Multi-Image Encryption Method via Computational Integral Imaging Algorithm
Abstract
:1. Introduction
2. Previous Theoretical Analysis
2.1. Pickup Original Scene by CII
2.2. DNA Sequence Operations
2.3. Chaos Theory
2.4. CIIR Algorithm
2.5. Entropy Analysis Theory
3. Multi-Image Encryption Scheme Based on CII
3.1. Framework of Multi-Image Encryption Scheme
3.2. Encryption and Decryption Procedure
4. Experiment Results and Performance Analysis
4.1. Key Security Analysis
4.2. Statistical Analysis
4.3. Robustness Analysis
4.4. Time Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chen, W.; Javidi, B.; Chen, X. Advances in optical security systems. Adv. Opt. Photonics 2014, 6, 120–155. [Google Scholar] [CrossRef]
- Wang, X.; Zhu, X.; Wu, X.; Zhang, Y. Image encryption algorithm based on multiple mixed hash functions and cyclic shift. Opt. Lasers Eng. 2018, 107, 370–379. [Google Scholar] [CrossRef]
- Shi, Y.; Li, T.; Wang, Y.; Gao, Q.; Zhang, S.; Li, H. Optical image encryption via ptychography. Opt. Lett. 2013, 38, 1425–1427. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Meng, X.; Yang, X.; Yin, Y.; Wang, Y.; Peng, X.; Chen, H. Multiple-image encryption based on compressive ghost imaging and coordinate sampling. IEEE Photonics J. 2016, 8, 1–11. [Google Scholar]
- Li, X.; Xiao, D.; Wang, Q.H. Error-free holographic frames encryption with CA pixel-permutation encoding algorithm. Opt. Lasers Eng. 2018, 100, 200–207. [Google Scholar] [CrossRef]
- Zhao, R.; Zhang, Y.; Xiao, X.; Ye, X.; Lan, R. TPE2: Three-pixel exact thumbnail-preserving image encryption. Signal Process. 2021, 183, 108019. [Google Scholar] [CrossRef]
- Gong, L.; Qiu, K.; Deng, C.; Zhou, N. An optical image compression and encryption scheme based on compressive sensing and RSA algorithm. Opt. Lasers Eng. 2019, 121, 169–180. [Google Scholar] [CrossRef]
- Qu, G.; Yang, W.; Song, Q.; Liu, Y.; Qiu, C.W.; Han, J.; Xiao, S. Reprogrammable metahologram for optical encryption. Nat. Commun. 2014, 11, 5484. [Google Scholar]
- Pan, A.; Wen, K.; Yao, B. Linear space-variant optical cryptosystem via Fourier ptychography. Opt. Lett. 2019, 44, 2032–2035. [Google Scholar] [CrossRef]
- Chen, W.; Situ, G.; Chen, X. High-flexibility optical encryption via aperture movement. Opt. Express 2013, 21, 24680–24691. [Google Scholar] [CrossRef]
- Liu, Z.; Xu, L.; Lin, C.; Liu, S. Image encryption by encoding with a nonuniform optical beam in gyrator transform domains. Appl. Opt. 2010, 49, 563–5637. [Google Scholar] [CrossRef]
- Yang, B.; Liu, Z.; Wang, B.; Zhang, Y.; Liu, S. Optical stream-cipher-like system for image encryption based on Michelson interferometer. Opt. Express 2011, 19, 2634–2642. [Google Scholar] [CrossRef]
- Refregier, P.; Javidi, B. Optical image encryption based on input plane and Fourier plane random encoding. Opt. Lett. 1995, 20, 767–769. [Google Scholar] [CrossRef]
- Peng, X.; Zhang, P.; Wei, H.; Yu, B. Known-plaintext attack on optical encryption based on double random phase keys. Opt. Lett. 2006, 31, 1044–1046. [Google Scholar] [CrossRef]
- Unnikrishnan, G.; Joseph, J.; Singh, K. Optical Encryption by Double-random Phase Encoding in the Fractional Fourier Domain. Opt. Lett. 2000, 25, 887–889. [Google Scholar] [CrossRef]
- Situ, G.H.; Zhang, J. Double random-phase encoding in the Fresnel domain. Opt. Lett. 2004, 29, 1584–1586. [Google Scholar] [CrossRef]
- Liu, Z.J.; Xu, L.; Lin, C. Image encryption scheme by using iterative random phase encoding in gyrator transform domains. Opt. Lasers Eng. 2011, 49, 542–546. [Google Scholar] [CrossRef]
- Kumar, R.; Bhaduri, B. Optical image encryption in Fresnel domain using spiral phase transform. J. Opt. 2017, 19, 095771. [Google Scholar] [CrossRef]
- Sui, L.S.; Xu, M.J.; Tian, A.L. Optical noise-free image encryption based on quick response code and high dimension chaotic system in gyrator transform domain. Opt. Lasers Eng. 2017, 91, 106–114. [Google Scholar] [CrossRef]
- Zhao, D.M.; Li, X.; Chen, L.F. Optical image encryption with redefined fractional Hartley transform. Opt. Commun. 2008, 281, 5326–5329. [Google Scholar] [CrossRef]
- Hong, S.H.; Jang, J.S.; Javidi, B. Three-dimensional volumetric object reconstruction using computational integral imaging. Opt. Express 2004, 12, 483–491. [Google Scholar] [CrossRef] [PubMed]
- Shin, D.H.; Yoo, H. Image quality enhancement in 3D computational integral imaging by use of interpolation methods. Opt. Express 2007, 15, 12039–12049. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, X.; Zhang, J.; Yu, S.; Zhang, Q.; Guo, B. Resolution improvement of integral imaging based on time multiplexing sub-pixel coding method on common display panel. Opt. Express 2014, 22, 17897–17907. [Google Scholar] [CrossRef]
- Wang, Y.J.; Shen, X.; Lin, Y.H.; Javidi, B. Extended depth-of-field 3D endoscopy with synthetic aperture integral imaging using an electrically tunable focal-length liquid-crystal lens. Opt. Lett. 2015, 40, 3564–3567. [Google Scholar] [CrossRef]
- Stern, A.; Javidi, B. Three-dimensional image sensing and reconstruction with time-division multiplexed computational integral imaging. Appl. Opt. 2003, 42, 7036–7042. [Google Scholar] [CrossRef] [Green Version]
- Adleman, L.M. Molecular computation of solutions to combinatorial problems. Science 1994, 266, 1021–1024. [Google Scholar] [CrossRef] [Green Version]
- Xiao, X.; Javidi, B.; Martinez-Corral, M.; Stern, A. Advances in three-dimensional integral imaging: Sensing, display, and applications. Appl. Opt. 2013, 52, 546–560. [Google Scholar] [CrossRef]
- Li, X.; Zhao, M.; Xing, Y.; Zhang, H.L.; Li, L.; Kim, S.T.; Wang, Q.H. Designing optical 3D images encryption and reconstruction using monospectral synthetic aperture integral imaging. Optics Express 2018, 26, 11084–11099. [Google Scholar] [CrossRef]
- Li, X.; Zhao, M.; Xing, Y.; Li, L.; Kim, S.T.; Zhou, X.; Wang, Q.H. Optical encryption via monospectral integral imaging. Opt. Express 2017, 25, 31516–31527. [Google Scholar] [CrossRef]
- Markman, A.; Wang, J.; Javidi, B. Three-dimensional integral imaging displays using a quick-response encoded elemental image array. Optica 2014, 1, 332–335. [Google Scholar] [CrossRef]
- Park, G.; Jung, J.H.; Hong, K.; Kim, Y.; Kim, Y.H.; Min, S.W.; Lee, B. Multi-viewer tracking integral imaging system and its viewing zone analysis. Opt. Express 2009, 17, 17895–17908. [Google Scholar] [CrossRef] [PubMed]
- Xing, S.; Sang, X.; Yu, X.; Duo, C.; Pang, B.; Gao, X.; Wang, K. High-efficient computer-generated integral imaging based on the backward ray-tracing technique and optical reconstruction. Opt. Express 2017, 25, 330–338. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Ren, Z.; Zhang, L.; Li, D.; Li, X. 3D image hiding using deep demosaicking and computational integral imaging. Opt. Lasers Eng. 2022, 148, 106772. [Google Scholar] [CrossRef]
- Watson, J.D.; Crick, F.H. Molecular structure of nucleic acids: A structure for deoxyribose nucleic acid. Nature 1953, 171, 737–738. [Google Scholar] [CrossRef]
- Sun, S. A novel hyperchaotic image encryption scheme based on DNA encoding, pixel-level scrambling and bit-level scrambling. IEEE Photonics J. 2018, 10, 1–14. [Google Scholar] [CrossRef]
- Liu, H.; Wang, X. Image encryption using DNA complementary rule and chaotic maps. Appl. Soft Comput. 2012, 12, 1457–1466. [Google Scholar] [CrossRef]
- Guesmi, R.; Farah, M.A.B.; Kachouri, A.; Samet, M. A novel chaos-based image encryption using DNA sequence operation and Secure Hash Algorithm SHA-2. Nonlinear Dyn. 2016, 83, 1123–1136. [Google Scholar] [CrossRef]
- Fu, X.Q.; Liu, B.C.; Xie, Y.Y.; Li, W.; Liu, Y. Image encryption-then-transmission using DNA encryption algorithm and the double chaos. IEEE Photonics J. 2018, 10, 1–15. [Google Scholar] [CrossRef]
- Wang, Y.; Li, X.W.; Wang, Q.H. Integral imaging based optical image encryption using CA-DNA algorithm. IEEE Photonics J. 2021, 13, 1–12. [Google Scholar] [CrossRef]
- Zhang, Y.Q.; Wang, X.Y.; Liu, J.; Chi, Z.L. An image encryption scheme based on the MLNCML system using DNA sequences. Adv. Opt. Photonics 2016, 82, 95–103. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, P.; Huang, H.; Zhu, Y.; Xiao, D.; Xiang, Y. Privacy-assured FogCS: Chaotic compressive sensing for secure industrial big image data processing in fog computing. IEEE Trans. Ind. Inform. 2020, 17, 3401–3411. [Google Scholar] [CrossRef]
- Head, T.; Rozenberg, G.; Bladergroen, R.S.; Breek, C.K.D.; Lommerse, P.H.M.; Spaink, H.P. Computing with DNA by operating on plasmids. BioSystems 2000, 57, 87–93. [Google Scholar] [CrossRef]
- Zheng, X.; Xu, J.; Li, W. Parallel DNA arithmetic operation based on n-moduli set. Appl. Math. Comput. 2015, 297, 80–94. [Google Scholar] [CrossRef]
- Hayat, U.; Azam, N.A. A novel image encryption scheme based on an elliptic curve. Signal Process. 2019, 155, 391–402. [Google Scholar] [CrossRef]
- Azam, N.A.; Ullah, I.; Hayat, U. A fast and secure public-key image encryption scheme based on Mordell elliptic curves. Opt. Lasers Eng. 2021, 137, 106371. [Google Scholar] [CrossRef]
- Jia, N.; Liu, S.; Ding, Q.; Wu, S.; Pan, X. A New Method of Encryption Algorithm Based on Chaos and ECC. J. Inf. Hiding Multim. Signal Process. 2016, 7, 637–644. [Google Scholar]
- Zhang, F.; Zhang, Z.; Guan, P. ECC2: Error correcting code and elliptic curve based cryptosystem. Inf. Sci. 2020, 526, 301–320. [Google Scholar] [CrossRef]
- Hua, Z.Y.; Zhou, Y.C.; Pun, C.M.; Chen, C.L.P. 2D Sine Logistic modulation map for image encryption. Inf. Sci. 2014, 6, 120–155. [Google Scholar] [CrossRef]
- Singh, N.; Sinha, A. Optical image encryption using Hartley transform and logistic map. Opt. Commun. 2009, 282, 1104–1109. [Google Scholar] [CrossRef]
- Niyat, A.Y.; Moattar, M.H.; Torshiz, M.N. Color image encryption based on hybrid hyper-chaotic system and cellular automata. Opt. Lasers Eng. 2017, 90, 225–237. [Google Scholar] [CrossRef]
- Tsai, D.Y.; Lee, Y.; Matsuyama, E. Information entropy measure for evaluation of image quality. J. Digit. Imaging 2008, 21, 338–347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chai, X.; Gan, Z.; Yuan, K.; Chen, Y.; Liu, X. A novel image encryption scheme based on DNA sequence operations and chaotic systems. Neural Comput. Appl. 2019, 31, 219–237. [Google Scholar] [CrossRef]
Rule | One | Two | Three | Four | Five | Six | Seven | Eight |
---|---|---|---|---|---|---|---|---|
A | 00 | 00 | 01 | 01 | 10 | 10 | 00 | 11 |
C | 01 | 10 | 00 | 11 | 00 | 11 | 01 | 10 |
G | 10 | 01 | 11 | 00 | 11 | 00 | 10 | 01 |
T | 11 | 11 | 10 | 10 | 01 | 01 | 00 | 00 |
+ | A | T | C | G | − | A | T | C | G | ⊕ | A | T | C | G |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
G | G | A | T | C | G | G | C | T | A | G | G | C | T | A |
C | C | G | A | T | C | C | T | A | G | C | C | G | A | T |
T | T | C | G | A | T | T | A | G | C | T | T | A | G | C |
A | A | T | C | G | A | A | G | C | T | A | A | T | C | G |
Attacks | R (dB) | G (dB) | B (dB) |
---|---|---|---|
Gaussian (0.01) | 31.5444 | 33.0175 | 34.5347 |
Gaussian (0.02) | 31.3144 | 32.8944 | 34.8444 |
Speckle (0.01) | 31.7404 | 33.2693 | 34.7687 |
Speckle (0.02) | 31.7186 | 33.2382 | 34.4183 |
Possion | 31.7075 | 33.0537 | 34.3427 |
Salt & Pepper (0.01) | 43.6942 | 47.6408 | 50.1849 |
Salt & Pepper (0.02) | 40.8340 | 43.9806 | 46.3331 |
Clip (6.25%) | 48.6002 | 43.7822 | 53.1990 |
Clip (12.5%) | 38.4986 | 41.1150 | 44.3709 |
Index | NPCR (%) | UACI (%) |
---|---|---|
Plaintext sensitivity | 99.6091 | 33.4591 |
Encryption process | 99.6100 | 33.4603 |
Decryption process (legal) | 99.6064 | 28.6356 |
Decryption process (illegal) | 99.6085 | 33.4673 |
Theoretical value | 99.6094 | 33.4635 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Yu, C.; Guo, J. Multi-Image Encryption Method via Computational Integral Imaging Algorithm. Entropy 2022, 24, 996. https://doi.org/10.3390/e24070996
Li X, Yu C, Guo J. Multi-Image Encryption Method via Computational Integral Imaging Algorithm. Entropy. 2022; 24(7):996. https://doi.org/10.3390/e24070996
Chicago/Turabian StyleLi, Xiaowu, Chuying Yu, and Junfeng Guo. 2022. "Multi-Image Encryption Method via Computational Integral Imaging Algorithm" Entropy 24, no. 7: 996. https://doi.org/10.3390/e24070996
APA StyleLi, X., Yu, C., & Guo, J. (2022). Multi-Image Encryption Method via Computational Integral Imaging Algorithm. Entropy, 24(7), 996. https://doi.org/10.3390/e24070996