Image Defogging Framework Using Segmentation and the Dark Channel Prior
Abstract
:1. Introduction
2. Related Work
2.1. Enhancement-Based Defogging Approaches
2.2. Restoration-Based Defogging Approaches
3. Background
3.1. Atmospheric Scattering Model
3.2. Dark Channel Prior
3.3. Transmission Map
3.4. Color Distortion of Sky Region
4. Proposed Methodology
4.1. Sky Part Segmentation
4.2. Restoration of Sky Part
4.3. Restoration of Non-Sky Part
4.4. Separation and Enhancement of Non-Sky Part
4.5. Image Blending
5. Experimental Result Analysis
5.1. Comparison with DCP Image
5.2. Comparison with Other Techniques
5.2.1. Full Reference Image Quality Evaluation
5.2.2. No Reference Image Quality Evaluation
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Schechner, Y.Y.; Narasimhan, S.G.; Nayar, S.K. Instant dehazing of images using polarization. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), Kauai, HI, USA, 8–14 December 2001; Volume 1, p. 1. [Google Scholar]
- Shwartz, S.; Namer, E.; Schechner, Y.Y. Blind haze separation. In Proceedings of the IEEE Computer Society Conference on COmputer Vision and Pattern Recognition (CVPR), New York, NY, USA, 17–22 June 2006; Volume 2, pp. 1984–1991. [Google Scholar]
- Narasimhan, S.G.; Nayar, S.K. Contrast restoration of weather degraded images. IEEE Trans. Pattern Anal. Mach. Intell. 2003, 25, 713–724. [Google Scholar] [CrossRef] [Green Version]
- Kim, T.K.; Paik, J.K.; Kang, B.S. Contrast enhancement system using spatially adaptive histogram equalization with temporal filtering. IEEE Trans. Consum. Electron. 1998, 44, 82–87. [Google Scholar]
- Cooper, T.J.; Baqai, F.A. Analysis and extensions of the Frankle-McCann Retinex algorithm. J. Electron. Imaging 2004, 13, 85–93. [Google Scholar] [CrossRef]
- Seow, M.J.; Asari, V.K. Ratio rule and homomorphic filter for enhancement of digital color image. Neurocomputing 2006, 69, 954–958. [Google Scholar] [CrossRef]
- Dippel, S.; Stahl, M.; Wiemker, R.; Blaffert, T. Multiscale contrast enhancement for radiographies: Laplacian pyramid versus fast wavelet transform. IEEE Trans. Med Imaging 2002, 21, 343–353. [Google Scholar] [CrossRef] [PubMed]
- Fattal, R. Single image dehazing. ACM Trans. Graph. 2008, 27, 1–9. [Google Scholar] [CrossRef]
- Tarel, J.P.; Hautiere, N. Fast visibility restoration from a single color or gray level image. In Proceedings of the IEEE 12th International Conference on Computer Vision, Kyoto, Japan, 29 September–2 October 2009; pp. 2201–2208. [Google Scholar]
- He, K.; Sun, J.; Tang, X. Single Image Haze Removal Using Dark Channel Prior. IEEE Trans. Pattern Anal. Mach. Intell. 2011, 33, 2341–2353. [Google Scholar]
- Ghahremani, M.; Liu, Y.; Yuen, P.; Behera, A. Remote sensing image fusion via compressive sensing. ISPRS J. Photogramm. Remote Sens. 2019, 152, 34–48. [Google Scholar] [CrossRef] [Green Version]
- Grinias, I.; Panagiotakis, C.; Tziritas, G. MRF-based segmentation and unsupervised classification for building and road detection in peri-urban areas of high-resolution satellite images. ISPRS J. Photogramm. Remote Sens. 2016, 122, 145–166. [Google Scholar] [CrossRef]
- Xiao, J.; Zhu, L.; Zhang, Y.; Liu, E.; Lei, J. Scene-aware image dehazing based on sky-segmented dark channel prior. IET Image Proc. 2017, 11, 1163–1171. [Google Scholar] [CrossRef]
- Otsu, N. A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 1979, 9, 62–66. [Google Scholar] [CrossRef] [Green Version]
- Li, B.; Ren, W.; Fu, D.; Tao, D.; Feng, D.; Zeng, W.; Wang, Z. Benchmarking Single-Image Dehazing and Beyond. IEEE Trans. Image Process. 2018, 28, 492–505. [Google Scholar] [CrossRef] [Green Version]
- Kopf, J.; Neubert, B.; Chen, B.; Cohen, M.; Cohen-Or, D. Deep photo: Model-based photograph enhancement and viewing. ACM Trans. Graph. (TOG) 2008, 27, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Oakley, J.P.; Bu, H. Correction of simple contrast loss in color images. IEEE Trans. Image Process 2007, 16, 511–522. [Google Scholar] [CrossRef] [PubMed]
- Tan, R.T. Visibility in bad weather from a single image. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Anchorage, AK, USA, 23–28 June 2008; pp. 1–8. [Google Scholar]
- Zhang, J.; Li, L.; Yang, G.; Zhang, Y.; Sun, J. Local albedo-insensitive single image dehazing. Vis. Comput. 2010, 26, 761–768. [Google Scholar] [CrossRef]
- Gibson, K.B.; Nguyen, T.Q. Fast single image fog removal using the adaptive Wiener filter. In Proceedings of the IEEE International Conference on Image Processing, Melbourne, Australia, 15–18 September 2013; pp. 714–718. [Google Scholar]
- Wang, W.; Li, W.; Guan, Q.; Qi, M. Multiscale Single Image Dehazing Based on Adaptive Wavelet Fusion. Math. Probl. Eng. 2015, 2015, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Ren, W.; Liu, S.; Zhang, H.; Pan, J.; Cao, X.; Yang, M.H. Single image dehazing via multi-scale convolutional neural networks. In European Conference on Computer Vision; Leibe, B., Matas, J., Sebe, N., Welling, M., Eds.; Springer: Cham, Switzerland, 2016; pp. 154–169. [Google Scholar]
- Cai, B.; Xu, X.; Jia, K.; Qing, C.; Tao, D. Dehazenet: An end-to-end system for single image haze removal. IEEE Trans. Image Process. 2016, 25, 5187–5198. [Google Scholar] [CrossRef] [Green Version]
- Li, B.; Peng, X.; Wang, Z.; Xu, J.; Feng, D. Aod-net: All-in-one dehazing network. In Proceedings of the IEEE international conference on computer vision, Venice, Italy, 22–29 October 2017; pp. 4770–4778. [Google Scholar]
- Salazar-Colores, S.; Cruz-Aceves, I.; Ramos-Arreguin, J.M. Single image dehazing using a multilayer perceptron. J. Electron. Imaging 2018, 24, 43011–43022. [Google Scholar] [CrossRef]
- Qu, Y.; Chen, Y.; Huang, J.; Xie, Y. Enhanced pix2pix dehazing network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–20 June 2018; pp. 8160–8168. [Google Scholar]
- Fu, H.; Wu, B.; Shao, Y. Multi-Feature-Based Bilinear CNN for Single Image Dehazing. IEEE Access 2019, 7, 74316–74326. [Google Scholar] [CrossRef]
- Suarez, P.L.; Sappa, A.D.; Vintimilla, B.X.; Hammoud, R.I. Deep Learning Based Single Image Dehazing. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, Salt Lake City, UT, USA, 18–22 June 2018; pp. 1169–1176. [Google Scholar]
- Yuan, B.; Yang, Y.; Zhang, B. Single Image Defogging Method based on Deep Learning. In Proceedings of the 2017 International Conference on Mechanical, Electronic, Control and Automation Engineering, Beijing, China, 25–26 March 2017; pp. 126–131. [Google Scholar]
- Rashid, H.; Zafar, N.; Iqbal, M.J.; Dawood, H.; Dawood, H. Single image dehazing using CNN. Procedia Comput. Sci. 2019, 147, 124–130. [Google Scholar] [CrossRef]
- Li, X.; Shen, H.; Zhang, L.; Zhang, H.; Yuan, Q.; Yang, G. Recovering quantitative remote sensing products contaminated by thick clouds and shadows using multitemporal dictionary learning. IEEE Trans. Geosci. Remote Sens. 2014, 52, 7086–7098. [Google Scholar]
- Enomoto, K.; Sakurada, K.; Wang, W.; Fukui, H.; Matsuoka, M.; Nakamura, R.; Kawaguchi, N. Filmy cloud removal on satellite imagery with multispectral conditional generative adversarial nets. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Honolulu, HI, USA, 21–26 July 2017; pp. 48–56. [Google Scholar]
- Li, X.; Wang, L.; Cheng, Q.; Wu, P.; Gan, W.; Fang, L. Cloud removal in remote sensing images using nonnegative matrix factorization and error correction. ISPRS J. Photogramm. Remote Sens. 2019, 148, 103–113. [Google Scholar] [CrossRef]
- Yu, J.; Xiao, C.; Li, D. Physics-based fast single image fog removal. In Proceedings of the IEEE 10th International Conference on Signal Processing Proceedings, Beijing, China, 24–28 October 2010; pp. 1048–1052. [Google Scholar]
- Park, D.; Han, D.K.; Ko, H. Single image haze removal with WLS-based edge-preserving smoothing filter. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, Vancouver, BC, Canada, 26–31 May 2013; pp. 2469–2473. [Google Scholar]
- He, K.; Sun, J.; Tang, X. Guided Image Filtering. In Constructive Side-Channel Analysis and Secure Design; Springer International Publishing: Berlin/Heidelberg, Germany, 2010; pp. 1–14. [Google Scholar]
- Wang, W.; Yuan, X.; Wu, X.; Liu, Y. Dehazing for images with large sky region. Neurocomputing 2017, 238, 365–376. [Google Scholar] [CrossRef]
- Canny, J. A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 1986, 6, 679–698. [Google Scholar] [CrossRef]
- Rais, N.B.; Hanif, M.S.; Taj, I.A. Adaptive thresholding technique for document image analysis. In Proceedings of the 8th International Multitopic Conference, Proceedings of INMIC, Lahore, Pakistan, 24–26 December 2004; pp. 61–66. [Google Scholar]
- Xu, Z.; Liu, X.; Chen, X. Fog removal from video sequences using contrast limited adaptive histogram equalization. In Proceedings of the IEEE International Conference on Computational Intelligence and Software Engineering, Wuhan, China, 11–13 December 2009; pp. 1–4. [Google Scholar]
- Ma, J.; Fan, X.; Yang, S.X.; Zhang, X.; Zhu, X. Contrast limited adaptive histogram equalization based fusion for underwater image enhancement. Preprints 2017, 1–27. [Google Scholar] [CrossRef]
- Xu, G.; Su, J.; Pan, H.; Zhang, Z.; Gong, H. An Image Enhancement Method Based on Gamma Correction. In Proceedings of the 2009 Second International Symposium on Computational Intelligence and Design 2009, Changsha, China, 12–14 December 2009; Volume 1, pp. 60–63. [Google Scholar] [CrossRef]
- Wang, G.; Ren, G.; Jiang, L.; Quan, T. Single Image Dehazing Algorithm Based on Sky Region Segmentation. Inf. Technol. J. 2013, 12, 1168–1175. [Google Scholar] [CrossRef] [Green Version]
- Sabir, A.; Khurshid, K.; Salman, A. Segmentation-based image defogging using modified dark channel prior. EURASIP J. Image Video Process. 2020, 1, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Salazar-Colores, S.; Moya-Sánchez, E.U.; Ramos-Arreguín, J.M.; Cabal-Yépez, E.; Flores, G.; Cortés, U. Fast single image defogging with robust sky detection. IEEE access 2020, 8, 149176–149189. [Google Scholar] [CrossRef]
- Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [Google Scholar] [CrossRef] [Green Version]
- Mittal, A.; Soundararajan, R.; Bovik, A.C. Making a “completely blind” image quality analyzer. IEEE Signal Process Lett. 2012, 20, 209–212. [Google Scholar] [CrossRef]
- Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef] [Green Version]
Image Size | G. Wang et al.’s Method (s) | W. Wang et al.’s Method (s) | A. Sabir et al.’s Method 1 (s) | A. Sabir et al.’s Method 2 (s) | S. Salazar-Colores et al.’s Method (s) | Proposed Method (s) |
---|---|---|---|---|---|---|
320 × 180 | 0.67 | 3.55 | 2.55 | 3.07 | 3.06 | 0.58 |
600 × 400 | 2.29 | 5.66 | 5.35 | 6.66 | 11.76 | 1.7 |
640 × 480 | 2.67 | 8.14 | 7.68 | 8.53 | 19.9 | 2.1 |
800 × 600 | 2.8 | 10.45 | 12.19 | 13.64 | 21.38 | 2.7 |
620 × 950 | 3.85 | 11.52 | 14.29 | 15.26 | 37.88 | 3.28 |
1024 × 768 | 5.4 | 10.95 | 18.69 | 20.76 | 47.21 | 4.7 |
1280 × 860 | 6.67 | 18.45 | 26.51 | 28.88 | 63.91 | 5.3 |
Image no. | G. Wang et al.’s Method | W. Wang et al.’s Method | A. Sabir et al.’s Method 1 | A. Sabir et al.’s Method 2 | S. Salazar-Colores et al.’s Method | Proposed Method |
---|---|---|---|---|---|---|
1 | 0.896 | 0.793 | 0.945 | 0.946 | 0.853 | 0.964 |
2 | 0.835 | 0.926 | 0.836 | 0.838 | 0.818 | 0.938 |
3 | 0.861 | 0.901 | 0.952 | 0.968 | 0.868 | 0.965 |
4 | 0.908 | 0.824 | 0.938 | 0.941 | 0.821 | 0.954 |
5 | 0.902 | 0.900 | 0.862 | 0.865 | 0.855 | 0.928 |
6 | 0.814 | 0.926 | 0.962 | 0.960 | 0.854 | 0.954 |
7 | 0.801 | 0.811 | 0.960 | 0.955 | 0.873 | 0.968 |
8 | 0.903 | 0.759 | 0.856 | 0.872 | 0.900 | 0.938 |
9 | 0.868 | 0.834 | 0.849 | 0.848 | 0.876 | 0.934 |
10 | 0.904 | 0.939 | 0.811 | 0.809 | 0.725 | 0.952 |
Average | 0.869 | 0.861 | 0.897 | 0.900 | 0.844 | 0.949 |
Image no. | G. Wang et al.’s Method | W. Wang et al.’s Method | A. Sabir et al.’s Method 1 | A. Sabir et al.’s Method 2 | S. Salazar-Colores et al.’s Method | Proposed Method |
---|---|---|---|---|---|---|
1 | 16.15 | 10.12 | 16.71 | 15.90 | 16.18 | 22.87 |
2 | 17.98 | 18.97 | 11.37 | 11.40 | 15.23 | 22.29 |
3 | 14.99 | 15.48 | 15.16 | 17.93 | 15.28 | 23.12 |
4 | 16.79 | 11.87 | 11.73 | 18.14 | 14.84 | 20.69 |
5 | 18.51 | 18.75 | 13.90 | 14.94 | 15.91 | 20.12 |
6 | 15.55 | 18.11 | 19.64 | 15.32 | 15.24 | 21.28 |
7 | 14.60 | 15.14 | 18.93 | 14.62 | 19.89 | 22.12 |
8 | 17.91 | 13.05 | 11.82 | 12.88 | 14.78 | 21.27 |
9 | 18.67 | 11.68 | 13.57 | 13.47 | 16.48 | 21.80 |
10 | 14.18 | 20.54 | 10.72 | 10.62 | 14.32 | 20.59 |
Average | 16.53 | 18.43 | 14.35 | 14.52 | 15.82 | 21.62 |
Image no. | Foggy Image | G. Wang et al.’s Method | W. Wang et al.’s Method | A. Sabir et al.’s Method 1 | A. Sabir et al.’s Method 2 | S. Salazar-Colores et al.’s Method | Proposed Method |
---|---|---|---|---|---|---|---|
1 | 2.12 | 2.18 | 1.96 | 2.16 | 2.13 | 2.19 | 1.93 |
2 | 2.43 | 2.38 | 2.37 | 2.40 | 2.39 | 2.56 | 2.36 |
3 | 3.22 | 2.84 | 3.03 | 3.43 | 3.42 | 2.93 | 2.44 |
4 | 2.21 | 2.23 | 2.03 | 2.16 | 1.96 | 2.15 | 1.86 |
Image no. | Foggy Image | G. Wang et al.’s Method | W. Wang et al.’s Method | A. Sabir et al.’s Method 1 | A. Sabir et al.’s Method 2 | S. Salazar-Colores et al.’s Method | Proposed Method |
---|---|---|---|---|---|---|---|
1 | 44.93 | 61.36 | 61.60 | 48.28 | 37.08 | 63.61 | 68.64 |
2 | 73.27 | 58.96 | 71.63 | 73.93 | 73.38 | 88.90 | 73.75 |
3 | 43.21 | 74.74 | 67.37 | 54.24 | 39.22 | 68.65 | 76.12 |
4 | 54.70 | 69.47 | 67.74 | 65.59 | 69.15 | 75.69 | 77.23 |
Image no. | Foggy Image | G. Wang et al.’s Method | W. Wang et al.’s Method | A. Sabir et al.’s Method 1 | A. Sabir et al.’s Method 2 | S. Salazar-Colores et al.’s Method | Proposed Method |
---|---|---|---|---|---|---|---|
1 | 7.19 | 7.27 | 7.36 | 7.46 | 7.06 | 7.11 | 7.54 |
2 | 7.28 | 7.03 | 7.41 | 6.92 | 7.15 | 6.66 | 7.53 |
3 | 7.12 | 7.18 | 7.60 | 7.47 | 7.20 | 7.43 | 7.80 |
4 | 7.29 | 7.25 | 7.06 | 7.48 | 7.17 | 6.31 | 7.51 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anan, S.; Khan, M.I.; Kowsar, M.M.S.; Deb, K.; Dhar, P.K.; Koshiba, T. Image Defogging Framework Using Segmentation and the Dark Channel Prior. Entropy 2021, 23, 285. https://doi.org/10.3390/e23030285
Anan S, Khan MI, Kowsar MMS, Deb K, Dhar PK, Koshiba T. Image Defogging Framework Using Segmentation and the Dark Channel Prior. Entropy. 2021; 23(3):285. https://doi.org/10.3390/e23030285
Chicago/Turabian StyleAnan, Sabiha, Mohammad Ibrahim Khan, Mir Md Saki Kowsar, Kaushik Deb, Pranab Kumar Dhar, and Takeshi Koshiba. 2021. "Image Defogging Framework Using Segmentation and the Dark Channel Prior" Entropy 23, no. 3: 285. https://doi.org/10.3390/e23030285