Deriving the Hawking Temperature of (Massive) Global Monopole Spacetime via a Topological Formula
Abstract
:1. Introduction
2. RVB Method for the Hawking Temperature
3. RVB Method for the Hawking Temperature
4. Hawking Temperature of the Global Monopole Black Hole in Massive Gravity
5. Summary and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Abernathy, M.R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; et al. Observation of Gravitational Waves from a Binary Black Hole Merger. Phys. Rev. Lett. 2016, 116, 061102. [Google Scholar] [CrossRef] [PubMed]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Abernathy, M.R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; et al. GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence. Phys. Rev. Lett. 2016, 116, 241103. [Google Scholar] [CrossRef] [PubMed]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Abernathy, M.R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; et al. GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2. Phys. Rev. Lett. 2017, 118, 221101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Abernathy, M.R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; et al. GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence. Phys. Rev. Lett. 2017, 119, 141101. [Google Scholar] [CrossRef] [Green Version]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Abernathy, M.R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; et al. GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Phys. Rev. Lett. 2017, 119, 161101. [Google Scholar] [CrossRef] [Green Version]
- Gibbons, G.W.; Kallosh, R.E. Topology, entropy and Witten index of dilaton black holes. Phys. Rev. D 1995, 51, 2839–2862. [Google Scholar] [CrossRef] [Green Version]
- Gibbons, G.W.; Hawking, S.W. Classification of Gravitational Instanton Symmetries. Commun. Math. Phys. 1979, 66, 291–310. [Google Scholar] [CrossRef]
- Eguchi, T.; Gilkey, P.B.; Hanson, A.J. Gravitation, Gauge Theories and Differential Geometry. Phys. Rep. 1980, 66, 213. [Google Scholar] [CrossRef]
- Liberati, S.; Pollifrone, G. Entropy and topology for gravitational instantons. Phys. Rev. D 1997, 56, 6458–6466. [Google Scholar] [CrossRef] [Green Version]
- Bañados, M.; Teitelboim, C.; Zanelli, J. Black hole entropy and the dimensional continuation of the Gauss–Bonnet theorem. Phys. Rev. Lett. 1994, 72, 957–960. [Google Scholar] [CrossRef] [Green Version]
- Padmanabhan, T. Topological interpretation of the horizon temperature. Mod. Phys. Lett. A 2003, 18, 2903–2911. [Google Scholar] [CrossRef] [Green Version]
- Robson, C.W.; Villari, L.D.M.; Biancalana, F. On the Topological Nature of the Hawking Temperature of Black Holes. Phys. Rev. D 2019, 99, 044042. [Google Scholar] [CrossRef] [Green Version]
- Robson, C.W.; Villari, L.D.M.; Biancalana, F. Global Hawking Temperature of Schwarzschild-de Sitter Spacetime: A Topological Approach. arXiv 2019, arXiv:1902.02547. [Google Scholar]
- Robson, C.W.; Villari, L.D.M.; Biancalana, F. The Hawking Temperature of Anti-de Sitter Black Holes: Topology and Phase Transitions. arXiv 2019, arXiv:1903.04627. [Google Scholar]
- Zhang, Y.P.; Wei, S.W.; Liu, Y.X. Topological approach to derive the global Hawking temperature of (massive) BTZ black hole. Phys. Lett. B 2020, 810, 135788. [Google Scholar] [CrossRef]
- Övgün, A.; Sakall, İ. Deriving Hawking Radiation via Gauss–Bonnet Theorem: An Alternative Way. Ann. Phys. 2020, 413, 168071. [Google Scholar] [CrossRef] [Green Version]
- Tan, H.W.; Yang, J.B.; Zhang, J.Y.; He, T.M. The global monopole spacetime and its topological charge. Chin. Phys. B 2018, 27, 030401. [Google Scholar] [CrossRef] [Green Version]
- Barriola, M.; Vilenkin, A. Gravitational field of a global monopole. Phy. Rev. Lett. 1989, 63, 341–343. [Google Scholar] [CrossRef]
- Morgan, F. Riemannian Geometry: A Beginner Guide; Jones and Bartlett: Boston, UK, 1993. [Google Scholar]
- Achucarro, A.; Ortiz, M.E. Relating black holes in two-dimensions and three-dimensions. Phys. Rev. D 1993, 48, 3600–3605. [Google Scholar] [CrossRef] [Green Version]
- Hinterbichler, K. Theoretical aspects of massive gravity. Rev. Mod. Phys. 2012, 84, 671–710. [Google Scholar] [CrossRef] [Green Version]
- Hendi, S.H.; Panah, B.E.; Panahiyan, S. Massive charged BTZ black holes in asymptotically (a)dS spacetimes. J. High Energy Phys. 2016, 5, 1–33. [Google Scholar] [CrossRef] [Green Version]
- Frassino, A.M.; Mann, R.B.; Mureika, J.R. Lower-Dimensional black hole chemistry. Phys. Rev. D 2015, 92, 124069. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xian, J.; Zhang, J. Deriving the Hawking Temperature of (Massive) Global Monopole Spacetime via a Topological Formula. Entropy 2022, 24, 634. https://doi.org/10.3390/e24050634
Xian J, Zhang J. Deriving the Hawking Temperature of (Massive) Global Monopole Spacetime via a Topological Formula. Entropy. 2022; 24(5):634. https://doi.org/10.3390/e24050634
Chicago/Turabian StyleXian, Junlan, and Jingyi Zhang. 2022. "Deriving the Hawking Temperature of (Massive) Global Monopole Spacetime via a Topological Formula" Entropy 24, no. 5: 634. https://doi.org/10.3390/e24050634