Diffusion Coefficient of a Brownian Particle in Equilibrium and Nonequilibrium: Einstein Model and Beyond
Abstract
:1. Introduction
2. Sutherland–Einstein Diffusion Analysis of Suspended Particles
Sutherland’s and Smoluchowski’s Approach
3. Langevin Equation
4. Generalized Langevin Equation
5. Diffusion under a Constant Force
6. Diffusion in Spatially Periodic Potentials
6.1. Overdamped Dynamics
6.2. Underdamped Dynamics
7. Diffusion in Tilted Spatially Periodic Potentials
7.1. Overdamped Dynamics
7.2. Full Inertial Dynamics
8. Diffusion in Time-Periodic-Driven Spatially Periodic Systems
8.1. Symmetric Systems
8.2. Ratchet Systems
9. Discussion and Sundry Topics
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Scaling Scenarios
Appendix A.1. Scaling with Particle Mass Fixed
Appendix A.2. Scaling with Friction Fixed
Appendix B. Rigorous Bounds and Asymptotic Temperature Behaviour
References
- Ingenhousz, J. Vermischte schriften physisch medicinischen inhalts. Wappler 1784, 2, 123. [Google Scholar]
- Brown, R. A brief account of microscopical observations made in the months of June, July-August, 1827, on the particles contained in the pollen of plants; and on the general existence of active molecules in organic and inorganic bodies. Philos. Mag. 1828, 4, 161. [Google Scholar] [CrossRef] [Green Version]
- Desaulx, J. Thermodynamic Origin of the Brownian Motions. Mon. Microsc. J. 1877, 18, 1. [Google Scholar]
- Gouy, L.G. Note sur le mouvement Brownien. J. Phys. 1888, 7, 561. [Google Scholar] [CrossRef]
- Exner, F.M. Notiz zu Brown’s molecularbewegung. Ann. Phys. 1900, 2, 843. [Google Scholar] [CrossRef] [Green Version]
- Sutherland, W. The measurement of large molecular masses, Australasian Association for the Advancement of Science. In Proceedings of the 10th Meeting of the Australasian Association for the Advancement of Science, Dunedin, New Zealand, 6 January 1904; Volume 10, pp. 117–121. [Google Scholar]
- Boardman, G.E. Correcting the Record: Priority and the Einstein papers on “Brownian motion”. Cosm. Hist. J. Nat. Soc. Philos. 2020, 16, 487–491. [Google Scholar]
- Sutherland, W. Dynamical theory of diffusion for non-electrolytes and the molecular mass of albumin. Philos. Mag. 1905, 9, 781–785. [Google Scholar] [CrossRef] [Green Version]
- Einstein, A. Die von der molekularkinetischen Theorie der Wärme gefordete Bewegung von der ruhenden Flüssigkeiten suspendierten Teilchen (On the movement of particles suspended in fluids at rest as postulated by the molecular theory of heat). Ann. Phys. 1905, 17, 549. [Google Scholar] [CrossRef] [Green Version]
- von Smoluchowski, M. Zur kinetischen Theorie der Brownschen Molekularbewegung und der Suspensionen (On the kinetic theory of Brownian motion and their suspensions). Ann. Phys. 1906, 326, 756. [Google Scholar] [CrossRef] [Green Version]
- Langevin, P. Sur la theorie du mouvement Brownien (On the theory of Brownian motion). C. R. Acad. Sci. Paris 1908, 146, 530. [Google Scholar]
- For a Selection of Those Historical Papers on Brownian Motion and More Recent Ones See in the Link Entitled, 100 Years of Brownian Motion: Historical Items and Surveys. Available online: https://www.physik.uni-augsburg.de/theo1/hanggi/History/BM-History.html (accessed on 23 November 2022).
- Hänggi, P.; Marchesoni, F. Introduction: 100 Years of Brownian motion. Chaos 2005, 15, 026101. [Google Scholar] [CrossRef]
- Brush, S.G. A History of Random Processes: I. Brownian Movement from Brown to Perrin. Arch. Hist. Exact Sci. 1968, 5, 1. [Google Scholar] [CrossRef]
- Hänggi, P.; Ingold, G.L. Fundamental aspects of quantum Brownian motion. Chaos 2005, 15, 026105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crossman, A. Understanding Diffusion in Sociology. ThoughtCo. 16 February 2021. Available online: thoughtco.com/cultural-diffusion-definition-3026256 (accessed on 23 November 2022).
- Einstein, A. Eine neue Bestimung der Molekül-dimensionen. Ann. Phys. 1906, 19, 289. [Google Scholar] [CrossRef]
- Einstein, A. Zur Theorie der Brownschen Bewegung. Ann. Phys. 1906, 19, 371. [Google Scholar] [CrossRef] [Green Version]
- Perrin, J. Mouvement brownien et réalité moléculaire (Brownian movement and molecular reality). Ann. Chim. Phys. 1909, 18, 1. [Google Scholar]
- Teske, A. Einstein und Smoluchowski: Zur Geschichte der Brownschen Bewegung und der Opaleszenz, Sudhoffs Archiv 53, Heft 3. See Text on Page 299 Therein. Article in German. 1969. pp. 292–305. Available online: https://www.jstor.org/stable/20775771#metadata_info_tab_contents (accessed on 23 November 2022).
- Pearson, K. The problem of the Random Walk. Nature 1905, 72, 294. [Google Scholar] [CrossRef]
- Kubo, R. The Fluctuation-Dissipation Theorem. Rep. Prog. Phys. 1966, 29, 255. [Google Scholar] [CrossRef] [Green Version]
- Hänggi, P. Generalized Langevin Equations: A Useful Tool for the Perplexed Modeller of Nonequilibrium Fluctuations? In Stochastic Dynamics; Schimansky-Geier, L., Pöschel, T., Eds.; Lecture Notes in Physics 484; Springer: Berlin/Heidelberg, Germany, 1997; pp. 15–22. [Google Scholar]
- Łuczka, J. Non-Markovian stochastic processes: Colored noise. Chaos 2005, 15, 026107. [Google Scholar] [CrossRef]
- Hänggi, P.; Jung, P. Colored Noise in Dynamical Systems. Adv. Chem. Phys. 1995, 89, 239–326. [Google Scholar]
- Callen, H.B.; Welton, T.A. Irreversibility and Generalized Noise. Phys. Rev. 1951, 83, 34. [Google Scholar] [CrossRef]
- Hänggi, P.; Thomas, H. Stochastic Processes: Time Evolution, Symmetries and Linear Response. Phys. Rep. 1982, 88, 207. [Google Scholar] [CrossRef]
- Marconi, U.M.B.; Puglisi, A.; Rondoni, L.; Vulpiani, A. Fluctuation-dissipation: Response theory in statistical physics. Phys. Rep. 2008, 461, 111. [Google Scholar] [CrossRef] [Green Version]
- Gitterman, M. The Chaotic Pendulum; World Scientific: Singapore, 2010. [Google Scholar]
- Fulde, P.; Pietronero, L.; Schneider, W.; Strässler, S. Problem of Brownian Motion in a Periodic Potential. Phys. Rev. Lett. 1975, 35, 1776. [Google Scholar] [CrossRef]
- Kautz, R.L. Noise, chaos, and the Josephson voltage standard. Rep. Prog. Phys. 1996, 59, 935. [Google Scholar] [CrossRef]
- Ivanchenko, Y.M.; Zil’Berman, L.A. The Josephson Effect in Small Tunnel Junctions. Sov. Phys. JETP 1969, 28, 1272. [Google Scholar]
- Coffey, W.; Kalmykov, Y.; Waldron, J. The Langevin Equation; World Scientific: Singapore, 2012. [Google Scholar]
- Viterbi, A. Principles of Coherent Communication; McGraw-Hill: New York, NY, USA, 1966. [Google Scholar]
- Seeger, A. Continuum Models of Discrete Systems; Kröner, E., Anthony, K., Eds.; University of Waterloo Press: Waterloo, ON, Canada, 1980. [Google Scholar]
- Lamb, G. Elements of Soliton Theory; Wiley: Hoboken, NJ, USA, 1980. [Google Scholar]
- Braun, O.; Kivshar, Y. Nonlinear dynamics of the Frenkel-Kontorova model. Phys. Rep. 1998, 306, 1. [Google Scholar] [CrossRef]
- Guantes, G.; Vega, J.; Miret-Artés, S. Chaos and anomalous diffusion of adatoms on solid surfaces. Phys. Rev. B 2001, 64, 245415. [Google Scholar] [CrossRef] [Green Version]
- Grüner, G.; Zawadowski, A.; Chaikin, P. Nonlinear Conductivity and Noise due to Charge-Density-Wave Depinning in NbSe3. Phys. Rev. Lett. 1981, 46, 511. [Google Scholar] [CrossRef]
- Denisov, S.; Flach, S.; Hänggi, P. Tunable transport with broken space time symmetries. Phys. Rep. 2014, 538, 77. [Google Scholar] [CrossRef] [Green Version]
- Lifson, S.; Jackson, J.L. On the self–diffusion of ions in polyelectrolytic solution. J. Chem. Phys. 1962, 36, 2410. [Google Scholar] [CrossRef]
- Festa, R.; Galleani d’Agliano, E. Diffusion coefficient for a brownian particle in a periodic field of force I. Large friction limit. Physica A 1978, 90, 229. [Google Scholar] [CrossRef]
- Gradshteyn, I.; Ryzhik, I. Table of Integrals, Series and Products, 5th ed.; Academic Press: New York, NY, USA, 1994. [Google Scholar]
- Pavliotis, G.A.; Vogiannou, T. Diffusive transport in periodic potentials: Underdamped dynamics. Noise Lett. 2008, 8, 155. [Google Scholar] [CrossRef] [Green Version]
- Risken, H. The Fokker-Planck Equation: Methods of Solution and Applications; Springer: Berlin/Heidelberg, Germany, 1996. [Google Scholar]
- Lacasta, A.M.; Sancho, J.M.; Romero, A.H.; Sokolov, I.M.; Lindenberg, K. From subdiffusion to superdiffusion of particles on solid surfaces. Phys. Rev. E 2004, 70, 051104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lindner, B.; Kostur, M.; Schimansky-Geier, L. Optimal diffusive transport in a tilted periodic potential. Fluct. Noise Lett. 2001, 1, R25. [Google Scholar] [CrossRef]
- Reimann, P.; Van den Broeck, C.; Linke, H.; Hänggi, P.; Rubi, J.M.; Perez-Madrid, A. Giant Acceleration of Free Diffusion by Use of Tilted Periodic potential. Phys. Rev. Lett. 2001, 81, 010602. [Google Scholar] [CrossRef] [Green Version]
- Reimann, P.; Van den Broeck, C.; Linke, H.; Hänggi, P.; Rubi, J.M.; Perez-Madrid, A. Diffusion in tilted periodic potentials: Enhancement, universality, and scaling. Phys. Rev. E 2002, 65, 031104. [Google Scholar] [CrossRef]
- Dan, D.; Jayannavar, A.M. Giant diffusion and coherent transport in tilted periodic inhomogeneous systems. Phys. Rev. E 2002, 66, 041106. [Google Scholar] [CrossRef] [Green Version]
- Heinsalu, E.; Tammelo, R.; Ord, T. Correlation between diffusion and coherence in Brownian motion on a tilted periodic potential. Physica A 2004, 340, 292. [Google Scholar] [CrossRef] [Green Version]
- Heinsalu, E.; Ord, T.; Tammelo, R. Diffusion and coherence in tilted piecewise linear double-periodic potentials. Phys. Rev. E 2004, 70, 0411104. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.; Grier, D.G. Giant Colloidal Diffusivity on Corrugated Optical Vortices. Phys. Rev. Lett. 2006, 96, 190601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Evstigneev, M.; Zvyagolskaya, O.; Bleil, S.; Eichhorn, R.; Bechinger, C.; Reimann, P. Diffusion of colloidal particles in a tilted periodic potential: Theory versus experiment. Phys. Rev. E 2008, 77, 041107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reimann, P.; Eichhorn, R. Weak Disorder Strongly Improves the Selective Enhancement of Diffusion in a Tilted Periodic Potential. Phys. Rev. Lett. 2008, 101, 180601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, X.; Lai, P.; Ackersonc, B.; Tong, P. Colloidal transport and diffusion over a tilted periodic potential: Dynamics of individual particles. Soft Matter 2014, 11, 1182. [Google Scholar] [CrossRef]
- Hayashi, R.; Sasaki, K.; Nakamura, S.; Kudo, S.; Inoue, Y.; Noji, H.; Hayashi, K. Giant Acceleration of Diffusion Observed in a Single-Molecule Experiment on F1-ATPase. Phys. Rev. Lett. 2015, 114, 248101. [Google Scholar] [CrossRef]
- Guerin, T.; Dean, D. Universal time-dependent dispersion properties for diffusion in a one-dimensional critically tilted potential. Phys. Rev. E 2017, 95, 012109. [Google Scholar] [CrossRef] [Green Version]
- Lopez-Alamilla, N.J.; Jack, M.W.; Challis, K.J. Enhanced diffusion and the eigenvalue band structure of Brownian motion in tilted periodic potentials. Phys. Rev. E 2020, 102, 042405. [Google Scholar] [CrossRef]
- Białas, K.; Łuczka, J.; Hänggi, P.; Spiechowicz, J. Colossal Brownian yet non-Gaussian diffusion induced by nonequilibrium noise. Phys. Rev. E 2020, 102, 042121. [Google Scholar] [CrossRef]
- Białas, K.; Spiechowicz, J. Colossal Brownian yet non-Gaussian diffusion in a periodic potential: Impact of nonequilibrium noise amplitude statistics. Chaos 2021, 31, 123107. [Google Scholar] [CrossRef]
- Vollmer, H.D.; Risken, H. Eigenvalues and their connection to transition rates for the Brownian motion in an inclined cosine potential. Z. Phys. B Condens. Matter 1983, 52, 259. [Google Scholar] [CrossRef]
- Spiechowicz, J.; Łuczka, J. Arcsine law and multistable Brownian dynamics in a tilted periodic potential. Phys. Rev. E 2021, 104, 024132. [Google Scholar] [CrossRef] [PubMed]
- Lindenberg, K.; Lacasta, A.M.; Sancho, J.M.; Romero, A.H. Transport and diffusion on crystalline surfaces under external forces. New J. Phys. 2005, 7, 29. [Google Scholar] [CrossRef] [Green Version]
- Marchenko, I.G.; Marchenko, I.I. Diffusion in the systems with low dissipation: Exponential growth with temperature drop. EPL 2012, 100, 50005. [Google Scholar] [CrossRef]
- Marchenko, I.G.; Marchenko, I.I.; Zhiglo, A.V. Particle transport in space-periodic potentials in underdamped systems. Eur. Phys. J. B 2014, 87, 10. [Google Scholar] [CrossRef]
- Lindner, B.; Sokolov, I.M. Giant diffusion of underdamped particles in a biased periodic potential. Phys. Rev. E 2016, 93, 042106. [Google Scholar] [CrossRef] [Green Version]
- Marchenko, I.G.; Marchenko, I.I.; Tkachenko, V.I. Temperature-Abnormal Diffusivity in Underdamped Spatially Periodic Systems. JETP Lett. 2017, 106, 242. [Google Scholar] [CrossRef]
- Bai, Z.W.; Zhang, W. Diffusion of Brownian particles in a tilted periodic potential under the influence of an external Ornstein–Uhlenbeck noise. Chem. Phys. 2018, 500, 62. [Google Scholar] [CrossRef]
- Marchenko, I.G.; Marchenko, I.I.; Tkachenko, V.I. Temperature-Abnormal Diffusivity in Tilted Periodic Potentials. JETP Lett. 2019, 109, 671. [Google Scholar] [CrossRef]
- Spiechowicz, J.; Łuczka, J. Diffusion in a biased washboard potential revisited. Phys. Rev. E 2020, 101, 032123. [Google Scholar] [CrossRef] [Green Version]
- Spiechowicz, J.; Łuczka, J. Conundrum of weak-noise limit for diffusion in a tilted periodic potential. Phys. Rev. E 2021, 104, 034104. [Google Scholar] [CrossRef]
- Bellando, L.; Kleine, M.; Amarouchene, Y.; Perrin, M.; Louyer, Y. Giant Diffusion of Nanomechanical Rotors in a Tilted Washboard Potential. Phys. Rev. Lett. 2022, 129, 023602. [Google Scholar] [CrossRef] [PubMed]
- Strogatz, S.H. Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry and Engineering; Westview Press: Boulder, CO, USA, 2001. [Google Scholar]
- Jung, P.; Hänggi, P. Effect of Periodic Driving on the Escape in Periodic Potentials, Ber. Bunsenges. Phys. Chem. 1991, 95, 311. [Google Scholar]
- Hänggi, P.; Talkner, P.; Borkovec, M. Reaction Rate Theory: Fifty Years After Kramers. Rev. Mod. Phys. 1990, 62, 251–342. [Google Scholar] [CrossRef]
- Gang, H.A. Daffertshofer and H. Haken, Diffusion of Periodically Forced Brownian Particles Moving in Space-Periodic Potentials. Phys. Rev. Lett. 1996, 76, 4874. [Google Scholar] [CrossRef]
- Schreier, M.; Reimann, P.; Hänggi, P.; Pollak, E. Giant enhancement of diffusion and particle selection in rocked periodic potentials. EPL 1998, 44, 416. [Google Scholar] [CrossRef] [Green Version]
- Roy, S.; Dan, D.; Jayannavar, A.M. Giant coherence in driven systems. J. Stat. Mech. 2006, P09012. [Google Scholar] [CrossRef]
- Borromeo, M.; Marchesoni, F. Artificial Sieves for Quasimassless Particles. Phys. Rev. Lett. 2007, 99, 150605. [Google Scholar] [CrossRef] [PubMed]
- Speer, D.; Eichhorn, R.; Reimann, P. Anisotropic diffusion in square lattice potentials: Giant enhancement and control. EPL 2012, 97, 60004. [Google Scholar] [CrossRef]
- Marchenko, I.G.; Marchenko, I.I. Anomalous Temperature Dependence of Diffusion in Crystals in Time-Periodic External Fields. JETP Lett. 2012, 95, 137. [Google Scholar] [CrossRef]
- Spiechowicz, J.; Talkner, P.; Hänggi, P.; Luczka, J. Non-monotonic temperature dependence of chaos-assisted diffusion in driven periodic systems. New J. Phys. 2016, 18, 123029. [Google Scholar] [CrossRef]
- Marchenko, I.G.; Marchenko, I.I.; Zhiglo, A.V. Enhanced diffusion with abnormal temperature dependence in underdamped space-periodic systems subject to time-periodic driving. Phys. Rev. E 2018, 97, 012121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marchenko, I.G.; Zhiglo, A.; Aksenova, V.; Tkachenko, V.; Marchenko, I.I.; Łuczka, J.; Spiechowicz, J. Giant oscillations of diffusion in ac-driven periodic systems. Chaos 2022, 32, 113106. [Google Scholar] [CrossRef] [PubMed]
- Schiavoni, M.; Sanchez-Palencia, L.; Renzoni, F.; Grynberg, G. Phase Control of Directed Diffusion in a Symmetric Optical Lattice. Phys. Rev. Lett. 2003, 90, 094101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Evers, F.; Hanes, R.D.L.; Zunke, C.; Capellmann, R.F.; Bewerunge, J.; Dalle-Ferrier, C.; Jenkins, M.C.; Ladadwa, I.; Heuer, A.; Castaneda-Priego, R.; et al. Colloids in light fields: Particle dynamics in random and periodic energy landscapes. Eur. Phys. J. Spec. Top. 2013, 222, 2995. [Google Scholar] [CrossRef] [Green Version]
- Hänggi, P.; Marchesoni, F. Artificial Brownian motors: Controlling transport on the nanoscale. Rev. Mod. Phys. 2009, 81, 387–442. [Google Scholar] [CrossRef] [Green Version]
- Reimann, P. Brownian motors: Noisy transport far from equilibrium. Phys. Rep. 2002, 361, 57–265. [Google Scholar] [CrossRef] [Green Version]
- Spiechowicz, J.; Łuczka, J. Diffusion anomalies in ac-driven Brownian ratchets. Phys. Rev. E 2015, 91, 062104. [Google Scholar] [CrossRef] [Green Version]
- Spiechowicz, J.; Łuczka, J.; Hänggi, P. Transient anomalous diffusion in periodic systems: Ergodicity, symmetry breaking and velocity relaxation. Sci. Rep. 2016, 6, 30948. [Google Scholar] [CrossRef]
- Spiechowicz, J.; Łuczka, J. Subdiffusion via dynamical localization induced by thermal equilibrium fluctuations. Sci. Rep. 2017, 7, 16451. [Google Scholar] [CrossRef] [Green Version]
- Spiechowicz, J.; Łuczka, J. SQUID ratchet: Statistics of transitions in dynamical localization. Chaos 2019, 29, 013105. [Google Scholar] [CrossRef] [Green Version]
- Spiechowicz, J.; Kostur, M.; Łuczka, J. Brownian ratchets: How stronger thermal noise can reduce diffusion. Chaos 2017, 27, 023111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gommers, R.; Bergamini, S.; Renzoni, F. Dissipation-Induced Symmetry Breaking in a Driven Optical Lattice. Phys. Rev. Lett. 2005, 95, 073003. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sterck, A.; Kleiner, R.; Koelle, D. Three-Junction SQUID Rocking Ratchet. Phys. Rev. Lett. 2005, 95, 177006. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Skaug, M.J.; Schwemmer, C.; Fringes, S.; Rawlings, C.D.; Knoll, A.W. Nanofluidic rocking Brownian motors. Science 2018, 359, 1505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petrov, Y.N.; Falchenko, V.M.; Mazanko, V.F.; Yakubtsov, I.A.; Vorona, S.P. Effect of temperature on the mobility of nickel atoms in austenitic chromium-nickel steels at high-speed deformation. Metallophysics 1988, 10, 124. [Google Scholar]
- Ganshin, A.N.; Grigor’ev, V.N.; Maidanov, V.A.; Omelaenko, N.F.; Penzev, A.A.; Rudavskii, E.Y.; Rybalko, A.S. Nonmonotonic temperature dependence of the mass transfer rate during isotopic phase separation of 3He-4He solid mixtures. Low Temp. Phys. 1999, 25, 259. [Google Scholar] [CrossRef]
- Moskalenko, V.A.; Smirnov, A.R.; Smolyanets, R.V. Low-Temperature Plastic Deformation and Strain Hardening of Nanocrystalline Titanium. Low Temp. Phys. 2014, 40, 1071. [Google Scholar] [CrossRef]
- Gupta, A.; Kulitcki, V.; Kavakbasi, B.T.; Buranova, Y.; Neugebauer, J.; Wilde, G.; Hickel, T.; Divinski, S.V. Precipitate-induced nonlinearities of diffusion along grain boundaries in Al-based alloys. Phys. Rev. Mater. 2018, 2, 073801. [Google Scholar] [CrossRef] [Green Version]
- Chakrabarti, D.; Bagchi, B. Anisotropic translational diffusion in the nematic phase: Dynamical signature of the coupling between orientational and translational order in the energy landscape. Phys. Rev. E 2006, 74, 041704. [Google Scholar] [CrossRef]
- Guo, M.; Gelman, H.; Gruebele, M. Coupled Protein Diffusion and Folding in the Cell. PLoS ONE 2014, 9, e113040. [Google Scholar] [CrossRef] [Green Version]
- Zelovich, T.; Vogt-Maranto, L.; Simari, C.; Nicotera, I.; Hickner, M.A.; Paddison, S.J.; Bae, C.; Dekel, D.R.; Tuckerman, M.E. Non-Monotonic Temperature Dependence of Hydroxide Ion Diffusion in Anion Exchange Membranes. Chem. Mater. 2022, 34, 2133. [Google Scholar] [CrossRef]
- Lee, C.K.; Moix, J.; Cao, J.S. Coherent quantum transport in disordered systems: A unified polaron treatment of hopping and band-like transport. J. Chem. Phys. 2015, 142, 164103. [Google Scholar] [CrossRef]
- Iubini, S.; Boada, O.; Omar, Y.; Piazza, F. Transport of quantum excitations coupled to spatially extended nonlinear many-body systems. New J. Phys. 2015, 17, 113030. [Google Scholar] [CrossRef]
- Ulaga, M.; Mravije, J.; Kokalj, J. Spin diffusion and spin conductivity in the two-dimensional Hubbard model. Phys. Rev. B 2021, 103, 155123. [Google Scholar] [CrossRef]
- Gomer, R. Diffusion of adsorbates on metal surfaces. Rep. Prog. Phys. 1990, 53, 917. [Google Scholar] [CrossRef] [Green Version]
- Ala-Nissila, T.; Ferrando, R.; Ying, S.C. Collective and single particle diffusion on surfaces. Adv. Phys. 2002, 51, 949. [Google Scholar] [CrossRef]
- Burada, P.S.; Hänggi, P.; Marchesoni, F.; Schmid, G.; Talkner, P. Diffusion in Confined Geometries. Chem. Phys. Chem. 2009, 10, 45. [Google Scholar] [CrossRef]
- Yang, X.; Liu, C.; Li, Y.; Marchesoni, F.; Hänggi, P.; Zhang, H.P. Hydrodynamic and entropic effects on colloidal diffusion in corrugated channels. Proc. Natl. Acad. Sci. USA 2017, 114, 9564. [Google Scholar] [CrossRef] [Green Version]
- Haus, J.W.; Kehr, K.W. Diffusion in regular and disordered lattices. Phys. Rep. 1987, 150, 263. [Google Scholar] [CrossRef]
- Havlin, S.; Ben-Avraham, D. Diffusion in disordered media. Adv. Phys. 1987, 36, 695. [Google Scholar] [CrossRef]
- Bouchaud, J.P.; Georges, A. Anomalous diffusion in disordered media: Statistical mechanisms, models and physical applications. Phys. Rep. 1990, 195, 127. [Google Scholar] [CrossRef]
- Metzler, R.; Klafter, J. The random walk’s guide to anomalous diffusion: A fractional dynamics approach. Phys. Rep. 2000, 339, 1. [Google Scholar] [CrossRef]
- Metzler, R.; Jeon, J.H.; Cherstvy, A.G.; Barkai, E. Anomalous diffusion models and their properties: Non-stationarity, non-ergodicity, and ageing at the centenary of single particle tracking. Phys. Chem. Chem. Phys. 2014, 16, 24128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manzo, C.; Garcia-Parajo, M.F. A review of progress in single particle tracking: From methods to biophysical insights. Rep. Prog. Phys. 2015, 78, 124601. [Google Scholar] [CrossRef] [PubMed]
- Meroz, Y.; Sokolov, I.M. A toolbox for determining subdiffusive mechanisms. Phys. Rep. 2015, 573, 1. [Google Scholar] [CrossRef]
- Zaburdaev, V.; Denisov, S.; Klafter, J. Levy walks. Rev. Mod. Phys. 2015, 87, 483. [Google Scholar] [CrossRef] [Green Version]
- Cates, M.E. Diffusive transport without detailed balance in motile bacteria: Does microbiology need statistical physics? Rep. Prog. Phys. 2012, 75, 042601. [Google Scholar] [CrossRef]
- Hofling, F.; Franosch, T. Anomalous transport in the crowded world of biological cells. Rep. Prog. Phys. 2013, 76, 046602. [Google Scholar] [CrossRef] [Green Version]
- Bressloff, P.; Newby, J. Stochastic models of intracellular transport. Rev. Mod. Phys. 2013, 85, 135. [Google Scholar] [CrossRef]
- Dunkel, J.; Hänggi, P. Relativistic Brownian motion. Phys. Rep. 2009, 471, 1. [Google Scholar] [CrossRef] [Green Version]
- Romanczuk, P.; Bar, M.; Ebeling, W.; Lindner, B.; Schimansky-Geier, L. Active Brownian particles: From individual to collective stochastic dynamics. Eur. Phys. J. Spec. Top. 2012, 202, 1. [Google Scholar] [CrossRef] [Green Version]
- Marchetti, M.C.; Joanny, J.F.; Ramaswamy, S.; Liverpool, T.B.; Prost, J.; Rao, M.; Simha, R.A. Hydrodynamics of soft active matter. Rev. Mod. Phys. 2013, 85, 1143. [Google Scholar] [CrossRef] [Green Version]
- Bechinger, C.; Leonardo, R.D.; Löwen, H.; Reichhardt, C.; Volpe, G.; Volpe, G. Active particles in complex and crowded environments. Rev. Mod. Phys. 2016, 88, 045006. [Google Scholar] [CrossRef]
- Prakash, M.; Prakash, M.; Venugopalan, R.; Welke, G. Non-equilibrium properties of hadronic mixtures. Phys. Rep. 1993, 227, 321. [Google Scholar] [CrossRef]
- Fotakis, J.A.; Soloveva, O.; Greiner, C.; Kaczmarek, O.; Bratkovskaya, E. Diffusion coefficient matrix of the strongly interacting quark-gluon plasma. Phys. Rev. D 2021, 104, 034014. [Google Scholar] [CrossRef]
- Masaro, L.; Zhu, X.X. Physical models of diffusion for polymer solutions, gels and solids. Prog. Polym. Sci. 1999, 24, 731. [Google Scholar] [CrossRef]
- Faupel, F.; Frank, W.; Macht, M.-P.; Mehrer, H.; Naundorf, V.; Ratzke, K.; Schober, H.R.; Sharma, S.K.; Teichler, H. Diffusion in metallic glasses and supercooled melts. Rev. Mod. Phys. 2003, 75, 237. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.K.; Liu, C.; Zhan, X.X.; Lu, X.; Zhang, C.X.; Zhang, Y.C. Dynamics of information diffusion and its applications on complex networks. Phys. Rep. 2016, 651, 1. [Google Scholar] [CrossRef] [Green Version]
- Masuda, N.; Porter, M.; Lambiotte, R. Random walks and diffusion on networks. Phys. Rep. 2017, 716, 1. [Google Scholar] [CrossRef]
- Nicholson, C. Diffusion and related transport mechanisms in brain tissue. Rep. Prog. Phys. 2001, 64, 815. [Google Scholar] [CrossRef]
- Greenhalgh, T.; Robert, G.; Macfarlane, F.; Bate, P.; Kyriakidou, O. Diffusion of innovations in service organizations: Systematic review and recommendations. Milbank Q 2004, 82, 581. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Długosz, M.; Cichocki, B.; Szymczak, P. Estimating near-wall diffusion coefficients of arbitrarily shaped rigid macromolecules. Phys. Rev. E 2022, 106, 014407. [Google Scholar] [CrossRef] [PubMed]
- Löwen, H. Inertial effects of self-propelled particles: From active Brownian to active Langevin motion. J. Chem. Phys. 2020, 152, 040901. [Google Scholar] [CrossRef] [PubMed]
- Marbach, S.; Holmes-Cerfon, M. Mass Changes the Diffusion Coefficient of Particles with Ligand-Receptor Contacts in the Overdamped Limit. Phys. Rev. Lett. 2022, 129, 048003. [Google Scholar] [CrossRef]
- Cugliandolo, L.F. The effective temperature. J. Phys. A Math. Theor. 2011, 44, 483001. [Google Scholar] [CrossRef] [Green Version]
- Barkai, E.; Fleurov, V.N. Generalized Einstein relation: A stochastic modeling approach. Phys. Rev. E 1998, 58, 1296. [Google Scholar] [CrossRef] [Green Version]
- Hayashi, K.; Sasa, S. Effective temperature in nonequilibrium steady states of Langevin systems with a tilted periodic potential. Phys. Rev. E 2004, 69, 066119. [Google Scholar] [CrossRef] [Green Version]
- Sakaguchi, H. Generalized Einstein Relation for Brownian Motion in Tilted Periodic Potential. J. Phys. Soc. Jpn. 2006, 75, 124006. [Google Scholar] [CrossRef] [Green Version]
- Blickle, V.; Speck, T.; Lutz, C.; Seifert, U.; Bechinger, C. Einstein Relation Generalized to Nonequilibrium. Phys. Rev. Lett. 2007, 98, 210601. [Google Scholar] [CrossRef]
- Fodor, E.; Nardini, C.; Cates, M.E.; Tailleur, J.; Visco, P.; van Wijland, F. How Far from Equilibrium is Active Matter. Phys. Rev. Lett. 2016, 117, 038103. [Google Scholar] [CrossRef] [Green Version]
- Wetzelaer, G.A.H.; Koster, L.J.A.; Blom, P.W.M. Validity of the Einstein Relation in Disordered Organic Semiconductors. Phys. Rev. Lett. 2011, 107, 066605. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abou, B.; Gallet, F. Probing a Nonequilibrium Einstein Relation in an Aging Colloidal Glass. Phys. Rev. Lett. 2004, 93, 160603. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tarjus, G.; Kivelson, D. Breakdown of the Stokes–Einstein relation in supercooled liquids. J. Chem. Phys. 1995, 103, 3071. [Google Scholar] [CrossRef]
- Tuteja, A.; Mackay, M.E.; Narayanan, S.; Asokan, S.; Wong, M. Breakdown of the Continuum Stokes–Einstein Relation for Nanoparticle Diffusion. Nano Lett. 2007, 7, 1276. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.H.; Chu, Y.M. On approximating the modified Bessel function of the first kind and Toader-Qi mean. J. Inequal. Appl. 2016, 2016, 40. [Google Scholar] [CrossRef]
- Karagiannidis, G.; Lioumpas, A. An improved approximation for the Gaussian Q-function. IEEE Commun. Lett. 2007, 11, 644. [Google Scholar]
- Wozencraft, J.M.; Jacobs, I.M. Principles of Communication Engineering, 1st ed.; Wiley: Hoboken, NJ, USA, 1965. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Spiechowicz, J.; Marchenko, I.G.; Hänggi, P.; Łuczka, J. Diffusion Coefficient of a Brownian Particle in Equilibrium and Nonequilibrium: Einstein Model and Beyond. Entropy 2023, 25, 42. https://doi.org/10.3390/e25010042
Spiechowicz J, Marchenko IG, Hänggi P, Łuczka J. Diffusion Coefficient of a Brownian Particle in Equilibrium and Nonequilibrium: Einstein Model and Beyond. Entropy. 2023; 25(1):42. https://doi.org/10.3390/e25010042
Chicago/Turabian StyleSpiechowicz, Jakub, Ivan G. Marchenko, Peter Hänggi, and Jerzy Łuczka. 2023. "Diffusion Coefficient of a Brownian Particle in Equilibrium and Nonequilibrium: Einstein Model and Beyond" Entropy 25, no. 1: 42. https://doi.org/10.3390/e25010042
APA StyleSpiechowicz, J., Marchenko, I. G., Hänggi, P., & Łuczka, J. (2023). Diffusion Coefficient of a Brownian Particle in Equilibrium and Nonequilibrium: Einstein Model and Beyond. Entropy, 25(1), 42. https://doi.org/10.3390/e25010042