Design and Optimization of Linking Matrix for a JSCC System Based on DP-LDPC Codes
Abstract
:1. Introduction
2. JSCC System Description
2.1. Encoder
2.2. Decoder
3. Design and Optimization
3.1. JEXIT Analysis
3.2. Design and Optimization
- 1.
- Number of population P.
- 2.
- Dimension D of the linking matrix (i.e., the product of the number of rows and the number of columns) and the maximal value of a single element in .
- 3.
- The maximum number of generations G.
- 4.
- Crossover probability value .
- 5.
- Non-zero element probability .
- 6.
- Non-zero element probability .
Algorithm 1: Design and optimization of by differential evolution algorithm. |
Require:
|
4. Results and Summary
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef] [Green Version]
- Wu, G.; Lv, Y.; He, J. Design of high-rate LDPC codes based on matroid theory. IEEE Commun. Lett. 2019, 23, 2146–2149. [Google Scholar] [CrossRef]
- Thorpe, J. Low-density parity-check (LDPC) codes constructed from protographs. Ipn Prog. Rep. 2003, 42, 42–154. [Google Scholar]
- Cabarcas, F.; Souza, R.D.; Garcia-Frias, J. Turbo coding of strongly nonuniform memoryless sources with unequal energy allocation and PAM signaling. IEEE Trans. Signal Process. 2006, 54, 1942–1946. [Google Scholar] [CrossRef]
- Fresia, M.; Perez-Cruz, F.; Poor, H.V. Optimized concatenated LDPC codes for joint source-channel coding. In Proceedings of the IEEE International Symposium on Information Theory, Seoul, Republic of Korea, 28 June–3 July 2009; pp. 2131–2135. [Google Scholar]
- Fresia, M.; Perez-Cruz, F.; Poor, H.V.; Verdu, S. Joint source and channel coding. IEEE Signal Process. Mag. 2010, 27, 104–113. [Google Scholar] [CrossRef]
- Bourtsoulatze, E.; Kurka, D.B.; Gündüz, D. Deep Joint Source-Channel Coding for Wireless Image Transmission. IEEE Trans. Cogn. Commun. Netw. 2019, 5, 567–579. [Google Scholar] [CrossRef] [Green Version]
- Chen, Q.; Lau, F.C.; Wu, H.; Chen, C. Analysis and improvement of error-floor performance for JSCC scheme based on double protograph LDPC codes. IEEE Trans. Veh. Technol. 2020, 69, 14316–14329. [Google Scholar] [CrossRef]
- He, J.; Li, Y.; Wu, G.; Qian, S.; Xue, Q.; Matsumoto, T. Performance improvement of joint source-channel coding with unequal power allocation. IEEE Wirel. Commun. Lett. 2017, 6, 582–585. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Wang, L.; Lau, F.C. Joint optimization of protograph LDPC code pair for joint source and channel coding. IEEE Trans. Commun. 2018, 66, 3255–3267. [Google Scholar] [CrossRef]
- Golmohammadi, A.; Mitchell, D.G. Concatenated Spatially Coupled LDPC Codes With Sliding Window Decoding for Joint Source-Channel Coding. IEEE Trans. Commun. 2022, 70, 851–864. [Google Scholar] [CrossRef]
- Liu, S.; Chen, C.; Wang, L.; Hong, S. Edge connection optimization for JSCC system based on DP-LDPC codes. IEEE Wireless Commun. Lett. 2019, 8, 996–999. [Google Scholar] [CrossRef]
- Liu, S.; Wang, L.; Chen, J.; Hong, S. Joint component design for the JSCC system based on DP-LDPC codes. IEEE Trans. Commun. 2020, 68, 5808–5818. [Google Scholar] [CrossRef]
- Neto, H.B.; Henkel, W. Multi-edge optimization of low-density parity-check codes for joint source-channel coding. In Proceedings of the SCC 2013: 9th International ITG Conference on Systems, Communications and Coding, Munich, Germany, 21–24 January 2013; pp. 1–6. [Google Scholar]
- Hong, S.; Chen, Q.; Wang, L. Performance analysis and optimisation for edge connection of JSCC system based on double protograph LDPC codes. IET Commun. 2018, 12, 214–219. [Google Scholar] [CrossRef]
- Chen, Q.; Hong, S.; Chen, Y. Design of linking matrix in JSCC scheme based on double protograph LDPC codes. IEEE Access 2019, 7, 92176–92183. [Google Scholar] [CrossRef]
- Hong, S.; Ke, J.; Wang, L. Global Design of Double Protograph LDPC Codes for Joint Source-Channel Coding. IEEE Commun. Lett. 2023, 27, 424–427. [Google Scholar] [CrossRef]
- Hu, X.Y.; Eleftheriou, E.; Arnold, D.M. Regular and irregular progressive edge-growth tanner graphs. IEEE Trans. Inf. Theory 2005, 51, 386–398. [Google Scholar] [CrossRef]
Degree | Threshold | Degree | Threshold | Degree | Threshold |
---|---|---|---|---|---|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lv, Y.; Hong, S.; Wang, L. Design and Optimization of Linking Matrix for a JSCC System Based on DP-LDPC Codes. Entropy 2023, 25, 1145. https://doi.org/10.3390/e25081145
Lv Y, Hong S, Wang L. Design and Optimization of Linking Matrix for a JSCC System Based on DP-LDPC Codes. Entropy. 2023; 25(8):1145. https://doi.org/10.3390/e25081145
Chicago/Turabian StyleLv, Yijie, Shaohua Hong, and Lin Wang. 2023. "Design and Optimization of Linking Matrix for a JSCC System Based on DP-LDPC Codes" Entropy 25, no. 8: 1145. https://doi.org/10.3390/e25081145
APA StyleLv, Y., Hong, S., & Wang, L. (2023). Design and Optimization of Linking Matrix for a JSCC System Based on DP-LDPC Codes. Entropy, 25(8), 1145. https://doi.org/10.3390/e25081145