Life Cycle Assessment (LCA) of Technological Processes in the Wastewater Treatment Using Flocculants Synthesised from Polymer Waste
Abstract
:1. Introduction
- –
- comparison of alternative products and manufacturing technologies,
- –
- identification of the sites generating the greatest environmental impact throughout the product life cycle,
- –
- establishment of criteria for eco-labels to identify the best environmental products,
- –
- comparison of alternative ways of disposing of waste [5].
2. Materials and Methods
3. Assessment of the Impact of the Product Life Cycle and Interpretation of the Test Results
3.1. Characterised Results of Impact Category Indicators
3.2. Results of Weighted Indicators for Impact Categories
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Piron, M.; Wu, J.; Fedele, A.; Manzardo, A. Industry 4.0 and life cycle assessment: Evaluation of the technology applications as an asset for the life cycle inventory. Sci. Total Environ. 2024, 916, 170263. [Google Scholar] [CrossRef] [PubMed]
- Davidson, M.G.; Furlong, R.A.; McManus, M.C. Developments in the life cycle assessment of chemical recycling of plastic waste—A review. J. Clean. Prod. 2021, 293, 126163. [Google Scholar] [CrossRef]
- Mulya, K.S.; Zhou, J.; Phuang, Z.X.; Laner, D.; Woon, K.S. A systematic review of life cycle assessment of solid waste management: Methodological trends and prospects. Sci. Total Environ. 2022, 831, 154903. [Google Scholar] [CrossRef] [PubMed]
- Alhazmi, H. Plastic Waste Management: A Review of Existing Life Cycle Assessment Studies. Sustainability 2021, 13, 5340. [Google Scholar] [CrossRef]
- Fernández-González, J.; Rumayor, M.; Domínguez-Ramos, A.; Irabien, A.; Ortiz, I. The Relevance of Life Cycle Assessment Tools in the Development of Emerging Decarbonization Technologies. JACS Au 2023, 3, 2631–2639. [Google Scholar] [CrossRef]
- ISO 14040:2006/Amd 1:2020; Environmental Management—Life Cycle Assessment—Principles and Framework. ISO/TC 207/SC 5, ICS: 13.020.10, 13.020.60. ISO: Geneva, Switzerland, 2020.
- Bajdur, W.; Sułkowski, W. Modification of phenol-formaldehyde resins to obtain effective flocculants. Chem. Ecol. Eng. 2000, 7, 129–134. [Google Scholar]
- Bajdur, W.M.; Sułkowski, W. Application of Modified Wastes from Phenol-Formaldehyde Resin and Expanded Polystyrene in Sewage Treatment Processes. Macromol. Symp. 2003, 202, 325–337. [Google Scholar] [CrossRef]
- Bajdur, W.M.; Sułkowski, W.W. Possibilities of using modified phenol-formaldehyde resin waste in industrial wastewater treatment technologies. Chem. Ind. 2003, 82, 825–828. [Google Scholar]
- Goro, M.; Satoshi, T.; Kensuke, F.; Taikan, O. Estimation of the effects of chemically-enhanced treatment of urban sewage system based on life-cycle management. Sustain. Cities Soc. 2013, 9, 23–31. [Google Scholar]
- Pretel, R.; Moñino, P.; Robles, A.; Ruano, M.V.; Seco, A.; Ferrer, J. Economic and environmental sustainability of an AnMBR treating urban wastewater and organic fraction of municipal solid waste. J. Environ. Manag. 2016, 176, 83–92. [Google Scholar] [CrossRef]
- La Rosa, A.D. 4—Life cycle assessment of biopolymers. In Biopolymers and Biotech Admixtures for Eco-Efficient Construction Materials; Elsevier: Amsterdam, The Netherlands, 2016; pp. 57–78. [Google Scholar] [CrossRef]
- Carlqvist, K.; Arshadi, M.M.; Torgny, O.; Ulla-Britt, B.; Hanna, H.; Eelis, N.; Juha, U.; Gunnar, B.P. Life-cycle assessment of the production of cationized tannins from Norway spruce bark as flocculants in wastewater treatment. Biofuels Bioprod. Biorefining 2020, 14, 1270–1285. [Google Scholar] [CrossRef]
- Bajdur, W.M.; Henclik, A.; Skowron-Grabowska, B.; Iwaszczuk, N. LCA application in the assessment of new technologies of industrial effluents treatment. Desalination Water Treat. 2016, 57, 1058–1066. [Google Scholar] [CrossRef]
- Bajdur, W.M.; Henclik, A.; Grabowska, M.; Scurek, R.; Sikorova, K. Use of LCA for assessment of environmental impact of newly synthesized polymeric flocculants. Przemysł Chem. 2017, 96, 2561–2566. [Google Scholar]
- Bajdur, W.M.; Henclik, A. Life Cycle Assessment of sulphonic derivative of phenolic-formaldehyde resin applied in industrial wastes treatment. Pol. J. Environ. Stud. 2008, 17, 1397–1406. [Google Scholar]
- Bajdur, W.M.; Henclik, A. Life Cycle Assessment of sewage coagulation process using a new type of flocculant. Ecol. Chem. Eng. 2008, 15, 1399–1406. [Google Scholar]
- ISO 14044:2006/Amd 2:2020; Environmental Management—Life Cycle Assessment—Requirements and Guidelines. ISO/TC 207/SC 5, ICS: 13.020.10, 13.020.60. ISO: Geneva, Switzerland, 2020.
- Available online: https://ecoinvent.org/database/ (accessed on 5 June 2024).
- Lelek, Ł.; Kulczycka, J. Life Cycle Modelling of the Impact of Coal Quality on Emissions from Energy Generation. Energies 2020, 13, 1515. [Google Scholar] [CrossRef]
- Zalazar-Garcia, D.; Fernandez, A.; Rodriguez-Ortiz, L.; Torres, E.; Reyes-Urrutia, A.; Echegaray, M.; Rodriguez, R.; Mazza, G. Exergo-ecological analysis and life cycle assessment of agro-wastes using a combined simulation approach based on Cape-Open to Cape-Open (COCO) and SimaPro free-software. Energy 2022, 201, 60–71. [Google Scholar] [CrossRef]
- Goedkoop, M.J. Introduction to LCA with SimaPro. 2016. Available online: https://pre-sustainability.com/files/2014/05/SimaPro8IntroductionToLCA.pdf (accessed on 31 July 2024).
- Corrigendum to Commission Recommendation (EU) 2021/2279 of 15 December 2021 on the use of environmental footprinting methods to measure and report on the life cycle environmental performance of products and organisations (Official Journal of the European Union L 471 of 30 December 2021). Off. J. Eur. Union, 2022; OJL 144/, 1–384.
- IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; p. 1535. [Google Scholar]
- WMO Global Ozone Research and Monitoring Project—Report No. 55 Scientific Assessment of Ozone Depletion: 2014; Assessment for Decision-Makers: Geneva, Switzerland, 2014; Available online: https://library.wmo.int/idurl/4/41621 (accessed on 7 June 2024).
- Dreicer, M.; Tort, V.; Manen, P. 1995 Extern E, Externalities of Energy, Vol. 5 Nuclear, Centr D’étude sur L’evaluation de la Protection dans le Domaine Nucléaire (CEPN); European Commission DGXII, Ed.; Science, Research and Development JOULE: Luxembourg, 1995. [Google Scholar]
- Van Zelm, R.; Huijbregts, M.A.J.; Den Hollander, H.A.; Van Jaarsveld, H.A.; Sauter, F.J.; Struijs, J.; Van Wijnen, H.J.; Van de Meent, D. European characterization factors for human health damage of PM10 and ozone in life cycle impact assessment. Atmos. Environ. 2008, 42, 441–453. [Google Scholar] [CrossRef]
- Fantke, P.; Evans, J.; Hodas, N.; Apte, J.; Jantunen, M.; Jolliet, O.; McKone, T.E. 2016 Health Impacts of Fine Particulate Matter. In Global Guidance for Life Cycle Impact Assessment Indicators: Volume 1; Frischknecht, R., Jolliet, O., Eds.; UNEP/SETAC Life Cycle Initiative: Paris, France, 2016; pp. 76–99. [Google Scholar]
- Fantke, P.; Bijster, M.; Hauschild, M.Z.; Huijbregts, M.A.J.; Jolliet, O.; Kounina, A.; Magaud, V.; Margni, M.; McKone, T.E.; Rosenbaum, R.K. 2017 USEtox 2.0 Documentation (Version 1.00); USEtox: Lyngby, Denmark, 2017; ISBN 978–87-998335-0-4. [Google Scholar] [CrossRef]
- Seppälä, J.; Posch, M.; Johansson, M.; Hettelingh, J.P. Country-dependent Characterisation Factors for Acidification and Terrestrial Eutrophication Based on Accumulated Exceedance as an Impact Category Indicator. Int. J. Life Cycle Assess. 2006, 11, 403–416. [Google Scholar] [CrossRef]
- Struijs, J.; Beusen, A.; van Jaarsveld, H.; Huijbregts, M.A.J. Aquatic Eutrophication. In ReCiPe 2008 A Life Cycle Impact Assessment Method Which Comprises Harmonised Category Indicators at the Midpoint and the Endpoint Level; Report I: Characterisation factors, first edition; Goedkoop, M., Heijungs, R., Huijbregts, M.A.J., De Schryver, A., Struijs, J., Van Zelm, R., Eds.; 2009; Available online: https://web.universiteitleiden.nl/cml/ssp/publications/recipe_characterisation.pdf (accessed on 7 June 2024).
- De Laurentiis, V.; Secchi, M.; Bos, U.; Horn, R.; Laurent, A.; Sala, S. Soil quality index: Exploring options for a comprehensive assessment of land use impacts in LCA. J. Clean. Prod. 2019, 215, 63–74. [Google Scholar] [CrossRef] [PubMed]
- Boulay, A.-M.; Bare, J.; Benini, L.; Berger, M.; Lathuillière, M.J.; Manzardo, A.; Margni, M.; Motoshita, M.; Núñez, M.; Pastor, A.V.; et al. The WULCA consensus characterization model for water scarcity footprints: Assessing impacts of water consumption based on available water remaining (AWARE). Int. J. Life Cycle Assess. 2018, 23, 368–378. [Google Scholar] [CrossRef]
- Van Oers, L.; de Koning, A.; Guinee, J.B.; Huppes, G. Abiotic Resource Depletion in LCA; Road and Hydraulic Engineering Institute, Ministry of Transport and Water: Amsterdam, The Netherlands, 2002. [Google Scholar]
No. | Impact Category of the Environmental Footprint | Environmental Footprint Assessment Model | Environmental Impact Category Indicator | Source |
---|---|---|---|---|
1 | Climate change | The Bern model—global warming potential over a 100-year timescale | Tonne of carbon dioxide equivalent | [24] |
2 | Ozone depletion | Environmental Design of Industrial Products (EDIP) model, based on ozone depletion potentials (ODPs) over an indefinite time horizon, developed by the World Meteorological Organisation (WMO) | Kilogram of CFC-11 equivalent | [25] |
3 | Ionizing radiation HH | Human health impact model | Kilobecquerel U equivalent (air emissions) | [26] |
4 | Photochemical ozone formation | Model LOTOS-EUROS | Kilogram NMZO equivalent | [27] |
5 | Particulate matter | PM model | Morbidity | [28] |
6 | Human toxicity, non-cancer | Model USEtox 2.1 | Comparative Human Toxicity Unit (CTU) | [29] |
7 | Human toxicity, cancer | USEtox model | Comparative toxic unit for humans (CTUh) | [29] |
8 | Acidification | Accumulated exceedance model | Mol H+ equivalent | [30] |
9 | Freshwater eutrophication | EUTREND model | Kilogram P equivalent | [31] |
10 | Marine eutrophication | EUTREND model | Kilogram N equivalent | [31] |
11 | Terrestrial eutrophication | Cumulative exceedance model | Mol N equivalent | [30] |
12 | Freshwater ecotoxicity | Model USEtox 2.1 | Comparative toxic unit for ecosystems (CTUe) | [29] |
13 | Land use | Soil quality index based on the LANCA model | Dimensionless volume (pt) | [32] |
14 | Water resource depletion | Available WAter REmaining (AWARE) model | Equivalent of the quantity of water deprived of the user, in m3 | [33] |
15 | Resource use: fossils | Depletion of abiotic resources—fossil fuels (ADP—fossil raw materials) | MJ | [34] |
16 | Resource use: minerals and metals | Depletion of abiotic resources (final ADP stocks | kg SB equivalent | [34] |
Inputs—Demand for Raw Materials and Energy Factors | Unit | Quantity |
---|---|---|
Sulphuric acid | kg | 467.3 |
Calcium carbonate | kg | 368.57 |
Sodium carbonate | kg | 56.51 |
Phenol–formaldehyde resin waste | kg | 67.94 |
Electricity | kWh | 55 |
Outputs—Emissions | ||
Carbon dioxide | kg | 310.8 |
Steam | kg | 30 |
Water (wastewater) | kg | 110 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bajdur, W.M.; Włodarczyk-Makuła, M.; Myszograj, S.; Łazorko, K. Life Cycle Assessment (LCA) of Technological Processes in the Wastewater Treatment Using Flocculants Synthesised from Polymer Waste. Energies 2024, 17, 4205. https://doi.org/10.3390/en17174205
Bajdur WM, Włodarczyk-Makuła M, Myszograj S, Łazorko K. Life Cycle Assessment (LCA) of Technological Processes in the Wastewater Treatment Using Flocculants Synthesised from Polymer Waste. Energies. 2024; 17(17):4205. https://doi.org/10.3390/en17174205
Chicago/Turabian StyleBajdur, Wioletta M., Maria Włodarczyk-Makuła, Sylwia Myszograj, and Katarzyna Łazorko. 2024. "Life Cycle Assessment (LCA) of Technological Processes in the Wastewater Treatment Using Flocculants Synthesised from Polymer Waste" Energies 17, no. 17: 4205. https://doi.org/10.3390/en17174205