Flame-Retardant and Smoke-Suppression Properties of Bamboo Scrimber Coated with Hexagonal Boron Nitride
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of the h-BN Flame-Retardant Coating
2.3. Analysis and Testing
2.3.1. Fourier Transform Infrared Spectroscopy (FTIR) Test
2.3.2. Environmental Scanning Electron Microscope-X-ray Energy Spectrum Test
2.3.3. Thermal Stability Test
2.3.4. Flame-Retardant Property Test
2.3.5. Coating Adhesion Test
3. Results
3.1. Analysis of Chemical Structure of Flame-Retardant Coatings
3.2. Morphology and Elemental Analysis of Flame-Retardant Coatings on Bamboo Scrimber Surfaces
3.3. Thermal Stability Analysis
3.4. Flame-Retardant Performance Analysis
3.4.1. Combustion Performance
3.4.2. Morphology of Samples after Flame Retardancy Tests
3.5. Coating Adhesion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, K.; Hou, Y.; Lu, Y.; Wang, M. Experimental Study on the Fracture Toughness of Bamboo Scrimber. Materials 2023, 16, 4880. [Google Scholar] [CrossRef]
- Zou, L.; Jin, H.; Lu, W.-Y.; Li, X. Nanoscale Structural and Mechanical Characterization of the Cell Wall of Bamboo Fibers. Mater. Sci. Eng. C 2009, 29, 1375–1379. [Google Scholar] [CrossRef]
- Li, Y.; Yin, L.; Huang, C.; Meng, Y.; Fu, F.; Wang, S.; Wu, Q. Quasi-Static and Dynamic Nanoindentation to Determine the Influence of Thermal Treatment on the Mechanical Properties of Bamboo Cell Walls. Holzforschung 2015, 69, 909–914. [Google Scholar] [CrossRef]
- Peng, C.; Zhong, J.; Ma, X.; Huang, A.; Chen, G.; Luo, W.; Zeng, B.; Yuan, C.; Xu, Y.; Dai, L. Transparent, Hard-Wearing and Bio-Based Organic/Silica Hybrid Coating for Bamboo with Enhanced Flame Retardant and Antifungal Properties. Prog. Org. Coat. 2022, 167, 106830. [Google Scholar] [CrossRef]
- Zou, Z.; Wu, J.; Zhang, X. Influence of Moisture Content on Mechanical Properties of Bamboo Scrimber. J. Mater. Civ. Eng. 2019, 31, 06019004. [Google Scholar] [CrossRef]
- Chen, S.; Wei, Y.; Zhu, J.; Lin, Y.; Du, H. Experimental Investigation of the Shear Performance of Bamboo Scrimber Beams Reinforced with Bamboo Pins. Constr. Build. Mater. 2023, 365, 130044. [Google Scholar] [CrossRef]
- Cui, Z.; Xu, M.; Chen, Z.; Xiang, J. Experimental Study on Thermal Performance of Bamboo Scrimber at Elevated Temperatures. Constr. Build. Mater. 2018, 182, 178–187. [Google Scholar] [CrossRef]
- Liu, C.; Wu, X.; Li, X.; Liu, M. Flexural Property of Steel Reinforced Bamboo Scrimber Composite Beam. Adv. Struct. Eng. 2023, 26, 2375–2389. [Google Scholar] [CrossRef]
- Wu, Z.; Huang, D.; Wei, W.; Wang, W.; Wang, X.; Wei, Q.; Niu, M.; Lin, M.; Rao, J.; Xie, Y. Mesoporous Aluminosilicate Improves Mildew Resistance of Bamboo Scrimber with Cu B P Anti-Mildew Agents. J. Clean. Prod. 2019, 209, 273–282. [Google Scholar] [CrossRef]
- Kumar, A.; Ryparovà, P.; Kasal, B.; Adamopoulos, S.; Hajek, P. Resistance of Bamboo Scrimber against White-Rot and Brown-Rot Fungi. Wood Mater. Sci. Eng. 2020, 15, 57–63. [Google Scholar] [CrossRef]
- Luo, X.; Ren, H.; Zhong, Y. Experimental and Theoretical Study on Bonding Properties between Steel Barand Bamboo Scrimber. J. Renew. Mater. 2020, 8, 773–787. [Google Scholar] [CrossRef]
- Ran, Y.; Hu, A.; Yang, F.; Du, C.; Zhu, J.; Shao, Y.; Wang, Y.; Bao, Q. Preparation of PO43−-Intercalated Calcium–Aluminum Hydrotalcites via Coprecipitation Method and Its Flame-Retardant Effect on Bamboo Scrimber. Molecules 2023, 28, 4093. [Google Scholar] [CrossRef] [PubMed]
- Du, B.; He, Q.; Yang, D.; Ma, Z.; Zhang, S.; Yu, J. The Influence of Immersion Order of Low Concentration Ammonium Polyphosphate on the Interphase, Mechanical and Combustion Properties of Moso Bamboo Scrimber. Ind. Crops Prod. 2022, 180, 114664. [Google Scholar] [CrossRef]
- Du, C.G.; Song, J.G.; Chen, Y.X. The Effect of Applying Methods of Fire Retardant on Physical and Mechanical Properties of Bamboo Scrimber. AMR 2014, 1048, 465–468. [Google Scholar] [CrossRef]
- Madyaratri, E.; Ridho, M.; Aristri, M.; Lubis, M.; Iswanto, A.; Nawawi, D.; Antov, P.; Kristak, L.; Majlingová, A.; Fatriasari, W. Recent Advances in the Development of Fire-Resistant Biocomposites—A Review. Polymers 2022, 14, 362. [Google Scholar] [CrossRef]
- Czupryński, A. Flame Spraying of Aluminum Coatings Reinforced with Particles of Carbonaceous Materials as an Alternative for Laser Cladding Technologies. Materials 2019, 12, 3467. [Google Scholar] [CrossRef]
- Chang, S.; Slopek, R.P.; Condon, B.; Grunlan, J.C. Surface Coating for Flame-Retardant Behavior of Cotton Fabric Using a Continuous Layer-by-Layer Process. Ind. Eng. Chem. Res. 2014, 53, 3805–3812. [Google Scholar] [CrossRef]
- Lopera-Valle, A.; McDonald, A. Application of Flame-Sprayed Coatings as Heating Elements for Polymer-Based Composite Structures. J. Therm. Spray Technol. 2015, 24, 1289–1301. [Google Scholar] [CrossRef]
- Liu, Z.; Ma, L.; Shi, G.; Zhou, W.; Gong, Y.; Lei, S.; Yang, X.; Zhang, J.; Yu, J.; Hackenberg, K.P.; et al. In-Plane Heterostructures of Graphene and Hexagonal Boron Nitride with Controlled Domain Sizes. Nat. Nanotechnol. 2013, 8, 119–124. [Google Scholar] [CrossRef]
- Lü, C.-W.; Wang, C.-J.; Gu, J.-B. First-Principles Study of Structural, Elastic, Thermodynamic, Electronic and Optical Properties of Cubic Boron Nitride and Hexagonal Boron Nitride at High Temperature and High Pressure. Acta Phys. Sin. 2019, 68, 077102. [Google Scholar] [CrossRef]
- Tasi, T.-P.; Hsieh, C.-T.; Yang, H.-C.; Liu, K.-C.; Huang, Y.-R.; Gandomi, Y.A.; Chandra Mallick, B. Enhanced Fireproof Performance of Construction Coatings by Adding Hexagonal Boron Nitride Nanosheets. Ceram. Int. 2022, 48, 20809–20816. [Google Scholar] [CrossRef]
- Manna, S.; Seth, A.; Gupta, P.; Nandi, G.; Dutta, R.; Jana, S.; Jana, S. Chitosan Derivatives as Carriers for Drug Delivery and Biomedical Applications. ACS Biomater. Sci. Eng. 2023, 9, 2181–2202. [Google Scholar] [CrossRef] [PubMed]
- Spagna, G.; Barbagallo, R.N.; Casarini, D.; Pifferi, P.G. A Novel Chitosan Derivative to Immobilize α-L-Rhamnopyranosidase from Aspergillus Niger for Application in Beverage Technologies. Enzym. Microb. Technol. 2001, 28, 427–438. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.-J.; Shin, D.-S.; Kim, H.-E.; Kim, H.-W.; Koh, Y.-H.; Jang, J.-H. Membrane of Hybrid Chitosan-Silica Xerogel for Guided Bone Regeneration. Biomaterials 2009, 30, 743–750. [Google Scholar] [CrossRef] [PubMed]
- Nie, R.; Hao, X.; Liu, G.; Wang, Z.; Zhu, Z.; Yuan, D.; Xu, D. Controlled Release Study on Bifidocin a from a Polyvinyl Alcohol/Chitosan Blend Particle-Based Biodegradable and Active Packaging Coupled with Mechanistic Assessment and Experimental Modeling. J. Biomed. Nanotechnol. 2021, 17, 2226–2239. [Google Scholar] [CrossRef] [PubMed]
- Abraham, A.; Soloman, P.A.; Rejini, V.O. Preparation of Chitosan-Polyvinyl Alcohol Blends and Studies on Thermal and Mechanical Properties. Procedia Technol. 2016, 24, 741–748. [Google Scholar] [CrossRef]
- Huang, M.; Fang, Y. Preparation, Characterization, and Properties of Chitosan-g-Poly(Vinyl Alcohol) Copolymer. Biopolymers 2006, 81, 160–166. [Google Scholar] [CrossRef]
- Xu, M.; Cui, Z.; Chen, Z.; Xiang, J. The Charring Rate and Charring Depth of Bamboo Scrimber Exposed to a Standard Fire. Fire Mater. 2018, 42, 750–759. [Google Scholar] [CrossRef]
- Yang, F.; Hu, A.; Du, C.; Zhu, J.; Wang, Y.; Shao, Y.; Bao, Q.; Ran, Y. Preeminent Flame-Retardant and Smoke Suppression Properties of PCaAl-LDHs Nanostructures on Bamboo Scrimber. Molecules 2023, 28, 4542. [Google Scholar] [CrossRef]
- Weng, Q.; Wang, B.; Wang, X.; Hanagata, N.; Li, X.; Liu, D.; Wang, X.; Jiang, X.; Bando, Y.; Golberg, D. Highly Water-Soluble, Porous, and Biocompatible Boron Nitrides for Anticancer Drug Delivery. ACS Nano 2014, 8, 6123–6130. [Google Scholar] [CrossRef]
- Wang, J.; Ma, F.; Sun, M. Graphene, Hexagonal Boron Nitride, and Their Heterostructures: Properties and Applications. RSC Adv. 2017, 7, 16801–16822. [Google Scholar] [CrossRef]
- Liu, J.; Kutty, R.G.; Zheng, Q.; Eswariah, V.; Sreejith, S.; Liu, Z. Hexagonal Boron Nitride Nanosheets as High-Performance Binder-Free Fire-Resistant Wood Coatings. Small 2017, 13, 1602456. [Google Scholar] [CrossRef] [PubMed]
- Xiang, H.; Feng, Z.; Yang, J.; Hu, W.; Liang, F.; Yang, X.; Zhang, T.; Mi, B.; Liu, Z. Investigating the Co-Firing Characteristics of Bamboo Wastes and Coal through Cone Calorimetry and Thermogravimetric Analysis Coupled with Fourier Transform Infrared Spectroscopy. Waste Manag. Res. 2020, 38, 896–902. [Google Scholar] [CrossRef] [PubMed]
- Tahmid Islam, M.; Klinger, J.L.; Toufiq Reza, M. Evaluating Combustion Characteristics and Combustion Kinetics of Corn Stover-Derived Hydrochars by Cone Calorimeter. Chem. Eng. J. 2023, 452, 139419. [Google Scholar] [CrossRef]
- Xiang, H.; Yang, J.; Feng, Z.; Hu, W.; Liang, F.; Ni, L.; Gao, Q.; Liu, Z. Investigation of the Cofiring Process of Raw or Torrefied Bamboo and Masson Pine by Using a Cone Calorimeter. ACS Omega 2019, 4, 19246–19254. [Google Scholar] [CrossRef]
Title | Model/Grade | Production Unit |
---|---|---|
Acetic acid (CH3COOH) | Analytical purity | Sinopharm Chemical Reagent Co. (Shanghai, China) |
Chitosan | Deacetylation degree ≥95 | Shanghai McLean Biochemical Technology Co. (Shanghai, China) |
Polyvinyl alcohol | 1788 | Shanghai McLean Biochemical Technology Co. (Shanghai, China) |
Hexagonal boron nitride | Particle size 25 μm | Suzhou Yuante New Material Co. (Suzhou, China) |
Processing Method | Grade |
---|---|
1% h-BN | 2 |
5% h-BN | 0 |
10%h-BN | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, G.; Yu, Y.; Yuan, S.; Zhang, W.; Wang, X. Flame-Retardant and Smoke-Suppression Properties of Bamboo Scrimber Coated with Hexagonal Boron Nitride. Forests 2023, 14, 2105. https://doi.org/10.3390/f14102105
Li G, Yu Y, Yuan S, Zhang W, Wang X. Flame-Retardant and Smoke-Suppression Properties of Bamboo Scrimber Coated with Hexagonal Boron Nitride. Forests. 2023; 14(10):2105. https://doi.org/10.3390/f14102105
Chicago/Turabian StyleLi, Gaihuan, Ying Yu, Shaofei Yuan, Wenfu Zhang, and Xinzhou Wang. 2023. "Flame-Retardant and Smoke-Suppression Properties of Bamboo Scrimber Coated with Hexagonal Boron Nitride" Forests 14, no. 10: 2105. https://doi.org/10.3390/f14102105