Temporal Shifts in Flower-Visiting Butterfly Communities and Their Floral Resources along a Vegetation Type Altered by Anthropogenic Factors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Surveys of Plant–Butterfly Communities
2.3. Dynamics on the Richness and Diversity of the Plant–Butterfly Communities
2.4. Data Analysis
3. Results
3.1. Richness, Structure, and Seasonality
3.2. Habitat and Seasonal Drivers of Community Composition
3.3. Key Indicator Species
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sánchez-Bayo, F.; Wyckhuys, K.A.G. Worldwide decline of the entomofauna: A review of its drivers. Biol. Conserv. 2019, 232, 8–27. [Google Scholar] [CrossRef]
- Istvánovics, V. Ecosystem health and integrity concepts revisited in the light of global environmental changes. Ecol. Indic. 2022, 135, 108564. [Google Scholar]
- Kawahara, A.Y.; Plotkin, D.; Espeland, M.; Meusemann, K.; Toussaint, E.F.; Donath, A.; Gimnich, F.; Frandsen, P.B.; Zwick, A.; dos Reis, M.; et al. Phylogenomics reveals the evolutionary timing and pattern of butterflies and moths. Proc. Natl. Acad. Sci. USA 2019, 116, 22657–22663. [Google Scholar] [CrossRef] [PubMed]
- Wagner, D.L. Insect declines in the Anthropocene. Annu. Rev. Entomol. 2020, 65, 457–480. [Google Scholar] [CrossRef] [PubMed]
- Rákosy, L.; Schmitt, T. Are butterflies and moths suitable ecological indicator systems for restoration measures of semi-natural calcareous grassland habitats? Ecol. Indic. 2011, 11, 1040–1045. [Google Scholar] [CrossRef]
- Thompson, J.N.; Pellmyr, O. Evolution of oviposition behavior and host preference in Lepidoptera. Annu. Rev. Entomol. 1991, 36, 65–89. [Google Scholar] [CrossRef]
- Dennis, R.L. Butterfly habitats, broad-scale biotope affiliations, and structural exploitation of vegetation at finer scales: The matrix revisited. Ecol. Entomol. 2004, 29, 744–752. [Google Scholar] [CrossRef]
- Scriven, S.A.; Beale, C.M.; Benedick, S.; Hill, J.K. Barriers to dispersal of rain forest butterflies in tropical agricultural landscapes. Biotropica 2017, 49, 206–216. [Google Scholar] [CrossRef]
- Brückmann, S.V.; Krauss, J.; Steffan-Dewenter, I. Butterfly and plant specialists suffer from reduced connectivity in fragmented landscapes. J. Appl. Ecol. 2010, 47, 799–809. [Google Scholar] [CrossRef]
- Aguirre-Gutiérrez, J.; WallisDeVries, M.F.; Marshall, L.; van’t Zelfde, M.; Villalobos-Arámbula, A.R.; Boekelo, B.; Bartholomeus, H.; Franzén, M.; Biesmeijer, J.C. Butterflies show different functional and species diversity in relationship to vegetation structure and land use. Glob. Ecol. Biogeogr. 2017, 26, 1126–1137. [Google Scholar] [CrossRef]
- Steffan-Dewenter, I.; Tscharntke, T. Butterfly community structure in fragmented habitats. Ecol. Lett. 2000, 3, 449–456. [Google Scholar] [CrossRef]
- Öckinger, E.; Smith, H.G. Landscape composition and habitat area affects butterfly species richness in semi-natural grasslands. Oecologia 2006, 149, 526–534. [Google Scholar] [CrossRef] [PubMed]
- Börschig, C.; Klein, A.M.; von Wehrden, H.; Krauss, J. Traits of butterfly communities change from specialist to generalist characteristics with increasing land-use intensity. Basic Appl. Ecol. 2013, 14, 547–554. [Google Scholar] [CrossRef]
- Quintero, C.; Morales, C.L.; Aizen, M.A. Effects of anthropogenic habitat disturbance on local pollinator diversity and species turnover across a precipitation gradient. Biodivers. Conserv. 2010, 19, 257–274. [Google Scholar] [CrossRef]
- Nyafwono, M.; Valtonen, A.; Nyeko, P.; Roininen, H. Butterfly community composition across a successional gradient in a human-disturbed afro-tropical rain forest. Biotropica 2014, 46, 210–218. [Google Scholar] [CrossRef]
- Perović, D.; Gámez-Virués, S.; Börschig, C.; Klein, A.M.; Krauss, J.; Steckel, J.; Rothenwöhrer, C.; Erasmi, S.; Tscharntke, T.; Westphal, C. Configurational landscape heterogeneity shapes functional community composition of grassland butterflies. J. Appl. Ecol. 2015, 52, 505–513. [Google Scholar] [CrossRef]
- Sambhu, H.; Northfield, T.; Nankishore, A.; Ansari, A.; Turton, S. Tropical rainforest and human-modified landscapes support unique butterfly communities that differ in abundance and diversity. Environ. Entomol. 2017, 46, 1225–1234. [Google Scholar] [CrossRef]
- Stefanescu, C.; Peñuelas, J.; Filella, I. Effects of climatic change on the phenology of butterflies in the northwest Mediterranean Basin. Glob. Chang. Biol. 2003, 9, 1494–1506. [Google Scholar] [CrossRef]
- Posledovich, D.; Toftegaard, T.; Wiklund, C.; Ehrlén, J.; Gotthard, K. The developmental race between maturing host plants and their butterfly herbivore--the influence of phenological matching and temperature. J. Anim. Ecol. 2015, 84, 1690–1699. [Google Scholar] [CrossRef]
- Kitahara, M.; Sei, K.; Fujii, K. Patterns in the structure of grassland butterfly communities along a gradient of human disturbance: Further analysis based on the generalist/specialist concept. Popul. Ecol. 2000, 42, 135–144. [Google Scholar] [CrossRef]
- Cleland, E.E.; Chuine, I.; Menzel, A.; Mooney, H.A.; Schwartz, M.D. Shifting plant phenology in response to global change. Trends Ecol. Evol. 2007, 22, 357–365. [Google Scholar] [CrossRef] [PubMed]
- Schenk, M.; Krauss, J.; Holzschuh, A. Desynchronizations in bee-plant interactions cause severe fitness losses in solitary bees. J. Anim. Ecol. 2018, 87, 139–149. [Google Scholar] [CrossRef] [PubMed]
- Dover, J.W.; Settele, J. The influences of landscape structure on butterfly distribution and movement: A review. J. Insect Conserv. 2009, 13, 3–27. [Google Scholar] [CrossRef]
- Baguette, M.; Blanchet, S.; Legrand, D.; Stevens, V.M.; Turlure, C. Individual dispersal, landscape connectivity and ecological networks. Biol. Rev. 2013, 88, 310–326. [Google Scholar] [CrossRef] [PubMed]
- Nowicki, P.; Vrabec, V.; Binzenhöfer, B.; Feil, J.; Zakšek, B.; Hovestadt, T.; Settele, J. Butterfly dispersal in inhospitable matrix: Rare, risky, but long-distance. Landsc. Ecol. 2014, 29, 401–412. [Google Scholar] [CrossRef]
- Villemey, A.; van Halder, I.; Ouin, A.; Barbaro, L.; Chenot, J.; Tessier, P.; Calatayud, F.; Martin, H.; Roche, P.; Archaux, F. Mosaic of grasslands and woodlands is more effective than habitat connectivity to conserve butterflies in French farmland. Biol. Conserv. 2015, 191, 206–215. [Google Scholar] [CrossRef]
- Gámez-Virués, S.; Perović, D.J.; Gossner, M.M.; Börschig, C.; Blüthgen, N.; De Jong, H.; Simons, N.K.; Klein, A.-M.; Krauss, J.; Maier, G.; et al. Landscape simplification filters species traits and drives biotic homogenization. Nat. Commun. 2015, 6, 8568. [Google Scholar] [CrossRef]
- Carnicer, J.; Stefanescu, C.; Vila, R.; Dincă, V.; Font, X.; Peñuelas, J. A unified framework for diversity gradients: The adaptive trait continuum. Glob. Ecol. Biogeogr. 2013, 22, 6–18. [Google Scholar] [CrossRef]
- Pla-Narbona, C.; Stefanescu, C.; Pino, J.; Cabrero-Sañudo, F.J.; García-Barros, E.; Munguira, M.L.; Melero, Y. Butterfly biodiversity in the city is driven by the interaction of the urban landscape and species traits: A call for contextualised management. Landsc. Ecol. 2022, 7, 81–92. [Google Scholar] [CrossRef]
- Hudson, R.; Rodríguez-Martínez, L.; Distel, H.; Cordero, C.; Altbacker, V.; Martínez-Gómez, M. A comparison between vegetation and diets records from wet and dry season in the cottontail rabbit Sylvilagus floridanus at Ixtacuixtla, central Mexico. Acta Theriol. 2005, 50, 377–389. [Google Scholar] [CrossRef]
- Olofsson, P.; Foody, G.M.; Herold, M.; Stehman, S.V.; Woodcock, C.E.; Wulder, M.A. Good practices for estimating area and assessing accuracy of land change. Remote Sens. Environ. 2014, 148, 42–57. [Google Scholar] [CrossRef]
- Pollard, E.; Yates, T.J. Monitoring Butterflies for Ecology and Conservation: The British Butterfly Monitoring Scheme; Chapman & Hall: London, UK, 1993. [Google Scholar]
- Opler, P.A. Peterson First Guide to Butterflies and Moths of North America; Houghton Mifflin Harcourt: Boston, MA, USA, 1994. [Google Scholar]
- Glassberg, J. A Swift Guide of the Butterflies of Mexico and Central America; Sunstreak Books: Morristown, NJ, USA, 2007. [Google Scholar]
- Calderón de Rzedowski, G.; Rzedowski, J. Flora Fanerogámica del Valle de México, 2nd ed.; Instituto de Ecología, A.C. y Comisión Nacional para el Conocimiento y Uso de la Biodiversidad: Pátzcuaro, México, 2005.
- Hill, M.O. Diversity and evenness: A unifying notation and its consequences. Ecology 1973, 54, 427–432. [Google Scholar] [CrossRef]
- Chao, A.; Gotelli, N.J.; Hsieh, T.C.; Sander, E.L.; Ma, K.H.; Colwell, R.K.; Ellison, A.M. Rarefaction and extrapolation with Hill numbers: A framework for sampling and estimation in species diversity studies. Ecol. Monogr. 2014, 84, 45–67. [Google Scholar] [CrossRef]
- Jost, L. Entropy and diversity. Oikos 2006, 113, 363–375. [Google Scholar] [CrossRef]
- Hsieh, T.C.; Ma, K.H.; Chao, A. iNEXT: An R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods Ecol. Evol. 2016, 7, 1451–1456. [Google Scholar] [CrossRef]
- Magurran, A.E. Measuring Biological Diversity; Blackwell Science Ltd.: Oxford, UK, 2004. [Google Scholar]
- Hsieh, T.C.; Ma, K.H.; Chao, A. iNEXT: Interpolation and Extrapolation for Species Diversity. R Package Version 2.0.20. Available online: http://chao.stat.nthu.edu.tw/wordpress/software_download/ (accessed on 27 May 2024).
- Krebs, C.J. Ecology: The Experimental Analysis of Distribution and Abundance, 6th ed.; Benjamin Cummings: San Francisco, CA, USA, 2009. [Google Scholar]
- Minchin, P.R. An evaluation of the relative robustness of techniques for ecological ordination. Vegetatio 1987, 69, 89–107. [Google Scholar] [CrossRef]
- Anderson, M.J.; Walsh, D.C.I. Permanova, anosim, and the Mantel test in the face of heterogeneous dispersions: What null hypothesis are you testing? Ecol. Monogr. 2013, 83, 557–574. [Google Scholar] [CrossRef]
- Oksanen, J.; Blanchet, F.G.; Friendly, M.; Kindt, R.; Legendre, P.; McGlinn, D.; Minchin, P.R.; O’Hara, R.B.; Simpson, G.L.; Solymos, P.; et al. Vegan: Community Ecology Package. R Package Version 2.5-6. Available online: https://CRAN.R-project.org/package=vegan (accessed on 27 May 2024).
- Ripley, B.; Venables, B.; Bates, D.M.; Hornik, K.; Gebhardt, A.; Firth, D.; Ripley, M.B. Package ‘Mass’. R Package Version 7.3-52. Available online: https://CRAN.R-project.org/package=mass (accessed on 27 May 2024).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2014. [Google Scholar]
- Clarke, K.R. Non-parametric multivariate analyses of changes in community structure. Aust. J. Ecol. 1993, 18, 117–143. [Google Scholar] [CrossRef]
- Clarke, K.R.; Warwick, R.M. Change in Marine Communities: An Approach to Statistical Analysis and Interpretation, 2nd ed.; PRIMER-E: Plymouth, UK, 2001. [Google Scholar]
- Dufrêne, M.; Legendre, P. Species assemblages and indicator species: The need for a flexible asymmetrical approach. Ecol. Monogr. 1997, 67, 345–366. [Google Scholar] [CrossRef]
- De Cáceres, M.; Legendre, P. Associations between species and groups of sites: Indices and statistical inference. Ecology 2009, 90, 3566–3574. [Google Scholar] [CrossRef]
- Roberts, D.W. labdsv: Ordination and Multivariate Analysis for Ecology. R Package Version 1.8-0. Available online: https://cran.r-project.org/web/packages/labdsv/labdsv.pdf (accessed on 27 May 2024).
- Haddad, N.M.; Brudvig, L.A.; Clobert, J.; Davies, K.F.; Gonzalez, A.; Holt, R.D.; Lovejoy, T.E.; Sexton, J.O.; Austin, M.P.; Collins, C.D.; et al. Habitat fragmentation and its lasting impact on Earth’s ecosystems. Sci. Adv. 2015, 1, e1500052. [Google Scholar] [CrossRef] [PubMed]
- Newbold, T.; Hudson, L.N.; Contu, S.; Hill, S.L.; Beck, J.; Liu, Y.; Meyer, C.; Phillips, H.R.P.; Scharlemann, J.P.; Purvis, A. Widespread winners and narrow-ranged losers: Land use homogenizes biodiversity in local assemblages worldwide. PLoS Biol. 2018, 16, e2006841. [Google Scholar] [CrossRef] [PubMed]
- Gibson, L.; Lee, T.M.; Koh, L.P.; Brook, B.W.; Gardner, T.A.; Barlow, J.; Peres, C.A.; Bradshaw, C.J.A.; Laurance, W.F.; Lovejoy, T.E.; et al. Primary forests are irreplaceable for sustaining tropical biodiversity. Nature 2011, 478, 378–381. [Google Scholar] [CrossRef] [PubMed]
- Arroyo-Rodríguez, V.; Melo, F.P.L.; Martínez-Ramos, M.; Bongers, F.; Chazdon, R.L.; Meave, J.A.; Norden, N.; Santos, B.A.; Leal, I.R.; Tabarelli, M. Multiple successional pathways in human-modified tropical landscapes: New insights from forest succession, forest fragmentation and landscape ecology research. Biol. Rev. 2017, 92, 326–340. [Google Scholar] [CrossRef]
- Benton, T.G.; Bryant, D.M.; Cole, L.; Crick, H. Linking agricultural practice to insect and bird populations: A historical study over three decades. J. Appl. Ecol. 2002, 39, 673–687. [Google Scholar] [CrossRef]
- Fischer, J.; Lindenmayer, D.B. Landscape modification and habitat fragmentation: A synthesis. Glob. Ecol. Biogeogr. 2007, 16, 265–280. [Google Scholar] [CrossRef]
- Seibold, S.; Gossner, M.M.; Simons, N.K.; Blüthgen, N.; Müller, J.; Ambarli, D.; Ammer, C.; Bauhus, J.; Fischer, M.; Habel, J.C.; et al. Arthropod decline in grasslands and forests is associated with landscape-level drivers. Nature 2019, 574, 671–674. [Google Scholar] [CrossRef]
- Öckinger, E.; Schweiger, O.; Crist, T.O.; Debinski, D.M.; Krauss, J.; Kuusaari, M.; Petersen, J.D.; Pöyry, J.; Settele, J.; Summerville, K.S.; et al. Life-history traits predict species responses to habitat area and isolation: A cross-continental synthesis. Ecol. Lett. 2010, 13, 969–979. [Google Scholar] [CrossRef]
- Hallmann, C.A.; Sorg, M.; Jongejans, E.; Siepel, H.; Hofland, N.; Schwan, H.; Stenmans, W.; Müller, A.; Sumser, H.; Hörren, T.; et al. More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS ONE 2017, 12, e0185809. [Google Scholar] [CrossRef]
- Zioga, E.; Kelly, R.; White, B.; Stout, J.C. Plant protection product residues in plant pollen and nectar: A review of current knowledge. Environ. Res. 2020, 189, 109873. [Google Scholar] [CrossRef]
- Marsden, S.J.; Whiffin, M.; Galetti, M. Bird diversity and abundance in forest fragments and Eucalyptus plantations around an Atlantic forest reserve, Brazil. Biodivers. Conserv. 2001, 10, 737–751. [Google Scholar] [CrossRef]
- Barlow, J.; Overal, W.L.; Araujo, I.S.; Gardner, T.A.; Peres, C.A. The value of primary, secondary and plantation forests for fruit-feeding butterflies in the Brazilian Amazon. J. Appl. Ecol. 2007, 44, 1001–1012. [Google Scholar] [CrossRef]
- Francesconi, W.; Nair, P.K.R.; Levey, D.J.; Daniels, J.; Cullen, L. Butterfly distribution in fragmented landscapes containing agroforestry practices in Southeastern Brazil. Agrofor. Syst. 2013, 87, 1321–1338. [Google Scholar] [CrossRef]
- Carnus, J.M.; Parrotta, J.; Brockerhoff, E.; Arbez, M.; Jactel, H.; Kremer, A.; Lamb, D.; O'Hara, K.O.; Walters, B. Planted forests and biodiversity. J. For. 2006, 104, 65–77. [Google Scholar] [CrossRef]
- Brockerhoff, E.G.; Jactel, H.; Parrotta, J.A.; Quine, C.P.; Sayer, J. Plantation forests and biodiversity: Oxymoron or opportunity? Biodivers. Conserv. 2008, 17, 925–951. [Google Scholar]
- Valtonen, A.; Hirka, A.; Szőcs, L.; Ayres, M.P.; Roininen, H.; Csóka, G. Long-term species loss and homogenization of moth communities in Central Europe. J. Anim. Ecol. 2017, 86, 730–738. [Google Scholar] [CrossRef]
- Pöyry, J.; Paukkunen, J.; Heliölä, J.; Kuussaari, M. Relative contributions of local and regional factors to species richness and total density of butterflies and moths in semi-natural grasslands. Oecologia 2009, 160, 577–587. [Google Scholar] [CrossRef]
- Ekroos, J.; Heliölä, J.; Kuussaari, M. Homogenization of lepidopteran communities in intensively cultivated agricultural landscapes. J. Appl. Ecol. 2010, 47, 459–467. [Google Scholar] [CrossRef]
- Curtis, R.J.; Brereton, T.M.; Dennis, R.L.; Carbone, C.; Isaac, N.J. Butterfly abundance is determined by food availability and is mediated by species traits. J. Appl. Ecol. 2015, 52, 1676–1684. [Google Scholar] [CrossRef]
- Tylianakis, J.M.; Laliberté, E.; Nielsen, A.; Bascompte, J. Conservation of species interaction networks. Biol. Conserv. 2010, 143, 2270–2279. [Google Scholar] [CrossRef]
- Bartual, A.M.; Sutter, L.; Bocci, G.; Moonen, A.C.; Cresswell, J.; Entling, M.; Giffard, B.; Jacot, K.; Jeanneret, P.; Holland, J.; et al. The potential of different semi-natural habitats to sustain pollinators and natural enemies in European agricultural landscapes. Agric. Ecosyst. Environ. 2019, 279, 43–52. [Google Scholar] [CrossRef]
- Ebeling, A.; Klein, A.M.; Schumacher, J.; Weisser, W.W.; Tscharntke, T. How does plant richness affect pollinator richness and temporal stability of flower visits? Oikos 2008, 117, 1808–1815. [Google Scholar] [CrossRef]
- Varo, J.P.; Mudri-Stojnić, S.; Riedinger, V.; Rundlöf, M.; Scheper, J.; Wickens, J.B.; Wickens, V.J.; Bommarco, R.; Kleijn, D.; Potts, S.G.; et al. Mass-flowering crops dilute pollinator abundance in agricultural landscapes across Europe. Ecol. Lett. 2016, 19, 1228–1236. [Google Scholar]
- Grab, H.; Blitzer, E.J.; Danforth, B.; Loeb, G.; Poveda, K. Temporally dependent pollinator competition and facilitation with mass flowering crops affects yield in co-blooming crops. Sci. Rep. 2017, 7, 45296. [Google Scholar] [CrossRef] [PubMed]
- Öckinger, E.; Eriksson, A.K.; Smith, H.G. Effects of grassland abandonment, restoration and management on butterfly communities. Biol. Conserv. 2006, 130, 365–375. [Google Scholar]
- Sykes, L.; Santini, L.; Etard, A.; Newbold, T. Effects of rarity form on species’ responses to land use. Conserv. Biol. 2020, 34, 688–696. [Google Scholar] [CrossRef]
- Wagner, D.L.; Grames, E.M.; Forister, M.L.; Berenbaum, M.R.; Stopak, D. Insect decline in the Anthropocene: Death by a thous and cuts. Proc. Natl. Acad. Sci. USA 2021, 118, e2023989118. [Google Scholar] [CrossRef]
- Ribeiro, D.B.; Freitas, A.V. The effect of reduced-impact logging on fruit-feeding butterflies in Central Amazon, Brazil. J. Insect Conserv. 2012, 16, 733–744. [Google Scholar] [CrossRef]
- Abrahamczyk, S.; Kluge, J.; Gareca, Y.; Reichle, S.; Kessler, M. The influence of climatic seasonality on the diversity of different tropical pollinator groups. PLoS ONE 2011, 6, e27115. [Google Scholar] [CrossRef]
- Aleixo, K.P.; Menezes, C.; Imperatriz Fonseca, V.L.; da Silva, C.I. Seasonal availability of floral resources and ambient temperature shape stingless bee foraging behavior (Scaptotrigona aff. depilis). Apidologie 2017, 48, 117–127. [Google Scholar] [CrossRef]
- Aduse-Poku, K.; Molleman, F.; Oduro, W.; Oppong, S.K.; Lohman, D.J.; Etienne, R.S. Relative contribution of neutral and deterministic processes in shaping fruit-feeding butterfly assemblages in Afrotropical forests. Ecol. Evol. 2018, 8, 296–308. [Google Scholar] [CrossRef] [PubMed]
- Mahood, S.P.; Lees, A.C.; Peres, C.A. Amazonian countryside habitats provide limited avian conservation value. Biodivers. Conserv. 2012, 21, 385–405. [Google Scholar] [CrossRef]
- Kuussaari, M.; Heliölä, J.; Pöyry, J.; Saarinen, K. Contrasting trends of butterfly species preferring semi-natural grasslands, field margins and forest edges in northern Europe. J. Insect Conserv. 2007, 11, 351–366. [Google Scholar] [CrossRef]
- Koh, L.P.; Sodhi, N.S. Importance of reserves, fragments, and parks for butterfly conservation in a tropical urban landscape. Ecol. Appl. 2004, 14, 1695–1708. [Google Scholar] [CrossRef]
- Horner-Devine, M.C.; Daily, G.C.; Ehrlich, P.R.; Boggs, C.L. Countryside biogeography of tropical butterflies. Conserv. Biol. 2003, 17, 168–177. [Google Scholar] [CrossRef]
- Sparrow, H.R.; Sisk, T.D.; Ehrlich, P.R.; Murphy, D.D. Techniques and guidelines for monitoring neotropical butterflies. Conserv. Biol. 1994, 8, 800–809. [Google Scholar] [CrossRef]
- Fleishman, E.; Thomson, J.R.; Mac Nally, R.; Murphy, D.D.; Fay, J.P. Using indicator species to predict species richness of multiple taxonomic groups. Conserv. Biol. 2005, 19, 1125–1137. [Google Scholar] [CrossRef]
- Schmidt, B.C.; Roland, J. Moth diversity in a fragmented habitat: Importance of functional groups and landscape scale in the boreal forest. Ann. Entomol. Soc. Am. 2006, 99, 1110–1120. [Google Scholar] [CrossRef]
- Summerville, K.S.; Ritter, L.M.; Crist, T.O. Forest moth taxa as indicators of lepidopteran richness and habitat disturbance: A preliminary assessment. Biol. Conserv. 2004, 116, 9–18. [Google Scholar] [CrossRef]
- Hill, J.K.; Hamer, K.C.; Tangah, J.; Dawood, M.M. Ecology of tropical butterflies in rainforest gaps. Oecologia 2003, 135, 294–302. [Google Scholar] [CrossRef]
- Bonebrake, T.C.; Ponisio, L.C.; Boggs, C.L.; Ehrlich, P.R. More than just indicators: A review of tropical butterfly ecology and conservation. Biol. Conserv. 2010, 143, 1831–1841. [Google Scholar] [CrossRef]
- Uehara-Prado, M.; Brown, K.S.; Freitas, A.V.L. Species richness, composition and abundance of fruit-feeding butterflies in the Brazilian Atlantic Forest: Comparison between a fragmented and a continuous landscape. Glob. Ecol. Biogeogr. 2007, 16, 43–54. [Google Scholar] [CrossRef]
- Filgueiras, B.K.; Melo, D.H.; Leal, I.R.; Tabarelli, M.; Freitas, A.V.; Iannuzzi, L. Fruit-feeding butterflies in edge-dominated habitats: Community structure, species persistence and cascade effect. J. Insect Conserv. 2011, 15, 485–495. [Google Scholar] [CrossRef]
- Pozo, C.; Luis-Martínez, A.; Llorente-Bousquets, J.; Salas-Suárez, N.; Maya-Martínez, A.; Vargas-Fernández, I.; Warren, A.D. Seasonality and phenology of the butterflies (Lepidoptera: Papilionoidea and Hesperioidea) of Mexico's Calakmul region. Fla. Entomol. 2008, 91, 407–422. [Google Scholar] [CrossRef]
- Grotan, V.; Lande, R.; Chacon, I.A.; DeVries, P.J. Seasonal cycles of diversity and similarity in a Central American rainforest butterfly community. Ecography 2014, 37, 509–516. [Google Scholar] [CrossRef]
- Munyuli, T. Drivers of species richness and abundance of butterflies in coffee-banana agroforests in Uganda. Int. J. Biodivers. Sci. Ecosyst. Serv. Manag. 2013, 9, 298–310. [Google Scholar] [CrossRef]
- Ferreira, P.A.; Boscolo, D.; Carvalheiro, L.G.; Biesmeijer, J.C.; Rocha, P.L.; Viana, B.F. Responses of bees to habitat loss in fragmented landscapes of Brazilian Atlantic Rainforest. Landsc. Ecol. 2015, 30, 2067–2078. [Google Scholar] [CrossRef]
- Soga, M.; Kawahara, T.; Fukuyama, K.; Sayama, K.; Kato, T.; Shimomura, M.; Itoh, T.; Yoshida, T.; Koike, S. Landscape versus local factors shaping butterfly communities in fragmented landscapes: Does host plant diversity matter? J. Insect Conserv. 2015, 19, 781–790. [Google Scholar] [CrossRef]
- Grass, I.; Jauker, B.; Steffan-Dewenter, I.; Tscharntke, T.; Jauker, F. Past and potential future effects of habitat fragmentation on structure and stability of plant-pollinator and host-parasitoid networks. Nat. Ecol. Evol. 2018, 2, 1408–1417. [Google Scholar] [CrossRef]
- Mulwa, R.K.; Böhning-Gaese, K.; Schleuning, M. High bird species diversity in structurally heterogeneous farmland in western Kenya. Biotropica 2012, 44, 801–809. [Google Scholar] [CrossRef]
- Brito, M.M.; Ribeiro, D.B.; Raniero, M.; Hasui, É.; Ramos, F.N.; Arab, A. Functional composition and phenology of fruit-feeding butterflies in a fragmented landscape: Variation of seasonality between habitat specialists. J. Insect Conserv. 2014, 18, 547–560. [Google Scholar] [CrossRef]
- Burivalova, Z.; Towsey, M.; Boucher, T.; Truskinger, A.; Apelis, C.; Roe, P.; Game, E.T. Using soundscapes to detect variable degrees of human influence on tropical forests in Papua New Guinea. Conserv. Biol. 2018, 32, 205–215. [Google Scholar] [CrossRef] [PubMed]
- Öckinger, E.; Bergman, K.O.; Franzen, M.; Kadlec, T.; Krauss, J.; Kuussaari, M.; Pöyry, J.; Smith, H.G.; Steffan-Dewenter, I.; Bommarco, R. The landscape matrix modifies the effect of habitat fragmentation in grassland butterflies. Landsc. Ecol. 2012, 27, 121–131. [Google Scholar] [CrossRef]
- Brennan, A.; Naidoo, R.; Greenstreet, L.; Mehrabi, Z.; Ramankutty, N.; Kremen, C. Functional connectivity of the world's protected areas. Science 2022, 376, 1101–1104. [Google Scholar] [CrossRef]
Family | Species | Agriculture Sites | Juniper Forest | Eucalyptus Forest |
---|---|---|---|---|
Papilionidae | Battus philenor philenor (Linnaeus, 1771) | X | X | X |
Mimoides thymbraeus (Boisduval, 1836) | X | |||
Pterourus garamas garamas (Geyer, Geyer, [1829]) | X | |||
Pterourus multicaudata multicaudata (Kirby, 1884) | X | X | X | |
Heraclides pharnaces (Doubleday, 1846) | X | X | ||
Papilio polyxenes asterius (Stoll, 1782) | X | |||
Pieridae | Abaeis mexicana mexicana (Boisduval, 1836) | X | X | |
Anteos maerula (Fabricius, 1775) | X | |||
Archonias nimbice nimbice (Boisduval, 1836) | X | X | X | |
Colias eurytheme (Boisduval, 1852) | X | |||
Abaeis salome jamapa (Reakirt, 1866) | X | |||
Ganyra josephina josepha (Godman & Salvin, 1868) | X | X | X | |
Leptophobia aripa elodia (Boisduval, 1836) | X | X | X | |
Nathalis iole iole (Boisduval, 1836) | X | X | X | |
Phoebis agarithe agarithe (Boisduval, 1836) | X | X | X | |
Phoebis argante argante (Fabricius, 1775) | X | X | ||
Phoebis neocypris virgo (Butler, 1870) | X | X | X | |
Phoebis philea philea (Linnaeus, 1763) | X | |||
Phoebis sennae marcellina (Cramer, 1777) | X | X | X | |
Pieris rapae rapae (Linnaeus, 1758) | X | |||
Pontia protodice (Boisduval & Le Conte, [1830]) | X | X | ||
Zerene cesonia cesonia (Stoll, 1790) | X | X | X | |
Nymphalidae | Adelpha paroeca paroeca (Bates, 1864) | X | ||
Anartia fatima fatima (Fabricius, 1793) | X | X | X | |
Anthanassa texana (Edwards, 1863) | X | |||
Chlosyne ehrenbergii (Geyer, [1833]) | X | |||
Chlosyne marina (Geyer, 1837) | X | |||
Cyllopsis pyracmon pyracmon (Butler,1867) | X | |||
Danaus eresimus montezuma Talbot, 1943 | X | X | ||
Danaus gilippus thersippus (Bates, 1863) | X | X | X | |
Danaus plexippus plexippus (Linnaeus, 1758) | X | X | X | |
Dione juno huascuma (Reakirt, 1866) | X | X | X | |
Dione moneta poeyii Bluter, 1873 | X | X | X | |
Dione incarnata incarnata (Riley, 1926) | X | X | X | |
Euptoieta claudia claudia (Cramer, 1775) | X | X | X | |
Euptoieta hegesia meridiania (Stichel, 1938) | X | X | X | |
Phyciodes graphica graphica (Felder, 1869) | X | |||
Vanessa annabella (Field, 1971) | X | X | X | |
Vanessa cardui (Linnaeus, 1758) | X | |||
Lycaenidae | Brephidium exilis exilis (Boisduval, 1852) | X | X | |
Echinargus isola (Reakirt, 1867) | X | X | X | |
Callophrys spinetorum millerorum (Clench, 1981) | X | |||
Leptotes cassius cassidula (Boisduval, 1870) | X | |||
Leptotes marina (Reakirt, 1868) | X | X | ||
Hesperiidae | Amblyscirtes fimbriata fimbriata (Plötz, 1882) | X | X | |
Atalopedes huron (Edwards, 1863) | X | X | ||
Burnsius communis albescens (Plötz, 1884) | X | |||
Calpodes ethlius (Stoll, 1782) | X | |||
Cecropterus cincta (Plötz, 1882) | X | |||
Eantis pallida (Felder, 1869) | X | X | X | |
Lerema accius (Smith, 1797) | X | |||
Oarisma edwardsii (Barnes, 1897) | X | X | ||
Telegonus cellus (Boisduval & Le Conte, [1837]) | X | X | ||
Erebidae | Apantesis proxima (Guérin-Méneville, 1831) | X | ||
Dysschema howardi (Edwards, 1886) | X | |||
Crambidae | Fissicrambus sp. (Bleszynski, 1825) | X | ||
Pyrausta inornatalis (Fernald, 1885) | X |
Family | Species | Agriculture Sites | Juniper Forest | Eucalyptus Forest |
---|---|---|---|---|
Phytolaccaceae | Phytolacca icosandra L., 1753 | X | ||
Papaveraceae | Argemone platyceras Link & Otto, 1828 | X | ||
Brassicaceae | Raphanus sativus L., 1753 | X | ||
Fabaceae | Erythrina coralloides DC., 1825 | X | ||
Mimosa aculeaticarpa Ortega, 1798 | X | X | X | |
Senna multiglandulosa (Jacq.) H. S. Irwin & Barneby, 1982 | X | |||
Anacardiaceae | Rhus integrifolia (Nutt.) Brebner ex W. H. Brewer & S.Watson, 1876 | X | X | |
Onagraceae | Oenothera gaura Raf., 1836 | X | ||
Convolvulaceae | Evolvulus prostratus Rob., 1962 | X | ||
Polemoniaceae | Loeselia mexicana (Lam.) Brand, 1907 | X | X | |
Lamiaceae | Clinopodium multiflorum (Romo & Delgadillo) B. L. Turner, 1994 | X | ||
Solanaceae | Physalis philadelphica Lam., 1793 | X | ||
Solanum carolinense L., 1753 | X | |||
Rubiaceae | Bouvardia ternifolia (Cav.) Schltdl., 1819 | X | X | X |
Asteraceae | Amblyopappus pusillus Hooker & Arnott, 1835 | X | ||
Baccharis breviseta DC., 1836 | X | |||
Baccharis salicifolia (Ruiz & Pav.) Pers., 1807 | X | X | ||
Barkleyanthus salicifolius (Kunth) H.Rob. & Brettell, 1974 | X | |||
Bidens odorata Cav., 1794 | X | |||
Brickellia californica (Torr. & A.Gray) A. Gray, 1873 | X | |||
Dahlia coccinea Cav., 1791 | X | X | X | |
Dyssodia papposa (Vent.) Hitchc., 1932 | X | |||
Eremosis corymbosa (DC.) Gleason, 1923 | X | |||
Garberia heterophylla (W.M.Wood) Merr. & F. Harper, 1909 | X | X | ||
Heterotheca grandiflora Nutt., 1841 | X | |||
Pseudognaphalium gaudichaudianum (DC.) Anderb., 2012 | X | |||
Stevia elatior Kunth, 1818 | X | |||
Stevia serrata Cav., 1794 | X | |||
Tagetes lucida Cav., 1794 | X | |||
Tithonia tubiformis (Jacq.) Cass., 1825 | X | X | ||
Tridax procumbens L., 1753 | X | X | ||
Amaryllidaceae | Zephyranthes brevipes (Engelm. ex Buckley) Ingram, 1940 | X | ||
Orchidaceae | Dichromanthus cinnabarinus (La Llave & Lex.) Garay, 1982 | X | ||
Phytolaccaceae | Phytolacca icosandra L., 1753 | X |
Community | Indicator | Agriculture Sites | Juniper Forest | Eucalyptus Forest |
---|---|---|---|---|
Butterfly | Individuals | 366 | 434 | 590 |
Species | 32 | 31 | 46 | |
q0 | 39.20 | 33.11 * | 48.70 | |
q1 | 12.49 | 15.06 | 20.95 * | |
q2 | 6.34 | 7.61 | 12.85 * | |
Plants | Flowers | 9666 | 25,908 | 37,279 |
Species | 18 | 12 | 16 | |
q0 | 18.1 | 12.1 * | 16.1 | |
q1 | 5.20 | 6.17 | 3.97 * | |
q2 | 2.91 * | 4.43 | 3.19 |
(A) Butterfly Species | Agriculture Sites Mean Abundance | Juniper Forest Mean Abundance | Eucalyptus Forest Mean Abundance | % Contribution to Dissimilarity |
---|---|---|---|---|
Zerene cesonia cesonia | 11.7 | 26.3 | 50.7 | 15.32 |
Battus philenorphilenor | 43.3 | 31.3 | 47.3 | 13.63 |
Agraulisincarnata incarnata | 4 | 29.3 | 2.33 | 10.19 |
Echinargus isola | 0.667 | 4.33 | 12.3 | 4.576 |
Leptophobia aripaelodia | 11 | 1.67 | 1.67 | 4.165 |
Nathalis ioleiole | 3.67 | 13.3 | 8.33 | 4.081 |
Dione junohuascuma | 6 | 9 | 10.3 | 3.902 |
Leptotes marina | 0 | 5.67 | 6.67 | 3.162 |
Fissicrambus sp. | 0.667 | 8 | 3.67 | 3.059 |
Euptoieta claudiaclaudia | 1 | 7.67 | 4.67 | 2.894 |
Ganyra josephinajosepha | 0.333 | 1.33 | 7 | 2.488 |
Pterourus multicaudata multicaudata | 7 | 7.33 | 6.33 | 2.331 |
Colias eurytheme | 5.33 | 0 | 0 | 2.303 |
(B) Plant Species | ||||
Rhus integrifolia | 0 | 1000 | 4660 | 37.86 |
Loeselia mexicana | 0 | 4320 | 5950 | 24.61 |
Mimosa aculeaticarpa | 1790 | 2640 | 3350 | 6.384 |
Raphanus sativus | 1350 | 0 | 0 | 5.706 |
Tithonia tubiformis | 919 | 0 | 6.33 | 3.87 |
Eremosis corymbosa | 0 | 0 | 1030 | 3.811 |
Salvia polystachya | 0 | 909 | 0 | 3.215 |
Bouvardia ternifolia | 884 | 1610 | 823 | 2.84 |
(A) Butterfly Species | Rainy Mean Abundance | Dry Mean Abundance | % Contribution to Dissimilarity |
---|---|---|---|
Battus philenorphilenor | 30.9 | 9.78 | 20.58 |
Zerenecesonia cesonia | 14.4 | 2.78 | 10.87 |
Nathalis ioleiole | 7.89 | 0.556 | 6.678 |
Dione incarnata incarnata | 7.67 | 3.44 | 6.148 |
Dione junohuascuma | 7.11 | 1 | 5.872 |
Pterorurus multicaudata multicaudata | 5.67 | 1.22 | 4.315 |
Dione monetapoeyyi | 4 | 0.333 | 3.309 |
Phoebis sennae marcellina | 3.33 | 0.111 | 3.154 |
Echinargus isola | 1.67 | 3.67 | 2.808 |
Danaus gilippusthersippus | 2.89 | 0 | 2.761 |
Leptophobia aripaelodia | 2.78 | 1.78 | 2.718 |
Ganyra josephinajosepha | 2.78 | 0.111 | 2.485 |
Leptotes marina | 2.56 | 1.56 | 2.197 |
(B) Plant species | |||
Rhus integrifolia | 0 | 3030 | 23.25 |
Loeselia mexicana | 142 | 1330 | 13.6 |
Mimosa aculeaticarpa | 0 | 1400 | 13.47 |
Raphanus sativus | 449 | 153 | 10.43 |
Bouvardia ternifolia | 234 | 12.4 | 7.651 |
Salvia polystachya | 251 | 0 | 5.187 |
Rhus integrifolia | 0 | 3030 | 23.25 |
Loeselia mexicana | 142 | 1330 | 13.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
López-Vázquez, K.; Lara, C.; Corcuera, P.; Castillo-Guevara, C. Temporal Shifts in Flower-Visiting Butterfly Communities and Their Floral Resources along a Vegetation Type Altered by Anthropogenic Factors. Forests 2024, 15, 1668. https://doi.org/10.3390/f15091668
López-Vázquez K, Lara C, Corcuera P, Castillo-Guevara C. Temporal Shifts in Flower-Visiting Butterfly Communities and Their Floral Resources along a Vegetation Type Altered by Anthropogenic Factors. Forests. 2024; 15(9):1668. https://doi.org/10.3390/f15091668
Chicago/Turabian StyleLópez-Vázquez, Karla, Carlos Lara, Pablo Corcuera, and Citlalli Castillo-Guevara. 2024. "Temporal Shifts in Flower-Visiting Butterfly Communities and Their Floral Resources along a Vegetation Type Altered by Anthropogenic Factors" Forests 15, no. 9: 1668. https://doi.org/10.3390/f15091668