Research on the Influence of Narrow and Long Obstacles with Regular Configuration on Crowd Evacuation Efficiency Based on Tri-14 Model with an Example of Supermarket
Abstract
:1. Introduction
2. Evacuation Model and Scenario Design
2.1. Introduction to Evacuation Model
2.2. Evacuation Scenario Design
2.2.1. Building Layout
2.3. Evacuation Scenario Design
Evacuation Parameters Setting
- Determination of grid size:
- 2.
- Setting a way of adding pedestrians and a principle for pedestrians to choose an exit:
- 3.
- Allocation of the number of evacuees:
- 4.
- Attribute configuration of pedestrians.
3. Simulation Results and Discussion
3.1. Results and Discussion of Evacuation Data with All Safety Exits Open
3.2. Results and Discussion of Evacuation Data under an Exit Failure Condition
3.3. Overall Result Analysis and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Scenario Name | Total Number of Evacuees | Total Evacuation Time (s) | Scenario Name | Total Number of Evacuees | Total Evacuation Time (s) |
---|---|---|---|---|---|
NS3.6-0 | 1323 | 173.1 | WENS1.8-0 | 1323 | 169.5 |
1058 | 136.4 | 1058 | 135.8 | ||
952 | 122.0 | 952 | 126.5 | ||
846 | 110.1 | 846 | 113.5 | ||
741 | 97.1 | 741 | 93.7 | ||
635 | 84.0 | 635 | 84.2 | ||
529 | 68.6 | 529 | 69.3 | ||
423 | 56.8 | 423 | 55.5 | ||
318 | 43.8 | 318 | 41.5 | ||
212 | 31.2 | 212 | 27 | ||
106 | 28.5 | 106 | 23.7 | ||
NS3.6-20 | 1323 | 172.9 | WE3.6-20 | 1323 | 171.3 |
1058 | 137.4 | 1058 | 137.5 | ||
952 | 124.7 | 952 | 123.8 | ||
846 | 111.5 | 846 | 112.3 | ||
741 | 95.5 | 741 | 98.7 | ||
635 | 84.1 | 635 | 83.8 | ||
529 | 68.0 | 529 | 71.3 | ||
423 | 57.3 | 423 | 55.7 | ||
318 | 44.0 | 318 | 43.3 | ||
212 | 35.6 | 212 | 33.4 | ||
106 | 33.3 | 106 | 31.0 | ||
WENS1.8-20 | 1323 | 182.2 | NS3.6-10 | 1323 | 159.8 |
1058 | 144.9 | 1058 | 124.6 | ||
952 | 136.8 | 952 | 113.1 | ||
846 | 112.8 | 846 | 99.0 | ||
741 | 105.2 | 741 | 84.6 | ||
635 | 83.6 | 635 | 75.3 | ||
529 | 70.9 | 529 | 65.9 | ||
423 | 55.4 | 423 | 59.6 | ||
318 | 42.2 | 318 | 49.1 | ||
212 | 27.0 | 212 | 44.8 | ||
106 | 23.2 | 106 | 41.8 | ||
WE3.6-10 | 1323 | 173.8 | WENS1.8-10 | 1323 | 259.5 |
1058 | 139.2 | 1058 | 212.9 | ||
952 | 126.6 | 952 | 190.9 | ||
846 | 113.6 | 846 | 170.9 | ||
741 | 100.0 | 741 | 150.5 | ||
635 | 84.5 | 635 | 133.2 | ||
529 | 68.8 | 529 | 105.4 | ||
423 | 55.7 | 423 | 82.1 | ||
318 | 43.7 | 318 | 63.7 | ||
212 | 32.7 | 212 | 40.0 | ||
106 | 33.0 | 106 | 28.2 |
Scenario Name | Total Number of Evacuees | Total Evacuation Time (s) | Scenario Name | Total Number of Evacuees | Total Evacuation Time (s) |
---|---|---|---|---|---|
S3.6-0 | 1323 | 329.7 | WES1.8-0 | 1323 | 252.1 |
1058 | 265.5 | 1058 | 200.3 | ||
952 | 236.5 | 952 | 184.2 | ||
846 | 212.9 | 846 | 157.7 | ||
741 | 185.5 | 741 | 142.1 | ||
635 | 160.8 | 635 | 122.8 | ||
529 | 131 | 529 | 101.6 | ||
423 | 106.9 | 423 | 81 | ||
318 | 79.1 | 318 | 58.3 | ||
212 | 53 | 212 | 39.7 | ||
106 | 37.8 | 106 | 28.2 | ||
S3.6-20 | 1323 | 328.1 | E3.6-20 | 1323 | 334.6 |
1058 | 263.9 | 1058 | 271.9 | ||
952 | 237.6 | 952 | 243.6 | ||
846 | 214.1 | 846 | 216.1 | ||
741 | 184.2 | 741 | 191.9 | ||
635 | 159.6 | 635 | 162.5 | ||
529 | 132.7 | 529 | 133.4 | ||
423 | 106.9 | 423 | 107.9 | ||
318 | 79.8 | 318 | 79.9 | ||
212 | 49.6 | 212 | 53.4 | ||
106 | 47.1 | 106 | 41.8 | ||
WES1.8-20 | 1323 | 268.7 | ENS1.8-20 | 1323 | 243.3 |
1058 | 211.2 | 1058 | 193.3 | ||
952 | 196.6 | 952 | 175.2 | ||
846 | 166 | 846 | 150.1 | ||
741 | 148.2 | 741 | 134 | ||
635 | 125.3 | 635 | 111.8 | ||
529 | 107.5 | 529 | 95.6 | ||
423 | 82.2 | 423 | 78.4 | ||
318 | 61.5 | 318 | 55.7 | ||
212 | 40.6 | 212 | 36.5 | ||
106 | 30.4 | 106 | 31.7 | ||
S3.6-10 | 1323 | 327.1 | E3.6-10 | 1323 | 332.1 |
1058 | 260.6 | 1058 | 265.2 | ||
952 | 235.2 | 952 | 242.6 | ||
846 | 199.5 | 846 | 218.6 | ||
741 | 170.1 | 741 | 189 | ||
635 | 139.1 | 635 | 165.4 | ||
529 | 118.1 | 529 | 137.5 | ||
423 | 98.8 | 423 | 107.4 | ||
318 | 83.5 | 318 | 78.9 | ||
212 | 63.4 | 212 | 51.3 | ||
106 | 54.8 | 106 | 45.4 | ||
WES1.8-10 | 1323 | 296.8 | ENS1.8-10 | 1323 | 354.4 |
1058 | 239.1 | 1058 | 281 | ||
952 | 214.6 | 952 | 259.9 | ||
846 | 195 | 846 | 225.3 | ||
741 | 166.5 | 741 | 201.7 | ||
635 | 146.3 | 635 | 175.1 | ||
529 | 122 | 529 | 139.6 | ||
423 | 96.4 | 423 | 109.8 | ||
318 | 70.5 | 318 | 87.1 | ||
212 | 45.4 | 212 | 53 | ||
106 | 29.4 | 106 | 34.6 |
References
- GB/T 18106-2021; Classification of Retail Formats. China Zhijian Publishing House: Beijing, China, 2021.
- China Youth Daily. Available online: https://s.cyol.com/articles/2021-04/26/content_1Ve8Aqul.html (accessed on 26 April 2021).
- Fang, H.; Lv, W.; Cheng, H.; Li, X.L.; Yu, B.J.; Shen, Z.W. Evacuation Optimization Strategy for Large-Scale Public Building Considering Plane Partition and Multi-Floor Layout. Front. Public Health 2022, 10, 847399. Available online: https://www.frontiersin.org/articles/10.3389/fpubh.2022.847399/full (accessed on 21 February 2022). [CrossRef] [PubMed]
- Chang, D.; Cui, L.Z.; Huang, Z. A Cellular-Automaton Agent-Hybrid Model for Emergency Evacuation of People in Public Places. IEEE Access 2020, 8, 79541–79551. [Google Scholar] [CrossRef]
- Bai, X.H. Research on Dynamic Parameter Test and Basic Behavior Simulation of Personnel Evacuation. MA Thesis, China University of Mining and Technology, Xuzhou, China, 2021. [Google Scholar] [CrossRef]
- Gao, G.P. Study on behavior characteristics and evacuation environment of evacuation in buildings. Ph.D. Thesis, Wuhan University of Technology, Wuhan, China, 2018. [Google Scholar] [CrossRef]
- Yang, L.Z. Movement Law and Evacuation Dynamics of People in Buildings; Science Press: Beijing, China, 2012; pp. 1–11. [Google Scholar]
- Tian, Y.M.; Zhang, W.; Ma, H.W.; He, X.Y. Emergency Crowd Evacuation; Chemical Industrial Press: Beijing, China, 2014; pp. 9, 14–16. [Google Scholar]
- Dong, H.R.; Zhou, M.; Wang, Q.L.; Yang, X.X.; Wang, F.Y. State-of-the-Art Pedestrian and Evacuation Dynamics. IEEE Trans. Intell. Transp. Syst. 2020, 21, 1849–1866. [Google Scholar] [CrossRef]
- Najmanova, H.; Ronchi, E. An Experimental Data-Set on Pre-school Children Evacuation. Fire Technol. 2017, 53, 1509–1533. [Google Scholar] [CrossRef]
- Haghani, M.; Sarvi, M.; Shahhoseini, Z. Evacuation behaviour of crowds under high and low levels of urgency: Experiments of reaction time, exit choice and exit-choice adaptation. Saf. Sci. 2020, 126, 104679. [Google Scholar] [CrossRef]
- Chen, J.M.; Wang, J.Y.; Wang, B.B.; Liu, R.; Wang, Q.S. An experimental study of visibility effect on evacuation speed on stairs. Fire Saf. J. 2018, 96, 189–202. [Google Scholar] [CrossRef]
- Seike, M.; Kawabata, N.; Hasegawa, M. Experiments of evacuation speed in smoke-filled tunnel. Tunn. Undergr. Space Technol. 2016, 53, 61–67. [Google Scholar] [CrossRef]
- Poulos, A.; Tocornal, F.; de la Llera, J.C.; Mitrani-Reiser, J. Validation of an agent-based building evacuation model with a school drill. Transp. Res. Part C Emerg. Technol. 2018, 97, 82–95. [Google Scholar] [CrossRef]
- Mu, H.L.; Song, W.G.; Sun, J.H.; Lo, S.M.; Wang, J.H. An Experimental and Numerical Study of Imbalanced Door Choice during an Announced Evacuation Drill. Fire Technol. 2016, 52, 801–815. [Google Scholar] [CrossRef]
- Zuriguel, I.; Olivares, J.; Pastor, J.M.; Martin-Gomez, C.; Ferrer, L.M.; Ramos, J.J.; Garcimartin, A. Effect of obstacle position in the flow of sheep through a narrow door. Phys. Rev. E 2016, 94, 032302. [Google Scholar] [CrossRef] [Green Version]
- Lin, P.; Ma, J.; Liu, T.Y.; Ran, T.; Si, Y.L.; Wu, F.Y.; Wang, G.Y. An experimental study of the impact of an obstacle on the escape efficiency by using mice under high competition. Phys. A Stat. Mech. Its Appl. 2017, 482, 228–242. [Google Scholar] [CrossRef]
- Helbing, D.; Farkas, I.; Vicsek, T. Simulating dynamical features of escape panic. Nature 2000, 407, 487–490. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Liu, H.; Gao, K.Z. An evacuation simulation method based on an improved artificial bee colony algorithm and a social force model. Appl. Intell. 2020, 51, 100–123. [Google Scholar] [CrossRef]
- Li, Y.; Chen, M.Y.; Dou, Z.; Zheng, X.P.; Cheng, Y.; Mebarki, A. A review of cellular automata models for crowd evacuation. Phys. A Stat. Mech. Its Appl. 2019, 526, 228–242. [Google Scholar] [CrossRef]
- Sharbini, H.; Sallehuddin, R.; Haron, H. Crowd evacuation simulation model with soft computing optimization techniques: A systematic literature review. J. Manag. Anal. 2021, 8, 443–485. [Google Scholar] [CrossRef]
- Wei, X.G.; Yao, H.W.; Li, L.F.; Chen, H.W.; Wang, X.F.; Li, F.F. Research on emergency evacuation in large supermarket based on family group movement observation. Fire Sci. Technol. 2020, 39, 1075–1078. [Google Scholar] [CrossRef]
- Li, C.Y.; Wang, B.S. Personnel evacuation in fire of comprehensive supermarket based on numerical simulation. Fire Sci. Technol. 2019, 38, 1237–1240. [Google Scholar] [CrossRef]
- Liu, J. Research on Group Evacuation Simulation and Fire Rescue Path Planning in Supermarket under Fire Environment. MA Thesis, Anhui University of Technology, Maanshan, China, 2018. [Google Scholar] [CrossRef]
- Zhang, Y. Study on the Planning of Fire Evacuation in Large Life Supermarket. MA Thesis, Tianjin University of Technology, Tianjin, China, 2018. [Google Scholar] [CrossRef]
- Wang, Z.J. Numerical simulation of fore and evacuation of personnel in a large supermarket. MA Thesis, Anhui University of Science and Technology, Huainan, China, 2017. [Google Scholar] [CrossRef]
- Cao, S.C.; Fu, L.B.; Song, W.G. Experimental and modeling study on evacuation under good and limited visibility in a supermarket. Fire Saf. J. 2018, 102, 27–36. [Google Scholar] [CrossRef]
- Wu, H.; Ding, Y.C.; Weng, F.L. Study on the influence of obstacles on personnel evacuation in shopping mall. Sci. Technol. Innov. 2021, 2, 37–41. [Google Scholar] [CrossRef]
- Luo, Q. Effect of obstacle on crowd dynamics in corridors: An experimental and simulation. MA Thesis, Southwest Jiaotong University, Chengdu, China, 2021. [Google Scholar] [CrossRef]
- Sun, J. Research on the influence of passageway obstacle on crowd evacuation in shopping mall. MA Thesis, South China University of Technology, Guangzhou, China, 2018. [Google Scholar]
- Liu, H.; Jin, W.T. Simulation of the evacuation of different obstacles based on a social-psychological model. J. Saf. Environ. 2022, 22, 1442–1449. [Google Scholar] [CrossRef]
- Cao, Y.Y. Obstacle Layout Optimization Based on Crowd Simulation. MA Thesis, Xidian University, Xian, China, 2020. [Google Scholar] [CrossRef]
- Lv, H.; Liu, X.Y.; Wang, Y.L.; Zhou, R. Study on influence laws of obstacle in evacuation exit on evacuation efficiency. J. Saf. Sci. Technol. 2020, 16, 141–145. [Google Scholar] [CrossRef]
- Yi, P.; Zhong, X.R.; Yue, P.K. Influence of obstacles in front of shopping center’s exit on emergency evacuation efficiency. Fire Sci. Technol. 2020, 39, 62–66. [Google Scholar] [CrossRef]
- Gao, R. Room evacuation model and its application considering the influence of obstacles. MA Thesis, Southwest Jiaotong University, Chengdu, China, 2018. [Google Scholar]
- Yue, H.; Zhang, J.Y.; Chen, W.X.; Wu, X.S.; Zhang, X.; Shao, C.F. Simulation of the influence of spatial obstacles on evacuation pedestrian flow in walking facilities. Phys. A Stat. Mech. Its Appl. 2021, 571, 125844. [Google Scholar] [CrossRef]
- Zang, Y.; Mei, Q.; Liu, S.X. Evacuation simulation of a high-rise teaching building considering the influence of obstacles. Simul. Model. Pract. Theory 2021, 112, 102354. [Google Scholar] [CrossRef]
- Wang, K.; Fu, Z.J.; Li, Y.X.; Qian, S.Z. Influence of human-obstacle interaction on evacuation from classrooms. Autom. Constr. 2020, 116, 103234. [Google Scholar] [CrossRef]
- Wang, J.H.; Li, J.C.; Li, J.; Feng, J.J.; Xu, S.Y.; Liu, J.; Wang, Y. Performance optimization of the obstacle to corner bottleneck under emergency evacuation. J. Build. Eng. 2022, 45, 103658. [Google Scholar] [CrossRef]
- Zhao, Y.X.; Lu, T.T.; Fu, L.B.; Wu, P.; Li, M.F. Experimental verification of escape efficiency enhancement by the presence of obstacles. Saf. Sci. 2020, 122, 104517. [Google Scholar] [CrossRef]
- Sticco, I.M.; Frank, G.A.; Dorso, C.O. Improving competitive evacuations with a vestibule structure designed from panel-like obstacles in the framework of the Social Force Model. Saf. Sci. 2022, 146, 105544. [Google Scholar] [CrossRef]
- Li, L.; Liu, H.; Han, Y.B. Optimal Design of Obstacles in Emergency Evacuation Using an Arch Formation Based Fitness Function. In Proceedings of the 13th CCF Conference on Computer Supported Cooperative Work and Social Computing, Guilin, China, 18–19 August 2018. [Google Scholar] [CrossRef]
- Shiwakoti, N.; Shi, X.M.; Ye, Z.R. A review on the performance of an obstacle near an exit on pedestrian crowd evacuation. Saf. Sci. 2019, 113, 54–67. [Google Scholar] [CrossRef]
- Ji, J.W.; Lu, L.G.; Jin, Z.H.; Wei, S.P.; Ni, L. A cellular automata model for high-density crowd evacuation using triangle grids. Phys. A Stat. Mech. Its Appl. 2018, 509, 1034–1045. [Google Scholar] [CrossRef]
- Lu, L.G. Research on High Density Evacuation Simulation Method Based on the Theory of Cellular Automata. MA Thesis, China University of Mining and Technology, Xuzhou, China, 2016. [Google Scholar]
- GB 50016-2014, 2018 edition; Code for Fire Protection Design of Buildings. China Planning Press: Beijing, China, 2018.
- Mu, R.R. Analysis on the change of the morphology character of 20–25 years old urban adults in China. MA Thesis, Shanghai University of Sport, Shanghai, China, 2017. [Google Scholar]
- Xie, X.L.; Ji, J.W.; Wang, Z.H.; Lu, L.G.; Yang, S.F. Experimental study on the influence of the crowd density on walking speed and stride length. J. Saf. Environ. 2016, 16, 232–235. [Google Scholar] [CrossRef]
Serial Number | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
Calculating Crowd Density (p/m2) | 0.75 | 0.6 | 0.54 | 0.48 | 0.42 | 0.36 | 0.3 | 0.24 | 0.18 | 0.12 | 0.06 |
Number of Evacuees | 1323 | 1058 | 952 | 846 | 741 | 635 | 529 | 423 | 318 | 212 | 106 |
Scenario Name | Original Scenario Name | Number of Evacuees and Evacuation Time | Total Evacuation Time | η | |||
---|---|---|---|---|---|---|---|
At West Exit | At East Exit | At North Exit | At South Exit | ||||
ENS1.8-20 | WENS1.8-20 | × | 216 102 s | 323 149 s | 307 135 s | 149 s | 86.4% |
WES1.8-0 | WENS1.8-0 | 322 158 s | 310 151 s | × | 214 101 s | 158 s | 86.5% |
WES1.8-20 | WENS1.8-20 | 344 171 s | 330 161 s | × | 172 79 s | 171 s | 81.3% |
WES1.8-10 | WENS1.8-10 | 398 201 s | 369 179 s | × | 79 35 s | 201 s | 68.8% |
ENS1.8-10 | WENS1.8-10 | × | 467 227 s | 191 66 s | 188 71 s | 227 s | 53.5% |
Scenario Name | Total Evacuation Time | Increased Value Relative to the Minimum Total Evacuation Time | Increased Proportion Relative to the Minimum Total Evacuation Time |
---|---|---|---|
NS3.6-10 | 124.6 s | — | — |
WENS1.8-0 | 135.8 s | 11.2 s | 9.0% |
NS3.6-0 | 136.4 s | 11.8 s | 9.5% |
NS3.6-20 | 137.4 s | 12.8 s | 10.3% |
WE3.6-20 | 137.5 s | 12.9 s | 10.4% |
WE3.6-10 | 139.2 s | 14.6 s | 11.7% |
WENS1.8-20 | 144.9 s | 20.3 s | 16.3% |
WENS1.8-10 | 212.9 s | 88.3 s | 70.9% |
Scenario Name | Original Scenario Name | Total Evacuation Time | Increased Value Relative to the Minimum Total Evacuation Time | Increased Proportion Relative to the Minimum Total Evacuation Time |
---|---|---|---|---|
ENS1.8-20 | WENS1.8-20 | 193.3 s | 0 | 0 |
WES1.8-0 | WENS1.8-0 | 200.3 s | 7.0 s | 3.6% |
WES1.8-20 | WENS1.8-20 | 211.2 s | 17.9 s | 9.3% |
WES1.8-10 | WENS1.8-10 | 239.1 s | 45.8 s | 23.7% |
S3.6-10 | NS3.6-10 | 260.6 s | 67.3 s | 34.8% |
S3.6-20 | NS3.6-20 | 263.9 s | 70.6 s | 36.5% |
E3.6-10 | WE3.6-10 | 265.2 s | 71.9 s | 37.2% |
S3.6-0 | NS3.6-0 | 265.5 s | 72.2 s | 37.4% |
E3.6-20 | WE3.6-20 | 271.9 s | 78.6 s | 40.7% |
ENS1.8-10 | WENS1.8-10 | 281.0 s | 87.7 s | 45.4% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, L.; Ji, J.; Zhai, C.; Wang, S.; Zhang, Z.; Yang, T. Research on the Influence of Narrow and Long Obstacles with Regular Configuration on Crowd Evacuation Efficiency Based on Tri-14 Model with an Example of Supermarket. Fire 2022, 5, 164. https://doi.org/10.3390/fire5050164
Lu L, Ji J, Zhai C, Wang S, Zhang Z, Yang T. Research on the Influence of Narrow and Long Obstacles with Regular Configuration on Crowd Evacuation Efficiency Based on Tri-14 Model with an Example of Supermarket. Fire. 2022; 5(5):164. https://doi.org/10.3390/fire5050164
Chicago/Turabian StyleLu, Ligang, Jingwei Ji, Cheng Zhai, Shengcheng Wang, Zhen Zhang, and Tiantian Yang. 2022. "Research on the Influence of Narrow and Long Obstacles with Regular Configuration on Crowd Evacuation Efficiency Based on Tri-14 Model with an Example of Supermarket" Fire 5, no. 5: 164. https://doi.org/10.3390/fire5050164