Friend or Foe? The Endophytic Fungus Alternaria tenuissima Might Be a Major Latent Pathogen Involved in Ginkgo Leaf Blight
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plants and Growth Conditions
2.2. Pathogen Isolation
2.3. Histology
2.4. Pathogenicity Determination
2.5. Endophyte Isolation
2.6. Fungal Identification
2.7. Phylogenetic Analysis
2.8. Pathogen Inhibition Experiments and Dual Culture Assays in Petri Plates
2.9. Total Flavonoid Determination and Metabolite Analysis
2.10. Statistical Analysis
3. Results
3.1. Flavonoid Accumulation Profiles in Infected Leaves
3.2. Isolation and Identification of Ginkgo Leaf Blight Pathogens
3.3. In Vitro Effects of Flavonoids on the Growth of Ginkgo Leaf Blight Pathogens
3.4. Isolation, Identification, and Phylogenetic Analysis of Ginkgo Leaf Endophytic Fungi
3.5. Metabolite Analysis of Endophytic Fungi and Their Effects on the Growth of Ginkgo Leaf Blight Pathogens In Vitro
3.6. Dual Culture of Endophytic Fungi and Ginkgo Leaf Blight Pathogens In Vitro and In Vivo
4. Discussion
4.1. Flavonoids and Their Role in Plant Resistance to Fungi
4.2. Potential Relationships between Leaf Endophytes and Ginkgo Leaf Blight
4.2.1. Debate on the Etiology of Ginkgo Leaf Blight Disease
4.2.2. Ginkgo Leaf Endophytes and Pathogens
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
GLEF | Ginkgo leaf endophytic fungi |
PDA | Potato dextrose agar medium |
ITS | Internal transcribed spacer |
YES | Yeast-extract sucrose medium |
HPLC-MS | High-performance liquid chromatography–mass spectrometry |
DMSO | Dimethyl sulfoxide |
NCBI | National Center for Biotechnology Information |
References
- Zhang, Z.B.; You, W.; Zhu, L.M.; Xu, M. Investigation on the occurrence of the leaf blight of Ginkgo biloba in North Area, Nanjing. J. Jiangsu For. Sci. Technol. 2019, 46, 34–37. [Google Scholar]
- Zhou, Z.Q.; Liao, Y.M.; Huang, B.J. Inhibiting effect of five chemicals on the pathogens of leaf blight of Ginkgo biloba in vitro. J. Guangxi Acad. Sci. 2001, 17, 37–39. [Google Scholar]
- Wang, Y.; Gao, G.P.; Wang, Q. Species of Ginkgo biloba diseases and its measures of prevention and control in Shenyang. J. Liaoning For. Sci. Technol. 2006, 2, 12–15+42. [Google Scholar]
- Chen, L.W. Study on Fungal Leaf Spot of Ginkgo biloba in Sichuan Province and Gingko Ring Spot Caused by Pestalotiopsis gingko Hori; Sichuan Agricultural University: Ya’an, China, 2010; pp. 28–30. [Google Scholar]
- Fan, X.Y. Study on the prevention and control measures of Ginkgo leaf blight in the Northern China. J. Hebei For. Sci. Technol. 2012, 3, 10+18. [Google Scholar]
- Liang, C. A Preliminary Study on Leaf Scorch Phenomenon of Roadside Ginkgo Tree in Beijing Urban Area; Beijing Forestry University: Beijing, China, 2016; pp. 37–40. [Google Scholar]
- Chen, X.J. The Pathogen Isolation and Fungicides Screening of Leaf Blight of Ginkgo biloba L.; Hebei Agricultural University: Baoding, China, 2016; pp. 13–16. [Google Scholar]
- You, W.; Zhang, B.; Zhu, L.M.; Xu, M. Occurrence and diagnosis of Ginkgo biloba leaf blight in Nanjing. J. Jiangsu For. Sci. Technol. 2021, 48, 37–40+45. [Google Scholar]
- He, P.J.; Zhou, S.Q.; Zhou, Z.S.; Shen, Y.X.; Zhou, X.L. Study on occurring conditions of gingko leaf blight and its control techniques. China Plant Prot. 2004, 24, 5–8. [Google Scholar]
- Zhu, K.G.; Shi, F.Y. Studies of pathogens in Ginkgo leaf blight. J. Nanjing For. Univ. 1990, 14, 43–46. [Google Scholar]
- Zhou, Z.Q.; Liao, Y.M.; Huang, Z.Y. Field trials on the chemical control of Ginkgo leaf blight. Guihaia 2003, 23, 476–480. [Google Scholar]
- Aly, A.H.; Debbab, A.; Proksch, P. Fungal endophytes: Unique plant inhabitants with great promises. Appl. Microbiol. Biot. 2011, 90, 1829–1845. [Google Scholar] [CrossRef]
- Saikkonen, K.; Faeth, S.H.; Helander, M.; Sullivan, T.J. Fungal endophytes: A continuum of interactions with host plants. Annu. Rev. Ecol. Syst. 1998, 29, 319–343. [Google Scholar] [CrossRef]
- Bacon, C.W.; White, J.F. Microbial Endophytes; Marcel Dekker Inc.: New York, NY, USA, 2000. [Google Scholar]
- Rodriguez, R.; Redman, R. More than 400 million years of evolution and some plants still can’t make it on their own: Plant stress tolerance via fungal symbiosis. J. Exp. Bot. 2008, 59, 1109–1114. [Google Scholar] [CrossRef]
- Alam, B.; Lǐ, J.W.; Gě, Q.; Khan, M.A.; Gōng, J.W.; Mehmood, S.; Yuán, Y.L.; Gǒng, W.K. Endophytic fungi: From symbiosis to secondary metabolite communications or vice versa? Front. Plant Sci. 2021, 12, 791033. [Google Scholar] [CrossRef] [PubMed]
- Tan, R.X.; Zou, W.X. Endophytes: A rich source of functional metabolites. Nat. Prod. Rep. 2001, 18, 448–459. [Google Scholar] [CrossRef] [PubMed]
- Bandara, W.M.M.S.; Seneviratne, G.; Kulasooriya, S.A. Interactions among endophytic bacteria and fungi: Effects and potentials. J. Biosci. 2006, 31, 645–650. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.M.; Gao, L.Y.; Sun, W.J.; Wang, L.L.; Li, W.K. Research progress of endophytic fungi of medicinal plants. J. Anhui Agric. Sci. 2019, 47, 11–13+18. [Google Scholar]
- Devi, R.; Verma, R.; Dhalaria, R.; Kumar, A.; Kumar, D.; Puri, S.; Thakur, M.; Chauhan, S.; Chauhan, P.P.; Nepovimova, E.; et al. A systematic review on endophytic fungi and its role in the commercial applications. Planta 2023, 257, 70. [Google Scholar] [CrossRef]
- Redman, R.S.; Sheehan, K.B.; Stout, T.G.; Rodriguez, R.J.; Henson, J.M. Thermotolerance generated by plant/fungal symbiosis. Science 2002, 298, 1581. [Google Scholar] [CrossRef]
- Nisa, H.; Kamili, A.N.; Nawchoo, I.A.; Shafi, S.; Shameem, N.; Bandh, S.A. Fungal endophytes as prolific source of phytochemicals and other bioactive natural products: A review. Microb. Pathog. 2015, 82, 50–59. [Google Scholar] [CrossRef]
- Rodriguez, R.J.; Henson, J.; Van Volkenburgh, E.; Hoy, M.; Wright, L.; Beckwith, F.; Kim, Y.O.; Redman, R.S. Stress tolerance in plants via habitat-adapted symbiosis. ISME Nat. 2008, 2, 404–416. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, H.Q.; Gao, Y.; Li, X.J. Advances of endophyte associated with Ginkgo biloba. Chin. Agric. Sci. Bull. 2014, 30, 1–6. [Google Scholar]
- Deshmukh, S.K.; Gupta, M.K.; Prakash, V.; Saxena, S. Endophytic fungi: A source of potential antifungal compounds. J. Fungi 2018, 4, 77. [Google Scholar] [CrossRef] [Green Version]
- Yuan, Z.H.; Tian, Y.; He, F.L.; Zhou, H.Y. Endophytes from Ginkgo biloba and their secondary metabolites. Chin. Med. 2019, 14, 51. [Google Scholar] [CrossRef] [Green Version]
- Ding, T.; Su, B.; Chen, X.J.; Xie, S.S.; Gu, S.Y.; Wang, Q.; Huang, D.Y.; Jiang, H.Y. An endophytic bacterial strain isolated from Eucommia ulmoides inhibits southern corn leaf blight. Front. Microbiol. 2017, 8, 903. [Google Scholar] [CrossRef] [Green Version]
- Cao, J.L.; He, W.X.; Zou, Y.N.; Wu, Q.S. An endophytic fungus, Piriformospora indica, enhances drought tolerance of trifoliate orange by modulating the antioxidant defense system and composition of fatty acids. Tree Physiol. 2023, 43, 452–466. [Google Scholar] [CrossRef]
- Kumar, S.; Kaushik, N. Endophytic fungi isolated from oil-seed crop Jatropha curcas produces oil and exhibit antifungal activity. PLoS ONE 2013, 8, e56202. [Google Scholar] [CrossRef] [Green Version]
- Luo, Z.Q.; Cheng, L.; Zhang, X.; Chen, G.H. A rapid method of preparing DNA template of filamentous fungi for PCR amplification. Biotechnol. Bull. 2015, 31, 79–83. [Google Scholar]
- Wu, F.L.; Li, Y.; Tian, W.; Sun, Y.D.; Chen, F.Y.; Zhang, Y.R.; Zhai, Y.X.; Zhang, J.; Su, H.Y.; Wang, L. A novel dark septate fungal endophyte positively affected blueberry growth and changed the expression of plant genes involved in phytohormone and flavonoid biosynthesis. Tree Physiol. 2020, 40, 1080–1094. [Google Scholar] [CrossRef]
- Su, X.J.; Xia, Y.Y.; Jiang, W.B.; Shen, G.A.; Pang, Y.Z. GbMYBR1 from Ginkgo biloba represses phenylpropanoid biosynthesis and trichome development in Arabidopsis. Planta 2020, 252, 68. [Google Scholar] [CrossRef] [PubMed]
- Zhou, F.; Hu, H.Y.; Song, Y.L.; Gao, Y.Q.; Liu, Q.L.; Song, P.W.; Chen, E.Y.; Yu, Y.A.; Li, D.X.; Li, C.W. Biological characteristics and molecular mechanism of fludioxonil resistance in Botrytis cinerea from Henan Province of China. Plant Dis. 2020, 104, 1041–1047. [Google Scholar] [CrossRef] [PubMed]
- Wen, Z.L.; Terhonen, E.; Asiegbu, F.O. The dark septate endophyte Phialocephala sphaeroides confers growth fitness benefits and mitigates pathogenic effects of Heterobasidion on Norway spruce. Tree Physiol. 2022, 42, 891–906. [Google Scholar] [CrossRef]
- Bilska, K.; Stuper-Szablewska, K.; Kulik, T.; Buśko, M.; Załuski, D.; Jurczak, S.; Perkowski, J. Changes in phenylpropanoid and trichothecene production by Fusarium culmorum and F. graminearum Sensu Stricto via exposure to flavonoids. Toxins 2018, 10, 110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Su, X.J.; Shen, G.A.; Di, S.K.; Dixon, R.A.; Pang, Y.Z. Characterization of UGT716A1 as a multi-substrate UDP: Flavonoid glucosyltransferase gene in Ginkgo biloba. Front. Plant. Sci. 2017, 8, 2085. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Su, X.J.; Shi, R.R.; Hu, H.Y.; Hu, L.F.; Wei, Q.C.; Guan, Y.Y.; Chang, J.L.; Li, C.W. Medicinal values and potential risks evaluation of Ginkgo biloba leaf extract (GBE) drinks made from the leaves in Autumn as dietary supplements. Molecules 2022, 27, 7479. [Google Scholar] [CrossRef]
- Tohge, T.; de Souza, L.P.; Fernie, A.R. Current understanding of the pathways of flavonoid biosynthesis in model and crop plants. J. Exp. Bot. 2017, 68, 4013–4028. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Förster, C.; Handrick, V.; Ding, Y.Z.; Nakamura, Y.; Paetz, C.; Schneider, B.; Castro-Falcón, G.; Hughes, C.C.; Luck, K.; Poosapati, S.; et al. Biosynthesis and antifungal activity of fungus-induced O-methylated flavonoids in maize. Plant. Physiol. 2022, 188, 167–190. [Google Scholar] [CrossRef]
- Bai, Q.X.; Duan, B.B.; Ma, J.C.; Fen, Y.N.; Sun, S.J.; Long, Q.M.; Lv, J.J.; Wan, D.S. Coexpression of PalbHLH1 and PalMYB90 genes from Populus alba enhances pathogen resistance in poplar by increasing the flavonoid content. Front. Plant. Sci. 2019, 10, 1772. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nicholson, R.L.; Kollipara, S.S.; Vincent, J.R.; Lyons, P.C.; Cadenagomez, G. Phytoalexin synthesis by the sorghum mesocotyl in response to infection by pathogenic and nonpathogenic fungi. Proc. Natl. Acad. Sci. USA 1987, 84, 5520–5524. [Google Scholar] [CrossRef]
- Snyder, B.A.; Leite, B.; Hipskind, J.; Butler, L.G.; Nicholson, R.L. Accumulation of sorghum phytoalexins induced by Colletotrichum Graminicola at the infection site. Physiol. Mol. Plant. Pathol. 1991, 39, 463–470. [Google Scholar] [CrossRef]
- Liu, H.J.; Du, Y.G.; Chu, H.; Shih, C.H.; Wong, Y.W.; Wang, M.F.; Chu, I.K.; Tao, Y.Z.; Lo, C. Molecular dissection of the pathogen-inducible 3-deoxyanthocyanidin biosynthesis pathway in sorghum. Plant. Cell. Physiol. 2010, 51, 1173–1185. [Google Scholar] [CrossRef] [Green Version]
- Ullah, C.; Unsicker, S.B.; Fellenberg, C.; Constabel, C.P.; Schmidt, A.; Gershenzon, J.; Hammerbacher, A. Flavan-3-ols are an effective chemical defense against rust infection. Plant. Physiol. 2017, 175, 1560–1578. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Wei, W.J.; Zhang, J.W.; Li, G.D.; Gao, K. Structures and antipathogenic fungi activities of flavonoids from pathogen-infected Astragalus adsurgens. Nat. Prod. Res. 2019, 33, 822–826. [Google Scholar] [CrossRef]
- Lu, Y.; Yang, J.X.; Qin, X.S.; Cao, F.L.; Xie, S.R.; Yu, W.W. Effect of leaf blight on photosynthetic and physiological characteristics in Ginkgo biloba Leaves. Acta Agric. Univ. Jiangxiensis 2016, 38, 418–425. [Google Scholar]
- Ma, Y.C.; Wang, L.; Lu, A.D.; Xue, W. Synthesis and biological activity of novel oxazinyl flavonoids as antiviral and anti-phytopathogenic fungus agents. Molecules 2022, 27, 6875. [Google Scholar] [CrossRef]
- Santra, H.K.; Banerjee, D. Natural bioactive products in sustainable agriculture. In Natural Products as Fungicide and Their Role in Crop Protection; Singh, J., Yadav, A.N., Eds.; Springer Nature: Singapore, 2020; pp. 131–219. [Google Scholar]
- Zhou, S.L.; Chen, S.L.; Tan, G.H. Antibacterial substances of endophytic fungus isolated from Ginkgo biloba. Nat. Prod. Res. Dev. 2010, 22, 193–196. [Google Scholar]
- Liu, X.G.; Lu, X.; Gao, W.; Li, P.; Yang, H. Structure, synthesis, biosynthesis, and activity of the characteristic compounds from Ginkgo biloba L. Nat. Prod. Rep. 2021, 39, 474–511. [Google Scholar] [CrossRef]
- Xing, D.R.; Feng, L.N.; Zhang, K.; Li, R.L.; Xu, N.W.; Li, B.Y.; Sun, W.M. First report of leaf blight caused by Alternaria tenuissima on Senna nomame in China. Plant. Dis. 2023, 107, 1941. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.Y.; Li, Z.H.; Zhang, J.; Guo, L.F.; Wang, X.J.; Zhao, J.W.; Xiang, W.S. First report of Alternaria tenuissima causing leaf spot on Luffa cylindrica in China. Plant. Dis. 2023, 107, 231. [Google Scholar] [CrossRef] [PubMed]
- Marsberg, A.; Kemler, M.; Jami, F.; Nagel, J.H.; Postma-Smidt, A.; Naidoo, S.; Wingfield, M.J.; Crous, P.W.; Spatafora, J.W.; Hesse, C.N.; et al. Botryosphaeria dothidea: A latent pathogen of global importance to woody plant health. Mol. Plant. Pathol. 2017, 18, 477–488. [Google Scholar] [CrossRef] [PubMed]
- Hao, Y.L.; Liao, K.; Guo, J.; Jin, C.Z.; Guo, K.F.; Chen, M. First report of Botryosphaeria dothidea causing leaf spot of Camellia oleifera in China. Plant. Dis. 2023, 107, 1632. [Google Scholar] [CrossRef]
- Liu, F.F.; Duong, T.A.; Barnes, I.; WingField, M.J.; Chen, S.F. Population diversity and genetic structure reveal patterns of host association and anthropogenic impact for the globally important fungal tree pathogen Ceratocystis Manginecans. J. Fungi 2021, 7, 759. [Google Scholar] [CrossRef]
- Jain, A.; Sarsaiya, S.; Wu, Q.; Lu, Y.F.; Shi, J.S. A review of plant leaf fungal diseases and its environment speciation. Bioengineered 2019, 10, 409–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, D.A. Study on occurrence and control of diseases in Ginkgo biloba nursery [Yinxing Miaopu Binghai de Fasheng yu Fangzhi Yanjiu]. For. Sci. Technol. 1998, 3, 27–28. [Google Scholar]
- Jiang, D.A.; Dai, Y.J. Study on the occurrence and control of gingko leaf diseases. J. Xiaogan Univ. 2008, 28, 88–90. [Google Scholar]
- Wang, H.N.; Zhou, Q.; Xin, H.K.; Chai, R.J. Occurrence and control techniques of Ginkgo biloba leaf blight. Agric. Technol. 2013, 33, 63. [Google Scholar]
- Fang, F.; Yu, L.Z. Prevention method on leaf blight of Ginkgo biloba L. Trop. Agric. Eng. 2019, 43, 58–60. [Google Scholar]
- Nie, Q.F.; Wang, Y.G.; Wang, M.L.; Cong, R.C. Relationship between summer growth performance of Ginkgo biloba and meteorological site environment. In Proceedings of the Urban Landscaping and Construction of Harmonious and Livable Capital of 2014, Beijing, China, 2–3 December 2014; pp. 288–303. [Google Scholar]
- Tang, H.; Wei, X.; Jiang, Y.S.; Li, F. Integrated control techniques for Ginkgo biloba leaf blight. Deciduous Fruits 2001, 3, 56. [Google Scholar]
- Salvatore, M.M.; Andolfi, A.; Nicoletti, R. The thin line between pathogenicity and endophytism: The case of Lasiodiplodia theobromae. Agriculture 2020, 10, 488. [Google Scholar]
- Parniske, M. Arbuscular mycorrhiza: The mother of plant root endosymbiosis. Nat. Rev. Microbiol. 2008, 6, 763–775. [Google Scholar]
- Uzma, F.; Mohan, C.D.; Hashem, A.; Konappa, N.M.; Rangappa, S.; Kamath, P.V.; Singh, B.P.; Mudili, V.; Gupta, V.K.; Siddaiah, C.N.; et al. Endophytic fungi-alternative sources of cytotoxic compounds: A review. Front. Pharmacol. 2018, 9, 309. [Google Scholar]
- Wang, H.W.; Sun, S.L.; Ge, W.Y.; Zhao, L.F.; Hou, B.Q.; Wang, K.; Lyu, Z.F.; Chen, L.Y.; Xu, S.S.; Guo, J.; et al. Horizontal gene transfer of Fhb7 from fungus underlies Fusarium head blight resistance in wheat. Science 2020, 368, eaba5435. [Google Scholar]
- Zhang, H.X.; Xie, J.T.; Fu, Y.P.; Cheng, J.S.; Qu, Z.; Zhao, Z.Z.; Cheng, S.F.; Chen, T.; Li, B.; Wang, Q.Q.; et al. A2-kb mycovirus converts a pathogenic fungus into a beneficial endophyte for brassica protection and yield enhancement. Mol. Plant. 2020, 13, 1420–1433. [Google Scholar] [CrossRef]
- Zheng, Z.Y.; Chai, S.T.; Chen, J.; Yang, H.; Chang, J.Y.; Yang, G.E. Isolation and identification of flavonoid-producing endophytic fungi from Loranthus tanakae Franch. & Sav that exhibit antioxidant and antibacterial activities. J. Appl. Microbiol. 2022, 133, 1892–1904. [Google Scholar]
- Strobel, G.; Daisy, B. Bioprospecting for microbial endophytes and their natural products. Microbiol. Mol. Biol. Rev. 2003, 67, 491–502. [Google Scholar] [PubMed] [Green Version]
- Bao, L.J.; Sun, B.; Liu, J.Y.; Zhang, S.W.; Xu, N.; Zhang, X.R.; Bohu, T.; Bai, Z.H. Leaf-associated epiphytic fungi of Gingko biloba, Pinus bungeana and Sabina chinensis exhibit delicate seasonal variations. J. Fungi 2022, 8, 631. [Google Scholar]
- Manzotti, A.; Bergna, A.; Burow, M.; Jørgensen, H.J.L.; Cernava, T.; Berg, G.; Collinge, D.B.; Jensen, B. Insights into the community structure and lifestyle of the fungal root endophytes of tomato by combining amplicon sequencing and isolation approaches with phytohormone profiling. FEMS Microbiol. Ecol. 2020, 96, fiaa052. [Google Scholar] [PubMed] [Green Version]
- Collinge, D.B.; Jensen, B.; Jørgensen, H.J.L. Fungal endophytes in plants and their relationship to plant disease. Curr. Opin. Microbiol. 2022, 69, 102177. [Google Scholar]
- Cui, R.F.; Lu, X.K.; Chen, X.G.; Malik, W.A.; Wang, D.L.; Wang, J.J.; Wang, S.; Guo, L.X.; Chen, C.; Wang, X.G.; et al. A novel raffinose biological pathway is observed by symbionts of cotton≡Verticillium dahliae to improve salt tolerance genetically on cotton. J. Agron. Crop. Sci. 2021, 207, 956–969. [Google Scholar]
- Wheeler, D.L.; Dung, J.K.S.; Johnson, D.A. From pathogen to endophyte: An endophytic population of Verticillium dahliae evolved from a sympatric pathogenic population. New Phytol. 2019, 222, 497–510. [Google Scholar] [CrossRef] [PubMed]
- Romero, A.; Carrion, G.; Rico-Gray, V. Fungal latent pathogens and endophytes from leaves of Parthenium hysterophorus (Asteraceae). Fungal Divers. 2001, 7, 81–87. [Google Scholar]
- Photita, W.; Lumyong, S.; Lumyong, P.; McKenzie, E.H.C.; Hyde, K.D. Are some fungi isolated as endophytes of Musa acuminata latent pathogens? Fungal Divers. 2004, 16, 131–140. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Su, X.; Shi, R.; Li, X.; Yu, Z.; Hu, L.; Hu, H.; Zhang, M.; Chang, J.; Li, C. Friend or Foe? The Endophytic Fungus Alternaria tenuissima Might Be a Major Latent Pathogen Involved in Ginkgo Leaf Blight. Forests 2023, 14, 1452. https://doi.org/10.3390/f14071452
Su X, Shi R, Li X, Yu Z, Hu L, Hu H, Zhang M, Chang J, Li C. Friend or Foe? The Endophytic Fungus Alternaria tenuissima Might Be a Major Latent Pathogen Involved in Ginkgo Leaf Blight. Forests. 2023; 14(7):1452. https://doi.org/10.3390/f14071452
Chicago/Turabian StyleSu, Xiaojia, Ruirui Shi, Xiaobo Li, Zine Yu, Linfeng Hu, Haiyan Hu, Meng Zhang, Jingling Chang, and Chengwei Li. 2023. "Friend or Foe? The Endophytic Fungus Alternaria tenuissima Might Be a Major Latent Pathogen Involved in Ginkgo Leaf Blight" Forests 14, no. 7: 1452. https://doi.org/10.3390/f14071452