Biomass Inversion of Highway Slope Based on Unmanned Aerial Vehicle Remote Sensing and Deep Learning
Abstract
:1. Introduction
2. Materials
2.1. Study Area
2.2. Data Sources and Preprocessing
2.2.1. Remote-Sensing Data Sources
2.2.2. Multi-Source Remote-Sensing Data Fusion
- (1)
- Preprocessing and preparation: The required data are preprocessed by layer stacking, radiometric calibration, and geometric correction, and the overlapping areas between the UAV and Sentinel-2A images are identified. Specifically, Sentinel-2A images are combined into a single, simulated lower-resolution panchromatic band, while the mean value of all UAV image bands is calculated to create the UAV panchromatic band.
- (2)
- GS transformation: the GS transformation is applied, with the low-resolution Sentinel-2A image serving as the first component and all other bands used as subsequent components in the GS transformation.
- (3)
- Adjustment of panchromatic bands: The mean and standard deviation of both the UAV panchromatic band and the first component of the GS are calculated. The UVA panchromatic band is then adjusted to match the first component of the GS.
- (4)
- Inverse GS Transformation: Using the adjusted panchromatic band as the first component, an inverse GS transformation is performed. This step produces 13 0.05 m resolution multispectral bands, maintaining the spectral characteristics of the Sentinel-2A images while achieving the spatial resolution of the UAV images.
2.2.3. Biomass Quadrat Sampling
3. Methods
3.1. Vegetation Probability Extraction Based on Deep Learning
3.2. Vegetation Index Extraction Based on Band Math
3.3. Texture Feature Extraction Based on a Gray-Level Co-Occurrence Matrix
3.4. Correlation Analysis
3.5. Multiple Linear Regression
3.6. Accuracy Evaluation
4. Results
4.1. Correlation Analysis between Various Influencing Factors and Slope Vegetation Biomass
4.2. Construction and Accuracy Testing of Slope Vegetation Biomass Inversion Model
4.3. Biomass Inversion Mapping
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xing, Y.; Wang, F.; Xu, F. Above Ground Biomass Estimation by Multi-Source Data Based on Interpretable DNN Model. In Proceedings of the IGARSS 2023—2023 IEEE International Geoscience and Remote Sensing Symposium, Pasadena, CA, USA, 16–21 July 2023. [Google Scholar]
- Wang, C.; Zhang, W.; Ji, Y.; Marino, A.; Li, C.; Wang, L.; Zhao, H.; Wang, M.J. Estimation of Aboveground Biomass for Different Forest Types Using Data from Sentinel-1, Sentinel-2, ALOS PALSAR-2, and GEDI. Forests 2024, 15, 215. [Google Scholar] [CrossRef]
- Zhang, F.; Tiyip, T.; Ding, J.; Sawut, M.; Johnson, V.C.; Tashpolat, N.; Gui, D.W. Vegetation fractional coverage change in a typical oasis region in Tarim River Watershed based on remote sensing. J. Arid Land 2013, 5, 89–101. [Google Scholar] [CrossRef]
- Toneli, C.A.Z.; Scardua, F.P.; Martins, R.d.C.C.; Matricardi, E.A.T.; Ribeiro, A.; Ferraz Filho, A.C. Aerial Biomass Estimation in the Cerrado Biome Using Canopy Height Data. Forests 2024, 15, 507. [Google Scholar] [CrossRef]
- Calama, R.; Madrigal, G.; del Río, M.; López-Senespleda, E.; Pardos, M.; Ruiz-Peinado, R.; Menéndez-Miguélez, M. Dynamic Height Growth Equations and Site Index-Based Biomass Models for Young Native Species Afforestations in Spain. Forests 2024, 15, 827. [Google Scholar] [CrossRef]
- Liu, J.; Xu, H.; Chang, C. Mechanism of the effect caused by highway construction on plant biomass in Longitudinal Range-Gorge Region. Front. Earth Sci. 2013, 7, 85–91. [Google Scholar] [CrossRef]
- Bengtsson, J.; Nilsson, S.; Franc, A.; Menozzi, P. Biodiversity, disturbances, ecosystem function and management of European forests. For. Ecol. Manag. 2000, 132, 39–50. [Google Scholar] [CrossRef]
- van Bohemen, H.D.; Janssen van de Laak, W.H. The influence of road infrastructure and traffic on soil, water, and air quality. Environ. Manag. 2003, 31, 50–68. [Google Scholar] [CrossRef]
- Zhang, Y.; Shao, Z. Assessing of Urban Vegetation Biomass in Combination with LiDAR and High-resolution Remote Sensing Images. Int. J. Remote Sens. 2021, 42, 964–985. [Google Scholar] [CrossRef]
- Cao, W.; Omran, B.A.; Lei, Y.K.; Zhao, X.; Yang, X.M.; Chen, Q.; Tian, G.H. Studying early stage slope protection effects of vegetation communities for Xinnan Highway in China. Ecol. Eng. 2018, 110, 87–98. [Google Scholar] [CrossRef]
- Fang, J.; Wang, Z. Forest biomass estimation at regional and global levels, with special reference to China’s forest biomass. Ecol. Res. 2001, 16, 587–592. [Google Scholar] [CrossRef]
- Tsatsakis, A.M.; Nawaz, M.A.; Kouretas, D.; Balias, G.; Savolainen, K.; Tutelyan, V.A.; Golokhvast, K.S.; Lee, J.D.; Yang, S.H.; Chung, G. Environmental Impacts of Genetically Modified Plants: A Review. Environ. Res. 2017, 156, 818–833. [Google Scholar] [CrossRef] [PubMed]
- Onodi, G.; Kertesz, M.; Kovacs-Lang, E.; Odor, P.; Botta-Dukat, Z.; Lhotsky, B.; Barabas, S.; Mojzes, A.; Kroel-Dulay, G. Estimating aboveground herbaceous plant biomass via proxies: The confounding effects of sampling year and precipitation. Ecol. Indic. 2017, 79, 355–360. [Google Scholar] [CrossRef]
- Lu, D.S. The potential and challenge of remote sensing-based biomass estimation. Int. J. Remote Sens. 2006, 27, 1297–1328. [Google Scholar] [CrossRef]
- Kang, Y.; Chen, Z.; Li, L.; Zhang, Q. Construction of multidimensional features to identify tea plantations using multisource remote sensing data: A case study of Hangzhou city, China. Ecol. Inform. 2023, 77, 102185. [Google Scholar] [CrossRef]
- Yan, X.G.; Li, J.; Smith, A.R.; Yang, D.; Ma, T.Y.; Su, Y.T.; Shao, J.H. Evaluation of machine learning methods and multi-source remote sensing data combinations to construct forest above-ground biomass models. Int. J. Digit. Earth 2023, 16, 4471–4491. [Google Scholar] [CrossRef]
- Basuki, T.M.; Skidmore, A.K.; Hussin, Y.A.; Van Duren, I. Estimating tropical forest biomass more accurately by integrating ALOS PALSAR and Landsat-7 ETM+ data. Int. J. Remote Sens. 2013, 34, 4871–4888. [Google Scholar] [CrossRef]
- Tamiminia, H.; Salehi, B.; Mahdianpari, M.; Beier, C.M.; Johnson, L.; Phoenix, D.B.; Mahoney, M. Decision tree-based machine learning models for above-ground biomass estimation using multi-source remote sensing data and object-based image analysis. Geocarto Int. 2022, 37, 12763–12791. [Google Scholar] [CrossRef]
- Xu, F.; Chen, W.J.; Xie, R.; Wu, Y.H.; Jiang, M. Vegetation Classification and a Biomass Inversion Model for Wildfires in Chongli Based on Remote Sensing Data. Fire 2024, 7, 58. [Google Scholar] [CrossRef]
- Lyu, X.; Li, X.B.; Dang, D.L.; Dou, H.S.; Wang, K.; Lou, A.R. Unmanned Aerial Vehicle (UAV) Remote Sensing in Grassland Ecosystem Monitoring: A Systematic Review. Remote Sens. 2022, 14, 1096. [Google Scholar] [CrossRef]
- Miao, Y.; Zhang, R.; Guo, J.; Yi, S.; Meng, B.; Liu, J. Vegetation Coverage in the Desert Area of the Junggar Basin of Xinjiang, China, Based on Unmanned Aerial Vehicle Technology and Multisource Data. Remote Sens. 2022, 14, 5146. [Google Scholar] [CrossRef]
- Zhang, S.H.; He, L.; Duan, J.Z.; Zang, S.L.; Yang, T.C.; Schulthess, U.; Guo, T.C.; Wang, C.Y.; Feng, W. Aboveground wheat biomass estimation from a low-altitude UAV platform based on multimodal remote sensing data fusion with the introduction of terrain factors. Precis. Agric. 2023, 25, 119–145. [Google Scholar] [CrossRef]
- Batistoti, J.; Marcato, J.; Itavo, L.; Matsubara, E.; Gomes, E.; Oliveira, B.; Souza, M.; Siqueira, H.; Salgado, G.; Akiyama, T.; et al. Estimating Pasture Biomass and Canopy Height in Brazilian Savanna Using UAV Photogrammetry. Remote Sens. 2019, 11, 2447. [Google Scholar] [CrossRef]
- Zhang, H.; Sun, Y.; Chang, L.; Qin, Y.; Chen, J.; Qin, Y.; Du, J.; Yi, S.; Wang, Y. Estimation of Grassland Canopy Height and Aboveground Biomass at the Quadrat Scale Using Unmanned Aerial Vehicle. Remote Sens. 2018, 10, 851. [Google Scholar] [CrossRef]
- Lussem, U.; Bolten, A.; Menne, J.; Gnyp, M.L.; Schellberg, J.; Bareth, G. Estimating biomass in temperate grassland with high resolution canopy surface models from UAV-based RGB images and vegetation indices. SPIE 2019, 13, 034525. [Google Scholar] [CrossRef]
- Li, Z.; Angerer, J.P.; Jaime, X.; Yang, C.; Wu, X.B. Estimating Rangeland Fine Fuel Biomass in Western Texas Using High-Resolution Aerial Imagery and Machine Learning. Remote Sens. 2022, 14, 4360. [Google Scholar] [CrossRef]
- Alvarez-Mendoza, C.I.; Guzman, D.; Casas, J.; Bastidas, M.; Polanco, J.; Valencia-Ortiz, M.; Montenegro, F.; Arango, J.; Ishitani, M.; Selvaraj, M.G. Predictive Modeling of Above-Ground Biomass in Brachiaria Pastures from Satellite and UAV Imagery Using Machine Learning Approaches. Remote Sens. 2022, 14, 5870. [Google Scholar] [CrossRef]
- Sharma, P.; Leigh, L.; Chang, J.; Maimaitijiang, M.; Caffé, M. Above-Ground Biomass Estimation in Oats Using UAV Remote Sensing and Machine Learning. Sensors 2022, 22, 601. [Google Scholar] [CrossRef]
- Zhao, L.; Shi, Y.; Liu, B.; Hovis, C.; Duan, Y.; Shi, Z. Finer Classification of Crops by Fusing UAV Images and Sentinel-2A Data. Remote Sens. 2019, 11, 3012. [Google Scholar] [CrossRef]
- Xiong, Y.; Xu, W.; Huang, S.; Liu, M.; Lei, J.; Wu, C.; Xu, H.; Wang, Q. Fine Extraction of Forest Burned Area by Using Fusion Visible Light UAV Image with Sentinel−2A image. J. Southwest For. Univ. 2021, 41, 103–110. [Google Scholar]
- Jenerowicz, A.; Woroszkiewicz, M. The pan-sharpening of satellite and UAV imagery for agricultural applications. In Remote Sensing for Agriculture, Ecosystems, and Hydrology Xviii; Neale, C.M.U., Maltese, A., Eds.; Spie-Int SocOptical Engineering: Bellingham, DC, USA, 2016; Volume 9998. [Google Scholar]
- Chen, X.; Yang, K.; Ma, J.; Jiang, K.; Gu, X.; Peng, L. Aboveground Biomass Inversion Based on Object-Oriented Classification and Pearson–mRMR–Machine Learning Model. Remote Sens. 2024, 16, 1537. [Google Scholar] [CrossRef]
- Acorsi, M.G.; Miranda, F.D.A.; Martello, M.; Sartor, L.R. Estimating biomass of black oat using UAV-based RGB imaging. Agronomy 2019, 9, 344. [Google Scholar] [CrossRef]
- Xu, E.K.; Hu, Y.G.; Zhai, X.Y.; Dong, N.L.; Gu, H.S.; Zhao, M.; Wang, H.; Li, C.S.; Tian, G.X.; Zhang, G.Y.; et al. Construction and application of biomass estimation model of common shrubs on highway slopes in Henan Province. Chin. J. Ecol. 2024, 1–15. Available online: http://kns.cnki.net/kcms/detail/21.1148.Q.20240110.1335.014.html (accessed on 27 August 2024).
- Qin, J.; Liang, J.; Chen, T.; Lei, X.; Kang, A. Simulating and Predicting of Hydrological Time Series Based on TensorFlow Deep Learning. Pol. J. Environ. Stud. 2018, 28, 795–802. [Google Scholar] [CrossRef]
- Wang, L.; Cao, X.; Li, M.; Zhao, J. English Letter Reco gnition Based on TensorFlow Deep Learning. J. Phys. Conf. Ser. 2020, 1627, 012012. [Google Scholar]
- Huete, A.R. A soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Dang, A.T.N.; Nandy, S.; Srinet, R.; Luong, N.V.; Ghosh, S.; Senthil Kumar, A. Forest aboveground biomass estimation using machine learning regression algorithm in Yok Don National Park, Vietnam. Ecol. Inform. 2019, 50, 24–32. [Google Scholar] [CrossRef]
- Richardson, A.J.; Wiegand, C.L. Distingushing vegetation from soil background nformation. Photogrammettic Eng. Remote Sens. 1997, 43, 1541–1552. [Google Scholar]
- Dash, J.; Curran, P.J. The meris terrestrial chlorophyll index. Int. J. Remote Sens. 2004, 25, 5403–5413. [Google Scholar] [CrossRef]
- Vogelmann, J.E.; Rock, B.N.; Moss, D.M. Red edge spectral measurements from sugar maple leaves. Int. J. Remote Sens. 1993, 14, 1563–1575. [Google Scholar] [CrossRef]
- Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Kaufman, Y.J.; Merzlyak, M.N. Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sens. Environ. 1996, 58, 289–298. [Google Scholar] [CrossRef]
- Penuelas, J.; Baret, F.; Filella, I. Semi-empirical indices to assess cartotenoids/chlorophyll a ratio from leaf spectral reflectance. Photosynthetica 1995, 31, 221–230. [Google Scholar]
- Rondeaux, G.; Steven, M.; Baret, F. Optimization of soil-adjusted vegetation indices. Remote Sens. Environ. 1996, 585, 95–107. [Google Scholar] [CrossRef]
- Haralick, R.M. Textural features for image classification. IEEE Trans. Syst. Man Cybern. 1973, 3, 610–621. [Google Scholar] [CrossRef]
- Tassi, A.; Vizzari, M. Object-Oriented LULC Classification in Google Earth Engine Combining SNIC, GLCM, and 600 Machine Learning Algorithms. Remote Sens. 2020, 12, 3776. [Google Scholar] [CrossRef]
- Jiang, Y.; Zhang, L.; Yan, M.; Qi, J.; Fu, T.; Fan, S.; Chen, B. High-Resolution Mangrove Forests Classification with Machine Learning Using Worldview and UAV Hyperspectral Data. Remote Sens. 2021, 13, 1529. [Google Scholar] [CrossRef]
- Bewick, V.; Cheek, L.; Ball, J. Statistics review 7: Correlation and regression. Crit. Care 2003, 7, 451–459. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.H.; Feng, Z.M.; Jiang, L.G.; Yang, Y.Z. Analysis of the Correlation between NDVI and Climate Factors in the Lancang River Basin. J. Nat. Res. 2015, 30, 1425–1435. [Google Scholar]
- Du, S.; Wu, Y.; Guo, L.; Fan, D.; Sun, W. How Does the 2D/3D Urban Morphology Affect the Urban Heat Island across Urban Functional Zones? A Case Study of Beijing, China. ISPRS Int. J. Geo-Inf. 2024, 13, 120. [Google Scholar] [CrossRef]
- Rauf, S.; Pasra, M.M. Analysis of correlation between urban heat islands (UHI) with land-use using sentinel 2 time-series image in Makassar city. IOP Conf. Ser. Earth Environ. Sci. 2020, 419, 012088. [Google Scholar] [CrossRef]
- Nichol, J.E.; Sarker, M.L.R. Improved biomass estimation using the texture parameters of two high-resolution optical sensors. IEEE Trans. Geosci. Remote Sens. 2011, 49, 930–948. [Google Scholar] [CrossRef]
- Meng, J.; Li, S.; Wang, W.; Liu, Q.; Xie, S.; Ma, W. Estimation of forest structural diversity using the spectral and textural information derived fromSPOT-5 satellite images. Remote Sens. 2016, 8, 125. [Google Scholar] [CrossRef]
- Cao, J.; Leng, W.; Liu, K.; Liu, L.; He, Z.; Zhu, Y. Object-Based Mangrove Species Classification Using Unmanned Aerial Vehicle Hyperspectral Images and Digital Surface Models. Remote Sens. 2018, 10, 89. [Google Scholar] [CrossRef]
- Wang, T.; Zhang, H.; Lin, H.; Fang, C. Textural–Spectral Feature-Based Species Classification of Mangroves in Mai Po Nature Reserve from Worldview-3 Imagery. Remote Sens. 2015, 8, 24. [Google Scholar] [CrossRef]
- Willmott, C.J.; Ackleson, S.G.; Davis, R.E.; Feddema, J.J.; Klink, K.M.; Legates, D.R.; O’Donnell, J.; Rowe, C.M. Statistics for the evaluation and comparison of models. J. Geophys. Res. Ocean. 1985, 90, 8995–9005. [Google Scholar] [CrossRef]
- Cheng, F.; Ou, G.; Wang, M.; Liu, C. Remote Sensing Estimation of Forest Carbon Stock Based on Machine Learning Algorithms. Forests 2024, 15, 681. [Google Scholar] [CrossRef]
- Saud, P.; Lynch, T.B.; KC, A.; Guldin, J.M. Using quadratic mean diameter and relative spacing index to enhance height–diameter and crown ratio models fitted to longitudinal data. Forestry 2016, 89, 215–229. [Google Scholar] [CrossRef]
- Zhu, Y.; Feng, Z.; Lu, J.; Liu, J. Estimation of Forest Biomass in Beijing (China) Using Multisource Remote Sensing and Forest Inventory Data. Forests 2020, 11, 163. [Google Scholar] [CrossRef]
- Yilmaz, V.; Gungor, O. Fusion of very high-resolution UAV images with criteria-based image fusion algorithm. Arab. J. Geosci. 2016, 9, 59. [Google Scholar] [CrossRef]
- Clark, M.L.; Roberts, D.A.; Clark, D.B. Hyperspectral discrimination of tropical rain forest tree species at leaf to crown scales. Remote Sens. Environ. 2005, 96, 375–398. [Google Scholar] [CrossRef]
- Feng, H.; Tao, H.; Fan, Y.; Liu, Y.; Li, Z.; Yang, G.; Zhao, C. Comparison of Winter Wheat Yield Estimation Based on Near-Surface Hyperspectral and UAV Hyperspectral Remote Sensing Data. Remote Sens. 2022, 14, 4158. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, L.; Xiao, J.; Chen, S.; Kato, T.; Zhou, G. A comparison of satellite-derived vegetation indices for approximating gross primary productivity of grasslands. Rangel. Ecol. Manag. 2014, 67, 9–18. [Google Scholar] [CrossRef]
- Zheng, H.B.; Cheng, T.; Zhou, M.; Li, D.; Yao, X.; Tian, Y.C.; Cao, W.X.; Zhu, Y. Improved estimation of rice aboveground biomass combining textural and spectral analysis of uav imagery. Precis. Agric. 2019, 20, 611–629. [Google Scholar] [CrossRef]
- Zheng, H.B.; Zhou, M.; Zhu, Y.; Cheng, T. Exploiting the textural information of UAV multispectral imagery to monitor nitrogen status in rice. In Proceedings of the IGARSS 2019—2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August; pp. 7251–7253.
- Yue, J.; Yang, G.; Tian, Q.; Feng, H.; Xu, K.; Zhou, C. Estimate of Winter-Wheat above-Ground Biomass Based on UAV Ultrahigh-Ground-Resolution Image Textures and Vegetation Indices. ISPRS J. Photogramm. Remote Sens. 2019, 150, 226–244. [Google Scholar] [CrossRef]
- Lyu, X.; Li, X.; Gong, J.; Li, S.; Wang, H. Remote-sensing inversion method for aboveground biomass of typical steppe in inner mongolia, China. Ecol. Indic. 2020, 120, 106883. [Google Scholar] [CrossRef]
- Liu, W.; Xu, C.; Zhang, Z.; De Boeck, H.; Wang, Y.; Zhang, L.; Xu, X.; Zhang, C.; Chen, G.; Xu, C. Machine learning-based grassland aboveground biomass estimation and its response to climate variation in Southwest China. Front. Ecol. Evol. 2023, 11, 1146850. [Google Scholar] [CrossRef]
- Fan, X.; He, G.; Zhang, W.; Long, T.; Zhang, X.; Wang, G.; Sun, G.; Zhou, H.; Shang, Z.; Tian, D.; et al. Sentinel-2 Images Based Modeling of Grassland Above-Ground Biomass Using Random Forest Algorithm: A Case Study on the Tibetan Plateau. Remote Sens. 2022, 14, 5321. [Google Scholar] [CrossRef]
- Ge, J.; Hou, M.; Liang, T.; Feng, Q.; Meng, X.; Liu, J.; Bao, X.; Gao, H. Spatiotemporal dynamics of grassland aboveground biomass and its driving factors in North China over the past 20 years. Sci. Total Environ. 2022, 826, 154226. [Google Scholar] [CrossRef]
Vegetation Index | Calculation Formula | References |
---|---|---|
Soil-Adjusted Vegetation Index (SAVI) | [37] | |
Atmospheric Impedance Vegetation Index (ARVI) | [38] | |
Perpendicular Vegetation Index (PVI) | [39] | |
Meris Terrestrial Chlorophyll Index (MTCI) | [40] | |
Red-Edge Inflection Point Index (REIP) | [41] | |
Normalized Difference Vegetation Index (NDVI) | [42] | |
Green-Light-Normalized Vegetation Index (GNDVI) | [43] | |
Leaf Chlorophyll Index (LCI) | [44] | |
Normalized Difference Red-Edge Index (NDRE) | [42] | |
Optimized Soil-Adjusted Vegetation Index (OSAVI) | [45] |
Impact Factor | ASM | Variance | Mean | Homogeneity | Entropy | Dissimilarity | Correlation |
---|---|---|---|---|---|---|---|
Correlation coefficient | −0.752 ** | 0.535 ** | 0.862 ** | −0.764 ** | 0.766 ** | 0.680 ** | 0.553 ** |
Impact factor | Contrast | VPD | ARVI | PVI | REIP | NDVI | GNDVI |
Correlation coefficient | 0.513 ** | 0.280 * | 0.809 ** | −0.557 ** | −0.874 ** | −0.715 ** | −0.874 ** |
Impact factor | LCI | NDRE | OSAVI | ||||
Correlation coefficient | −0.873 ** | −0.874 ** | −0.754 ** |
Independent Variable | Unstandardized Coefficients B | t-Test | R2 | |||
---|---|---|---|---|---|---|
Type | Name | |||||
F | P | |||||
Model 1 | Spectral features | Constant term | 20.589 | 45.059 | <0.01 | 0.763 |
VPD | 0.063 | |||||
ARVI | 0.063 | |||||
NDVI | 0.083 | |||||
NDRE | −0.217 | |||||
Model 2 | Texture features | Constant term | 25.725 | 27.945 | <0.01 | 0.687 |
ASM | −107.340 | |||||
Variance | −20.209 | |||||
Correlation | 113.469 | |||||
Contrast | 10.818 | |||||
Model 3 | Spectral + Texture features | Constant term | 17.588 | 24.793 | <0.01 | 0.795 |
ASM | 66.360 | |||||
Variance | −10.375 | |||||
Correlation | 9.739 | |||||
Contrast | 5.605 | |||||
VPD | 0.047 | |||||
ARVI | 0.187 | |||||
NDVI | 0.058 | |||||
NDRE | −0.298 |
RMSE | MAE | SE |
---|---|---|
0.073 | 0.064 | 0.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hao, G.; Dong, Z.; Hu, L.; Ouyang, Q.; Pan, J.; Liu, X.; Yang, G.; Sun, C. Biomass Inversion of Highway Slope Based on Unmanned Aerial Vehicle Remote Sensing and Deep Learning. Forests 2024, 15, 1564. https://doi.org/10.3390/f15091564
Hao G, Dong Z, Hu L, Ouyang Q, Pan J, Liu X, Yang G, Sun C. Biomass Inversion of Highway Slope Based on Unmanned Aerial Vehicle Remote Sensing and Deep Learning. Forests. 2024; 15(9):1564. https://doi.org/10.3390/f15091564
Chicago/Turabian StyleHao, Guangcun, Zhiliang Dong, Liwen Hu, Qianru Ouyang, Jian Pan, Xiaoyang Liu, Guang Yang, and Caige Sun. 2024. "Biomass Inversion of Highway Slope Based on Unmanned Aerial Vehicle Remote Sensing and Deep Learning" Forests 15, no. 9: 1564. https://doi.org/10.3390/f15091564