Scholar] [CrossRef]
- Kim, H.-W.; Setyabrata, D.; Lee, Y.; Jones, O.G.; Kim, Y.H.B. Effect of House Cricket (Acheta domesticus) Flour Addition on Physicochemical and Textural Properties of Meat Emulsion Under Various Formulations. J. Food Sci. 2017, 82, 2787–2793. [Google Scholar] [CrossRef] [Green Version]
- Dion-Poulin, A.; Laroche, M.; Doyen, A.; Turgeon, S.L. Functionality of Cricket and Mealworm Hydrolysates Generated after Pretreatment of Meals with High Hydrostatic Pressures. Molecules 2020, 25, 5366. [Google Scholar] [CrossRef]
- Clarkson, C.; Mirosa, M.; Birch, J. Potential of Extracted Locusta Migratoria Protein Fractions as Value-Added Ingredients. Insects 2018, 9, 20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohamed, E. Determination of Nutritive Value of the Edible Migratory Locust Locusta Migratoria, Linnaeus, 1758 (Orthoptera: Acrididae). Int. J. Adv. Pharm. Biol. Chem. 2015, 4, 144–148. [Google Scholar]
- Oonincx, D.G.A.B.; van der Poel, A.F.B. Effects of diet on the chemical composition of migratory locusts (Locusta migratoria). Zoo Biol. 2010, 30. [Google Scholar] [CrossRef] [PubMed]
- Purschke, B.; Meinlschmidt, P.; Horn, C.; Rieder, O.; Jäger, H. Improvement of techno-functional properties of edible insect protein from migratory locust by enzymatic hydrolysis. Eur. Food Res. Technol. 2018, 244, 999–1013. [Google Scholar] [CrossRef] [Green Version]
- Purschke, B.; Tanzmeister, H.; Meinlschmidt, P.; Baumgartner, S.; Lauter, K.; Jäger, H. Recovery of soluble proteins from migratory locust (Locusta migratoria) and characterisation of their compositional and techno-functional properties. Food Res. Int. 2018, 106, 271–279. [Google Scholar] [CrossRef]
- Sabolová, M.; Adámková, A.; Kouřimská, L.; Chrpová, D.; Pánek, J. Minor lipophilic compounds in edible insects. Potravin. Slovak J. Food Sci. 2016, 10, 400–406. [Google Scholar] [CrossRef] [Green Version]
- Schlüter, O.; Rumpold, B.; Holzhauser, T.; Roth, A.; Vogel, R.F.; Quasigroch, W.; Vogel, S.; Heinz, V.; Jäger, H.; Bandick, N.; et al. Safety aspects of the production of foods and food ingredients from insects. Mol. Nutr. Food Res. 2017, 61, 1600520. [Google Scholar] [CrossRef] [PubMed]
- Akande, A.O.; Jolayemi, O.S.; Adelugba, V.A.; Akande, S.T. Silkworm pupae (Bombyx mori) and locusts as alternative protein sources for high-energy biscuits. J. Asia Pac. Entomol. 2020, 23, 234–241. [Google Scholar] [CrossRef]
- Cheseto, X.; Baleba, S.B.S.; Tanga, C.M.; Kelemu, S.; Torto, B. Chemistry and Sensory Characterization of a Bakery Product Prepared with Oils from African Edible Insects. Foods 2020, 9, 800. [Google Scholar] [CrossRef] [PubMed]
- Peng, W.; Ma, N.L.; Zhang, D.; Zhou, Q.; Yue, X.; Khoo, S.C.; Yang, H.; Guan, R.; Chen, H.; Zhang, X.; et al. A review of historical and recent locust outbreaks: Links to global warming, food security and mitigation strategies. Environ. Res. 2020, 191, 110046. [Google Scholar] [CrossRef] [PubMed]
- Yezerski, A.; Gilmor, T.P.; Stevens, L. Genetic analysis of benzoquinone production in Tribolium confusum. J. Chem. Ecol. 2004, 30, 1035–1044. [Google Scholar] [CrossRef] [PubMed]
- Rumbos, C.I.; Karapanagiotidis, I.T.; Mente, E.; Psofakis, P.; Athanassiou, C.G. Evaluation of various commodities for the development of the yellow mealworm, Tenebrio molitor. Sci. Rep. 2020, 10. [Google Scholar] [CrossRef]
- Yang, S.-S.; Chen, Y.-D.; Zhang, Y.; Zhou, H.-M.; Ji, X.-Y.; He, L.; Xing, D.-F.; Ren, N.-Q.; Ho, S.-H.; Wu, W.-M. A novel clean production approach to utilize crop waste residues as co-diet for mealworm (Tenebrio molitor) biomass production with biochar as byproduct for heavy metal removal. Environ. Pollut. 2019, 252, 1142–1153. [Google Scholar] [CrossRef] [PubMed]
- Hong, J.; Han, T.; Kim, Y.Y. Mealworm (Tenebrio molitor Larvae) as an Alternative Protein Source for Monogastric Animal: A Review. Animals 2020, 10, 2068. [Google Scholar] [CrossRef]
- Biasato, I.; Gasco, L.; De Marco, M.; Renna, M.; Rotolo, L.; Dabbou, S.; Capucchio, M.; Biasibetti, E.; Tarantola, M.; Sterpone, L.; et al. Yellow mealworm larvae (Tenebrio molitor) inclusion in diets for male broiler chickens: Effects on growth performance, gut morphology, and histological findings. Poult. Sci. 2018, 97, 540–548. [Google Scholar] [CrossRef]
- Roncolini, A.; Milanović, V.; Cardinali, F.; Osimani, A.; Garofalo, C.; Sabbatini, R.; Clementi, F.; Pasquini, M.; Mozzon, M.; Foligni, R.; et al. Protein fortification with mealworm (Tenebrio molitor L.) powder: Effect on textural, microbiological, nutritional and sensory features of bread. PLoS ONE. 2019, 14, e0211747. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.J.; Kim, J.H.; Ji, D.S.; Lee, C.H. Effects of heating time and temperature on functional properties of proteins of yellow mealworm larvae (Tenebrio molitor L.). Food Sci. Anim. Resour. 2019, 39, 296–308. [Google Scholar] [CrossRef]
- Borremans, A.; Bußler, S.; Sagu, S.T.; Rawel, H.; Schlüter, O.K.; Leen, V.C. Effect of Blanching Plus Fermentation on Selected Functional Properties of Mealworm (Tenebrio molitor) Powders. Foods 2020, 9, 917. [Google Scholar] [CrossRef]
- Aguilar-Miranda, E.D.; Lopez, M.G.; Escamilla-Santana, C.; Barba de la Rosa, A.P. Characteristics of maize flour tortilla supplemented with ground Tenebrio molitor larvae. J. Agric. Food Chem. 2002, 50, 192–195. [Google Scholar] [CrossRef] [PubMed]
- Finke, M.D. Complete nutrient composition of commercially raised invertebrates used as food for insectivores. Zoo Biol. 2002, 21, 269–285. [Google Scholar] [CrossRef]
- Adámková, A.; Kourimská, L.; Borkovcová, M.; Kulma, M.; Mlček, J. Nutritional values of edible Coleoptera (Tenebrio molitor, Zophobas morio and Alphitobius diaperinus) reared in the Czech Republic. Potravin. Slovak J. Food Sci. 2016, 10, 663–671. [Google Scholar] [CrossRef] [Green Version]
- Roncolini, A.; Milanović, V.; Aquilanti, L.; Cardinali, F.; Garofalo, C.; Sabbatini, R.; Clementi, F.; Belleggia, L.; Pasquini, M.; Mozzon, M.; et al. Lesser mealworm (Alphitobius diaperinus) powder as a novel baking ingredient for manufacturing high-protein, mineral-dense snacks. Food Res. Int. 2020, 131. [Google Scholar] [CrossRef] [PubMed]
- Yi, L.; Lakemond, C.M.M.; Sagis, L.M.C.; Eisner-Schadler, V.; Huis AVan Boekel, M.A.J.S.V. Extraction and characterisation of protein fractions from five insect species. Food Chem. 2013, 141, 3341–3348. [Google Scholar] [CrossRef]
- Bosch, G.; Zhang, S.; Oonincx, D.G.A.B.; Hendriks, W.H. Protein quality of insects as potential ingredients for dog and cat foods. J. Nutr. Sci. 2014, 3, 1–4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Broekhoven, S.; Mota Gutierrez, J.; De Rijk, T.C.; De Nijs, W.C.M.; Van Loon, J.J.A. Degradation and excretion of the Fusarium toxin deoxynivalenol by an edible insect, the Yellow mealworm (Tenebrio molitor L.). World Mycotoxin J. 2017, 10, 163–169. [Google Scholar] [CrossRef]
- Mwangi, M.N.; Oonincx, D.G.A.B.; Stouten, T.; Veenenbos, M.; Melse-Boonstra, A.; Dicke, M.; Van Loon, J.J.A. Insects as sources of iron and zinc in human nutrition. Nutr. Res. Rev. 2018, 31, 248–255. [Google Scholar] [CrossRef]
- Latunde-Dada, G.O.; Yang, W.; Vera Aviles, M. In Vitro Iron Availability from Insects and Sirloin Beef. J. Agric. Food Chem. 2016, 64, 8420–8424. [Google Scholar] [CrossRef] [PubMed]
- Thakur, A.; Thakur, N.S. Entomophagy (insects as human food): A step towards food security—ENTOMOPHAGY. Insects Hum. Food 2017. [Google Scholar] [CrossRef]
- Omotoso, O.T. An evaluation of the nutrients and some anti-nutrients in Silkworm, Bombyxmori L. (Bombycidae: Lepidoptera). Jordan J. Biol. Sci. 2015, 8, 45–50. [Google Scholar] [CrossRef] [Green Version]
- Biró, B.; Fodor, R.; Szedljak, I.; Pásztor-Huszár, K.; Gere, A. Buckwheat-pasta enriched with silkworm powder: Technological analysis and sensory evaluation. LWT 2019, 116, 108542. [Google Scholar] [CrossRef]
- He, W.; He, K.; Sun, F.; Mu, L.; Liao, S.; Li, Q.; Yi, J.; Liu, Z.; Wu, X. Effect of heat, enzymatic hydrolysis and acid-alkali treatment on the allergenicity of silkworm pupa protein extract. Food Chem. 2020, 128461. [Google Scholar] [CrossRef] [PubMed]
- Meyer-Rochow, V.B.; Hakko, H. Can edible grasshoppers and silkworm pupae be tasted by humans when prevented to see and smell these insects? J. Asia Pac. Entomol. 2018, 21, 616–619. [Google Scholar] [CrossRef]
- Alley, T.R.; Potter, K.A. Food Neophobia and Sensation Seeking. In Handbook of Behavior, Food and Nutrition; Springer: New York, NY, USA, 2011; pp. 707–724. [Google Scholar] [CrossRef]
- Mishyna, M.; Chen, J.; Benjamin, O. Sensory attributes of edible insects and insect-based foods—Future outlooks for enhancing consumer appeal. Trends Food Sci. Technol. 2020, 95, 141–148. [Google Scholar] [CrossRef]
- Govorushko, S. Global status of insects as food and feed source: A review. Trends Food Sci. Technol. 2019, 91, 436–445. [Google Scholar] [CrossRef]
- Tan, H.S.G.; House, J. Consumer acceptance of insects as food: Integrating psychological and socio-cultural perspectives. In Edible Insects in Sustainable Food Systems; Springer International Publishing: Berlin/Heidelberg, Germany, 2018; pp. 375–386. [Google Scholar] [CrossRef]
- Halloran, A.; Flore, R.; Mercier, C. Notes from the “Insects in a gastronomic context” workshop in Bangkok, Thailand. J. Insects Food Feed. 2015, 1, 241–243. [Google Scholar] [CrossRef]
- Lammers, P.; Ullmann, L.M.; Fiebelkorn, F. Acceptance of insects as food in Germany: Is it about sensation seeking, sustainability consciousness, or food disgust? Food Qual. Prefer. 2019, 77, 78–88. [Google Scholar] [CrossRef]
- Rumpold, B.A.; Langen, N. Potential of enhancing consumer acceptance of edible insects via information. J. Insects Food Feed. 2019, 5, 45–53. [Google Scholar] [CrossRef]
- Hartmann, C.; Bearth, A. Bugs on the Menu: Drivers and Barriers of Consumer Acceptance of Insects as Food. In Edible Insects in the Food Sector; Springer International Publishing: Berlin/Heidelberg, Germany, 2019; pp. 45–55. [Google Scholar] [CrossRef]
- Wilkinson, K.; Muhlhausler, B.; Motley, C.; Crump, A.; Bray, H.; Ankeny, R. Australian Consumers’ Awareness and Acceptance of Insects as Food. Insects 2018, 9, 44. [Google Scholar] [CrossRef] [Green Version]
- Sogari, G.; Bogueva, D.; Marinova, D. Australian Consumers’ Response to Insects as Food. Agriculture 2019, 9, 108. [Google Scholar] [CrossRef] [Green Version]
- Dupont, J.; Fiebelkorn, F. Attitudes and acceptance of young people toward the consumption of insects and cultured meat in Germany. Food Qual. Prefer. 2020, 85, 103983. [Google Scholar] [CrossRef]
- Toti, E.; Massaro, L.; Kais, A.; Aiello, P.; Palmery, M.; Peluso, I. Entomophagy: A Narrative Review on Nutritional Value, Safety, Cultural Acceptance and A Focus on the Role of Food Neophobia in Italy. Eur. J. Investig. Heal. Psychol. Educ. 2020, 10, 628–643. [Google Scholar] [CrossRef]
- House, J. Consumer acceptance of insect-based foods in the Netherlands: Academic and commercial implications. Appetite 2016, 107, 47–58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cicatiello, C.; Vitali, A.; Lacetera, N. How does it taste? Appreciation of insect-based snacks and its determinants. Int. J. Gastron. Food Sci. 2020, 21, 100211. [Google Scholar] [CrossRef]
- Adámek, M.; Adámková, A.; Mlček, J.; Borkovcová, M.; Bednářová, M. Acceptability and sensory evaluation of energy bars and protein bars enriched with edible insect. Potravin. Slovak J. Food Sci. 2018, 12, 431–437. [Google Scholar] [CrossRef] [Green Version]
- Megido, R.C.; Gierts, C.; Blecker, C.; Brostaux, Y.; Haubruge, É.; Alabi, T.; Francis, F. Consumer acceptance of insect-based alternative meat products in Western countries. Food Qual. Prefer. 2016, 52, 237–243. [Google Scholar] [CrossRef]
- García-Segovia, P.; Igual, M.; Martínez-Monzó, J. Physicochemical Properties and Consumer Acceptance of Bread Enriched with Alternative Proteins. Foods 2020, 9, 933. [Google Scholar] [CrossRef] [PubMed]
- Duda, A.; Adamczak, J.; Chełmí Nska, P.; Juszkiewicz, J.; Kowalczewski, P. Quality and Nutritional/Textural Properties of Durum Wheat Pasta Enriched with Cricket Powder. Foods 2019, 8, 46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Biró, B.; Sipos, M.A.; Kovács, A.; Badak-Kerti, K.; Pásztor-Huszár, K.; Gere, A. Cricket-Enriched Oat Biscuit: Technological Analysis and Sensory Evaluation. Foods 2020, 9, 1561. [Google Scholar] [CrossRef] [PubMed]
- Ruby, M.B.; Rozin, P.; Chan, C. Determinants of willingness to eat insects in the USA and India. J. Insects Food Feed. 2015, 1, 215–225. [Google Scholar] [CrossRef]
- Kim, H.W.; Setyabrata, D.; Lee, Y.J.; Jones, O.G.; Kim, Y.H.B. Pre-treated mealworm larvae and silkworm pupae as a novel protein ingredient in emulsion sausages. Innov. Food Sci. Emerg. Technol. 2016, 38, 116–123. [Google Scholar] [CrossRef]
- Çabuk, B.; Yılmaz, B. Fortification of traditional egg pasta (erişte) with edible insects: Nutritional quality, cooking properties and sensory characteristics evaluation. J. Food Sci. Technol. 2020, 57, 2750–2757. [Google Scholar] [CrossRef]
- Skotnicka, M.; Ocieczek, A.; Małgorzewicz, S. Satiety value of groats in healthy women as affected by selected physicochemical parameters. Int. J. Food Prop. 2018, 21, 1138–1151. [Google Scholar] [CrossRef] [Green Version]
- Berggren, Å.; Jansson, A.; Low, M. Approaching Ecological Sustainability in the Emerging Insects-as-Food Industry. Trends Ecol. Evol. 2019, 34, 132–138. [Google Scholar] [CrossRef] [Green Version]
- Megido, R.C.; Sablon, L.; Geuens, M.; Brostaux, Y.; Alabi, T.; Blecker, C.; Drugmand, D.; Haubruge, É.; Francis, F. Edible insects acceptance by belgian consumers: Promising attitude for entomophagy development. J. Sens. Stud. 2014, 29, 14–20. [Google Scholar] [CrossRef]
- van der Fels-Klerx, H.J.; Camenzuli, L.; Belluco, S.; Meijer, N.; Ricci, A. Food Safety Issues Related to Uses of Insects for Feeds and Foods. Compr. Rev. Food Sci. Food Saf. 2018, 17, 1172–1183. [Google Scholar] [CrossRef] [Green Version]
- Mlček, J.; Adámek, M.; Adámková, A.; Borkovcová, M.; Bednářová, M.; Skácel, J. Detection of selected heavy metals and micronutrients in edible insect and their dependency on the feed using XRF spectrometry. Potravin. Slovak J. Food Sci. 2017, 11, 725–730. [Google Scholar] [CrossRef] [Green Version]
- Purschke, B.; Scheibelberger, R.; Axmann, S.; Adler, A.; Jäger, H. Impact of substrate contamination with mycotoxins, heavy metals and pesticides on the growth performance and composition of black soldier fly larvae (Hermetia illucens) for use in the feed and food value chain. Food Addit. Contam. Part A 2017, 34, 1410–1420. [Google Scholar] [CrossRef] [PubMed]
- Schrögel, P.; Wätjen, W. Insects for Food and Feed-Safety Aspects Related to Mycotoxins and Metals. Foods 2019, 8, 288. [Google Scholar] [CrossRef] [Green Version]
- Charlton, A.; Dickinson, M.; Wakefield, M.; Fitches, E.; Kenis, M.; Han, R.; Zhu, F.; Kone, N.; Grant, M.; Devic, E.; et al. Exploring the chemical safety of fly larvae as a source of protein for animal feed. J. Insects Food Feed. 2015, 1, 7–16. [Google Scholar] [CrossRef]
- Tedjiotsop Feudjio, F.; Dornetshuber, R.; Lemmens, M.; Hoffmann, O.; Lemmens-Gruber, R.; Berger, W. Beauvericin and enniatin: Emerging toxins and/or remedies? World Mycotoxin J. 2010, 3, 415–430. [Google Scholar] [CrossRef]
- Bosch, G.; Fels-Klerx, H.; Rijk, T.; Oonincx, D. Aflatoxin B1 Tolerance and Accumulation in Black Soldier Fly Larvae (Hermetia illucens) and Yellow Mealworms (Tenebrio molitor). Toxins 2017, 9, 185. [Google Scholar] [CrossRef] [PubMed]
- Poma, G.; Cuykx, M.; Amato, E.; Calaprice, C.; Focant, J.F.; Covaci, A. Evaluation of hazardous chemicals in edible insects and insect-based food intended for human consumption. Food Chem. Toxicol. 2017, 100, 70–79. [Google Scholar] [CrossRef]
- Eilenberg, J.; Vlak, J.M.; Nielsen-LeRoux, C.; Cappellozza, S.; Jensen, A.B. Diseases in insects produced for food and feed. J. Insects Food Feed. 2015, 1, 87–102. [Google Scholar] [CrossRef] [Green Version]
- Grabowski, N.T.; Klein, G. Microbiology of processed edible insect products—Results of a preliminary survey. Int. J. Food Microbiol. 2017, 243, 103–107. [Google Scholar] [CrossRef]
- Klunder, H.C.; Wolkers-Rooijackers, J.; Korpela, J.M.; Nout, M.J.R. Microbiological aspects of processing and storage of edible insects. Food Control. 2012, 26, 628–631. [Google Scholar] [CrossRef]
- Mézes, M. Food safety aspect of insects: A review. Acta Aliment. 2018, 47, 513–522. [Google Scholar] [CrossRef]
- Chai, J.Y.; Shin, E.H.; Lee, S.H.; Rim, H.J. Foodborne intestinal flukes in Southeast Asia. Korean J. Parasitol. 2009, 47. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, J.C.; Cunha, L.M.; Sousa-Pinto, B.; Fonseca, J. Allergic risks of consuming edible insects: A systematic review. Mol. Nutr. Food Res. 2018, 62, 1700030. [Google Scholar] [CrossRef]
- Broekman, H.C.H.P.; Knulst, A.C.; De Jong, G.; Gaspari, M.; Jager, C.F.D.H.; Houben, G.F.; Verhoeckx, K.C.M. Is mealworm or shrimp allergy indicative for food allergy to insects? Mol. Nutr. Food Res. 2017, 61, 1601061. [Google Scholar] [CrossRef] [PubMed]
- Francis, F.; Doyen, V.; Debaugnies, F.; Mazzucchelli, G.; Caparros, R.; Alabi, T.; Blecker, C.; Haubruge, E.; Corazza, F. Limited cross reactivity among arginine kinase allergens from mealworm and cricket edible insects. Food Chem. 2019, 276, 714–718. [Google Scholar] [CrossRef] [Green Version]
- Broekman, H.; Knulst, A.; Jager, S.D.H.; Monteleone, F.; Gaspari, M.; De Jong, G.; Houben, G.; Verhoeckx, K.C.M. Effect of thermal processing on mealworm allergenicity. Mol. Nutr. Food Res. 2015, 59, 1855–1864. [Google Scholar] [CrossRef]
- Verhoeckx, K.C.; Van Broekhoven, S.; Hartog-Jager, C.F.D.; Gaspari, M.; De Jong, G.A.; Wichers, H.J.; Van Hoffen, E.; Houben, G.F.; Knulst, A.C. House dust mite (Der p 10) and crustacean allergic patients may react to food containing Yellow mealworm proteins. Food Chem. Toxicol. 2014, 65, 364–373. [Google Scholar] [CrossRef]
- Leung, P.S.; Chow, W.K.; Duffey, S.; Kwan, H.S.; Gershwin, M.; Chu, K.H. IgE reactivity against a cross-reactivity allergen in crustacea and mollusca: Evidence for tropomyosin as the common allergen. J. Allergy Clin. Immunol. 1996, 98, 954–961. [Google Scholar] [CrossRef]
- de Gier, S.; Verhoeckx, K. Insect (food) allergy and allergens. Mol. Immunol. 2018, 100, 82–106. [Google Scholar] [CrossRef]
- Jeong, K.Y.; Park, J.-W. Insect Allergens on the Dining Table. Curr. Protein Pept. Sci. 2019, 21, 159–169. [Google Scholar] [CrossRef] [PubMed]
- Sabolová, M.; Kulma, M.; Kouřimská, L. Sex-dependent differences in purine and uric acid contents of selected edible insects. J. Food Compos. Anal. 2020, 103746. [Google Scholar] [CrossRef]
Kind of Insect | Reference | Research | Counrty | Results |
---|---|---|---|---|
(T. molitor L.) (A. domesticus) Insects flour Whole insects | [99] | insect chips, insect bar, whole insects | Italy n = 62 | The highest palatability rating for a bar with insect meal (6.95), followed by whole crickets (6.64, crisps with insect meal (6.33). The lowest rating for insects in carmel (6.02). |
(A. domesticus) Insects flour | [100] | Acceptability and sensory evaluation of energy bars and protein bars enriched with edible insect | Czech n = 96 | The bars are acceptable to consumers in the Czech Republic, with the best rating for bars with the addition of a tropical flavor |
(A. domesticus) Insects flour Whole inscets | [95] | Two types of jelly 1—with the addition of whole insects 2—with the addition of cricket flour | Italy n = 88 | Insect jellies were rated better than before tasting. Jellies with the addition of cricket powder were better shaded than those with a visible insect. |
(T. molitor L.) Insect flour | [69] | Addition of insect flour to bread dough in the amount of 5%, 10% | Italy n = 9 | Bread with the addition of mealworm powder scored worse than the control sample. Bread with 5% insect flour was assessed slightly better |
(A. domesticus) Cricket powder | [44] | Addition of powder to bread dough in the amount of 10%, 30% | Italy n = 9 | Bread with the addition of cricket powder was evaluated worse than the control sample. Bread with 10% insect flour was rated slightly better |
(T. molitor) Mealworm powder | [101] | 50% addition to beef and green lentil burgers | Belgium n = 79 | The mealworm burgers scored lower than the beef burger, but better than the lentil burger. The mixture of mealworm with beef was rated slightly better than with lentils. |
(T. molitor) (A. diaperinus) Mealworm powder | [102] | Addition of insect powder to bread dough | Spain n = 327 | Bread with the addition of mealworm powder was better rated than the bread with the addition of buffalo larvae powder and comparable to the control bread. The greater addition of mealworm powder (10%) made the bread with its addition the tastiest among the analyzed variants. |
(A. domesticus) Cricket powder | [103] | Addition of 5%, 10%, 15% cricket powder to pasta | Poland n = 20 | A consumer evaluation showed that the use of the CP additive was well received. The color of the pasta sample with 5% CP was described by consumers as resembling wholemeal pasta. |
(B. mori) Silkworm powder | [83] | Addition of silkworm powder 5 and 10 g to buckwheat pasta | Hungary n = 98 | The highest acceptance was obtained for pasta with a higher content of silkworm powder = 10 g |
(A. domesticus) Cricket powder | [104] | Addition of cricket powder 5%, 10%, 15% to oat biscuits | Hungary n = 100 | The biscuits with the addition of 5%/100 g CP obtained the highest acceptance, but the other variants also obtained the acceptance level |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Skotnicka, M.; Karwowska, K.; Kłobukowski, F.; Borkowska, A.; Pieszko, M. Possibilities of the Development of Edible Insect-Based Foods in Europe. Foods 2021, 10, 766. https://doi.org/10.3390/foods10040766
Skotnicka M, Karwowska K, Kłobukowski F, Borkowska A, Pieszko M. Possibilities of the Development of Edible Insect-Based Foods in Europe. Foods. 2021; 10(4):766. https://doi.org/10.3390/foods10040766
Chicago/Turabian StyleSkotnicka, Magdalena, Kaja Karwowska, Filip Kłobukowski, Aleksandra Borkowska, and Magdalena Pieszko. 2021. "Possibilities of the Development of Edible Insect-Based Foods in Europe" Foods 10, no. 4: 766. https://doi.org/10.3390/foods10040766