Entropy Generation Analysis of Hybrid Nanomaterial through Porous Space with Variable Characteristics
Abstract
:1. Introduction
2. Model Development
3. Physical Quantities
4. Entropy Generation
5. Discussion
6. Conclusions
- Velocity has the opposite scenario for variable characteristics of porosity and permeability.
- Aspects of the permeability parameter on velocity are reversed when compared with the thermal field.
- Enhancement in velocity is witnessed against the curvature parameter.
- Temperature against Brinkman number and radiation parameter have a similar trend.
- Augmentation in the thermal field is observed through the inertia coefficient.
- Entropy generation rate increases for heat generation/absorption and temperature ratio parameter.
- Skin friction coefficient for variable permeability parameter decays.
- Augmentation in local Nusselt number is witnessed for radiation and temperature ratio parameters.
- Some possible extension of the current analysis may be as follows:
- Importance of melting heat transfer effects inflow of hybrid nanofluid.
- Binary chemical reaction and activation energy aspects inflow by curved stretching surface.
- Modeling of non-Newtonian liquids inflow due to curved geometry.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
Radius of curvature | space coordinate | ||
velocity components | surface stretching velocity | ||
densities of nanaparticles | fluid dynamic viscosity | ||
d | variable permeability | thermal conductivity of nanoparticle | |
fluid density | variable porosity | ||
kinematic fluid viscosity | kinematic viscosity of hybrid nanofluid | ||
basefluid thermal conductivity | thermal conductivity of hybrid nanofluid | ||
thermal diffusivity of base fluid | surface temperature | ||
thermal diffusivity of hybrid nanofluid | ambient temperature | ||
porosity | permeability of porous medium | ||
pressure | drag coefficient | ||
heat generation/absorption | Stefan Boltzmann constant | ||
mean absorption coefficient | heat generation/absorption parameter | ||
non-uniform inertia coefficient | solid volume fraction of nanoparticles | ||
radiation parameter | local Reynolds number | ||
Inertia coefficient | Brinkman number | ||
skin friction coefficient | local Nusselt number | ||
local porosity parameter | Peclet number | ||
dimensionless temperature | dimensionless velocity | ||
curvature parameter | entropy generation rate | ||
dimensionless pressure | dimensionless variable | ||
Prandtl number | temperature exponent |
References
- Choi, S.U.S. Enhancing Thermal Conductivity of Fluids with Nanoparticles; Argonne National Lab.: DuPage County, IL, USA, 1995; Volume 66, pp. 99–105.
- Eastman, J.A.; Choi, S.U.S.; Li, S.; Yu, W.; Thompson, L.J. Anomalously increased effective thermal conductivity of ethylene glycol-based nanofluids containing copper nanoparticles. Appl. Phys. Lett. 2001, 78, 718–720. [Google Scholar] [CrossRef]
- Tiwari, R.K.; Das, M.K. Heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluid. Int. J. Heat Mass Transf. 2007, 50, 2002–2018. [Google Scholar] [CrossRef]
- Vajravelu, K.; Prasad, K.V.; Lee, J.; Lee, C.; Pop, I.; Gorder, R.A.V. Convective heat transfer in the flow of viscous Ag-water and Cu-water nanofluids over a stretching surface. Int. J. Therm. Sci. 2011, 50, 843–851. [Google Scholar] [CrossRef]
- Khan, J.A.; Mustafa, M.; Hayat, T.; Farooq, M.A.; Alsaedi, A.; Liao, S.J. On model for three-dimensional flow of nanofluid: An application to solar energy. J. Mol. Liq. 2014, 194, 41–47. [Google Scholar] [CrossRef]
- Devasenan, M.; Kalaiselvam, S. Experimental analysis of hybrid nanofluid as a coolant. Procedia Eng. 2014, 97, 1667–1675. [Google Scholar]
- Malvandi, A.; Safaei, M.R.; Kaffash, M.H.; Ganji, D.D. MHD mixed convection in a vertical annulus filled with Al2O3-water nanofluid considering nanoparticle migration. J. Magn. Magn. Mater. 2015, 382, 296–306. [Google Scholar] [CrossRef]
- Selimefendigil, F.; Öztop, H.F.; Abu-Hamdeh, N. Mixed convection due to rotating cylinder in an internally heated and flexible walled cavity filled with SiO2-water nanofluids: Effect of nanoparticle shape. Int. Commun. Heat Mass Transf. 2016, 71, 9–19. [Google Scholar] [CrossRef]
- Hayat, T.; Nadeem, S. Heat transfer enhancement with Ag-CuO/water hybrid nanofluid. Results Phys. 2017, 7, 2317–2324. [Google Scholar] [CrossRef]
- Iqbal, Z.; Maraj, E.N.; Azhar, E.; Mehmood, Z. A novel development of (MoS2-SiO2/H2O) hybrid nanofluidic curvilinear transport and consequences for effectiveness of shape factors. J. Taiwan Inst. Chem. Eng. 2017, 81, 150–158. [Google Scholar] [CrossRef]
- Usman, M.; Hamid, M.; Zubair, T.; Haq, R.U.; Wang, W. Cu- Al2O3/water hybrid nanofluid through a permeable surface in the presence of nonlinear radiation and variable thermal conductivity via LSM. Int. J. Heat Mass Transf. 2018, 126, 1347–1356. [Google Scholar] [CrossRef]
- Mansour, M.A.; Siddiqa, S.; Gorla, R.S.R.; Rashad, A.M. Effects of heat source and sink on entropy generation and MHD natural convection of Al2O3-Cu/water hybrid nanofluid filled with square porous cavity. Therm. Sci. Eng. Prog. 2018, 6, 57–71. [Google Scholar] [CrossRef]
- Shaiq, S.; Maraj, E.N.; Iqbal, Z. Remarkable role of C3H8O2 on transportation of MoS2-SiO2 hybrid nanoparticles influenced by thermal deposition and internal heat generation. J. Phys. Chem. Solids 2019, 126, 294–303. [Google Scholar] [CrossRef]
- Khan, M.I.; Khan, S.A.; Hayat, T.; Waqas, M.; Alsaedi, A. Modeling and numerical simulation for flow of hybrid nanofluid (SiO2/C3H8O2) and (MoS2/C3H8O2) with entropy optimization and variable viscosity. Int. J. Numer. Heat Fluid Flow 2019, 30, 3939–3955. [Google Scholar] [CrossRef]
- Iqbal, M.S.; Mustafa, I.; Ghaffari, A. Analysis of heat transfer enrichment in hydromagnetic flow of hybrid nanofluid along vertical wavy surface. J. Magn. 2019, 24, 271–280. [Google Scholar] [CrossRef] [Green Version]
- Khan, S.A.; Khan, M.I.; Hayat, T.; Alsaedi, A. Darcy-Forchheimer hybrid (MoS2, SiO2) nanofluid flow with entropy generation. Comput. Meth. Prog. Biomed. 2020, 185, 105152. [Google Scholar] [CrossRef]
- Acharya, N. On the flow patterns and thermal behaviour of hybrid nanofluid flow inside a microchannel in presence of radiative solar energy. J. Therm. Anal. Calorim. 2020, 141, 1425–1442. [Google Scholar] [CrossRef]
- Aladdin, N.A.L.; Bachok, N.; Pop, I. Cu-Al2O3/water hybrid nanofluid flow over a permeable moving surface in presence of hydromagnetic and suction effects. Alex. Eng. J. 2020, 59, 657–666. [Google Scholar] [CrossRef]
- Waini, I.; Ishak, A.; Groşan, T.; Pop, I. Mixed convection of a hybrid nanofluid flow along a vertical surface embedded in a porous medium. Int. Commun. Heat Mass Transf. 2020, 114, 104565. [Google Scholar] [CrossRef]
- Aly, E.H.; Pop, I. MHD flow and heat transfer near stagnation point over a stretching/shrinking surface with partial slip and viscous dissipation: Hybrid nanofluid versus nanofluid. Powder Technol. 2020, 3671, 192–205. [Google Scholar] [CrossRef]
- Forchheimer, P. Wasserbewegung durch boden. Z. Ver. Dtsch. Ing. 1901, 45, 1782–1788. [Google Scholar]
- Brinkman, H.C. A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles. Appl. Sci. Res. 1947, 1, 27–34. [Google Scholar] [CrossRef]
- Brinkman, H.C. On the permeability of media consisting of closely packed porous particles. Appl. Sci. Res. 1947, 1, 81–86. [Google Scholar] [CrossRef]
- Nield, D.A. Resolution of a paradox involving viscous dissipation and nonlinear drag in a porous medium. Transp. Porous Med. 2000, 41, 349–357. [Google Scholar] [CrossRef]
- Al-Hadhrami, A.K.; Elliott, L.; Ingham, D.B. A new model for viscous dissipation in porous media across a range of permeability values. Trans. Porous Med. 2003, 53, 17–122. [Google Scholar] [CrossRef]
- Seddeek, M.A. Influence of viscous dissipation and thermophoresis on Darcy-Forchheimer mixed convection in a fluid saturated porous media. J. Colloid Interface Sci. 2006, 293, 137–142. [Google Scholar] [CrossRef]
- Umavathi, J.C.; Ojjela, O.; Vajravelu, K. Numerical analysis of natural convective flow and heat transfer of nanofluids in a vertical rectangular duct using Darcy-Forchheimer-Brinkman model. Int. J. Therm. Sci. 2017, 111, 511–524. [Google Scholar] [CrossRef]
- Okechi, N.F.; Jalil, M.; Asghar, S. Flow of viscous fluid along an exponentially stretching curved surface. Results Phys. 2017, 7, 2851–2854. [Google Scholar] [CrossRef]
- Bhatti, M.M.; Zeeshan, A.; Ellahi, R.; Shit, G.C. Mathematical modeling of heat and mass transfer effects on MHD peristaltic propulsion of two-phase flow through a Darcy-Brinkman-Forchheimer porous medium. Adv. Powder Tech. 2018, 29, 1189–1197. [Google Scholar] [CrossRef]
- Shashikumar, N.S.; Gireesha, B.J.; Mahanthesh, B.; Prasannakumara, B.C. Brinkman-Forchheimer flow of SWCNT and MWCNT magneto-nanoliquids in a microchannel with multiple slips and Joule heating aspects. Multidiscip. Model. Mater. Struct. 2018, 14, 769–786. [Google Scholar]
- Shao, Q.; Fahs, M.; Hoteit, H.; Carrera, J.; Ackerer, P.; Younes, A. A 3D semi-analytical solution for density-driven flow in porous media. Water Resour. Res. 2018, 54, 10094–10116. [Google Scholar] [CrossRef]
- Rasool, G.; Zhang, T.; Chamkha, A.J.; Shafiq, A.; Tlili, I.; Shahzadi, G. Entropy generation and consequences of binary chemical reaction on MHD Darcy-Forchheimer Williamson nanofluid flow over non-linearly stretching surface. Entropy 2020, 22, 18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tlili, I.; Ramzan, M.; Kadry, S.; Kim, H.-W.; Nam, Y. Radiative MHD nanofluid flow over a moving thin needle with entropy generation in a porous medium with dust particles and Hall current. Entropy 2020, 22, 354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fahs, M.; Graf, T.; Tran, T.V.; Ataie-Ashtiani, B.; Simmons, C.T.; Younes, A. Study of the effect of thermal dispersion on internal natural convection in porous media using Fourier series. Transp. Porous Med. 2020, 131, 537–568. [Google Scholar] [CrossRef]
- Aminian, E.; Moghadasi, H.; Saffari, H.; Gheitaghy, A.M. Investigation of forced convection enhancement and entropy generation of nanofluid flow through a corrugated minichannel filled with a porous media. Entropy 2020, 22, 1008. [Google Scholar] [CrossRef]
- Muhammad, T.; Rafique, K.; Asma, M.; Alghamdi, M. Darcy-Forchheimer flow over an exponentially stretching curved surface with Cattaneo-Christov double diffusion. Physica A 2020, 556, 123968. [Google Scholar] [CrossRef]
- Vafai, K. Convective flow and heat transfer in variable porosity media. J. Fluid Mech. 1984, 147, 233–259. [Google Scholar] [CrossRef]
- Vafai, K.; Alkire, R.L.; Tien, C.L. An experimental investigation of heat transfer in variable porosity media. J. Heat Transf. 1985, 107, 642–947. [Google Scholar] [CrossRef]
- Chandrasekhara, B.C.; Namboudiri, P.M.S. Influence of variable permeability on combined free and forced convection about inclined surfaces in porous media. Int. J. Heat Mass Transf. 1985, 28, 199–206. [Google Scholar] [CrossRef]
- Ibrahim, F.S.; Hassanien, I.A. Influence of variable permeability on combined convection along a nonisothermal wedge in a saturated porous medium. Transp. Porous Med. 2000, 39, 57–71. [Google Scholar] [CrossRef]
- Rees, D.A.S.; Pop, I. Vertical free convection in a porous medium with variable permeability effects. Int. J. Heat Mass Transf. 2000, 43, 2565–2571. [Google Scholar] [CrossRef]
- Hamdan, M.H.; Kamel, M.T. Flow through variable permeability porous layers. Adv. Theor. Appl. Mech. 2011, 4, 135–145. [Google Scholar]
- Saif, R.S.; Muhammad, T.; Sadia, H. Significance of inclined magnetic field in Darcy-Forchheimer flow with variable porosity and thermal conductivity. Physica A 2020, 551, 124067. [Google Scholar] [CrossRef]
- Jing, D.; Song, J.; Sui, Y. Hydraulic and thermal performances of laminar flow in fractal treelike branching microchannel network with wall velocity slip. Fractals 2020, 28, 2050022. [Google Scholar] [CrossRef]
- Bejan, A. A study of entropy generation in fundamental convective heat transfer. J. Heat Transf. 1979, 101, 718–725. [Google Scholar] [CrossRef]
- Mahmoudi, A.; Mejri, I.; Abbassi, M.A.; Omri, A. Analysis of the entropy generation in a nanofluid-filled cavity in the presence of magnetic field and uniform heat generation/absorption. J. Mol. Liq. 2014, 198, 63–77. [Google Scholar] [CrossRef]
- López, A.; Ibáñez, G.; Pantoja, J.; Moreira, J.; Lastres, O. Entropy generation analysis of MHD nanofluid flow in a porous vertical microchannel with nonlinear thermal radiation, slip flow and convective-radiative boundary conditions. Int. J. Heat Mass Transf. 2017, 107, 982–994. [Google Scholar] [CrossRef]
- Sithole, H.; Mondal, H.; Sibanda, P. Entropy generation in a second grade magnetohydrodynamic nanofluid flow over a convectively heated stretching sheet with nonlinear thermal radiation and viscous dissipation. Results Phys. 2018, 9, 1077–1085. [Google Scholar] [CrossRef]
- Astanina, M.S.; Sheremet, M.A.; Oztop, H.F.; Abu-Hamdeh, N. MHD natural convection and entropy generation of ferrofluid in an open trapezoidal cavity partially filled with a porous medium. Int. J. Mech. Sci. 2018, 136, 493–502. [Google Scholar] [CrossRef]
- Huminic, G.; Huminic, A. The heat transfer performances and entropy generation analysis of hybrid nanofluids in a flattened tube. Int. J. Heat Mass Transf. 2018, 119, 813–827. [Google Scholar] [CrossRef]
- Ganesh, N.V.; Al-Mdallal, Q.M.; Chamkha, A.J. A numerical investigation of Newtonian fluid flow with buoyancy, thermal slip of order two and entropy generation. Case Stud. Therm. Eng. 2019, 13, 100376. [Google Scholar] [CrossRef]
- Kashyap, D.; Dass, A.K. Effect of boundary conditions on heat transfer and entropy generation during two-phase mixed convection hybrid Al2O3-Cu/water nanofluid flow in a cavity. Int. J. Mech. Sci. 2019, 157–158, 45–59. [Google Scholar] [CrossRef]
- Sheikholeslami, M.; Arabkoohsar, A.; Ismail, K.A.R. Entropy analysis for a nanofluid within a porous media with magnetic force impact using non-Darcy model. Int. Commun. Heat Mass Transf. 2020, 112, 104488. [Google Scholar] [CrossRef]
- Muhammad, R.; Khan, M.I.; Jameel, M.; Khan, N.B. Fully developed Darcy-Forchheimer mixed convective flow over a curved surface with activation energy and entropy generation. Comput. Meth. Prog. Biomed. 2020, 188, 105298. [Google Scholar] [CrossRef] [PubMed]
- Hayat, T.; Qayyum, S.; Alsaedi, A.; Ahmad, B. Entropy generation minimization: Darcy-Forchheimer nanofluid flow due to curved stretching sheet with partial slip. Int. Commun. Heat Mass Transf. 2020, 111, 104445. [Google Scholar] [CrossRef]
- Hayat, T.; Shah, F.; Alsaedi, A.; Ahmad, B. Entropy optimized dissipative flow of effective Prandtl number with melting heat transport and Joule heating. Int. Commun. Heat Mass Transf. 2020, 111, 104454. [Google Scholar] [CrossRef]
Physical Properties | Base Fluid | Nanoparticles | |
---|---|---|---|
H2O | SiO2 | MoS2 | |
ρ (kg/m3) | 997.1 | 2650 | 5060 |
k (W/mK) | 0.613 | 1.5 | 34.5 |
Cp (J/kgK) | 4179 | 730 | 397.746 |
Hybrid Nanofluid | MoS2-Water | SiO2-Water | ||||||
---|---|---|---|---|---|---|---|---|
1.0 | 1.1 | 1.1 | 3.0 | 1.5 | 0.2 | 3.84238 | 3.85225 | 3.79266 |
1.3 | 3.41971 | 3.43047 | 3.36545 | |||||
1.5 | 3.23852 | 3.24971 | 3.18205 | |||||
2.0 | 1.0 | 1.1 | 3.0 | 1.5 | 0.2 | 2.99600 | 3.00776 | 2.93661 |
2.0 | 2.75157 | 2.76442 | 2.68650 | |||||
3.0 | 2.65921 | 2.67253 | 2.59173 | |||||
2.0 | 1.1 | 1.1 | 3.0 | 1.5 | 0.2 | 2.95453 | 2.96646 | 2.89425 |
1.5 | 2.83785 | 2.85030 | 2.77490 | |||||
1.9 | 2.76557 | 2.77835 | 2.70085 | |||||
2.0 | 1.1 | 1.1 | 1.0 | 1.5 | 0.2 | 3.24720 | 3.25959 | 3.18459 |
2.0 | 3.06787 | 3.07997 | 3.00672 | |||||
3.0 | 2.95453 | 2.96646 | 2.89425 | |||||
2.0 | 1.1 | 1.1 | 3.0 | 0.0 | 0.2 | 2.64363 | 2.65338 | 2.59446 |
1.0 | 2.84189 | 2.85292 | 2.78613 | |||||
2.0 | 3.07546 | 3.08842 | 3.00990 | |||||
2.0 | 1.1 | 1.1 | 3.0 | 1.5 | 0.0 | 2.74260 | 2.75107 | 2.69994 |
0.1 | 2.85047 | 2.86073 | 2.79873 | |||||
0.3 | 3.05515 | 3.06865 | 2.98681 |
Hybrid Nanofluid | MoS2-Water | SiO2-Water | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1.0 | 1.1 | 1.1 | 3.0 | 1.5 | 0.2 | 0.3 | 0.3 | 1.1 | 0.1 | 0.78812 | 0.77888 | 0.78773 |
1.3 | 0.95609 | 0.94689 | 0.96164 | |||||||||
1.6 | 1.06312 | 1.05373 | 1.07280 | |||||||||
2.0 | 1.0 | 1.1 | 3.0 | 1.5 | 0.2 | 0.3 | 0.3 | 1.1 | 0.1 | 1.12722 | 1.11800 | 1.13864 |
2.0 | 1.29904 | 1.28665 | 1.32381 | |||||||||
3.0 | 1.36435 | 1.35064 | 1.39455 | |||||||||
2.0 | 1.1 | 1.1 | 3.0 | 1.5 | 0.2 | 0.3 | 0.3 | 1.1 | 0.1 | 1.15619 | 1.14646 | 1.16977 |
2.0 | 1.29904 | 1.28665 | 1.32381 | |||||||||
3.0 | 1.36435 | 1.35064 | 1.39455 | |||||||||
2.0 | 1.1 | 1.1 | 3.0 | 0.0 | 0.2 | 0.3 | 0.3 | 1.1 | 0.1 | 1.36447 | 1.35379 | 1.38047 |
1.0 | 1.23024 | 1.22030 | 1.24414 | |||||||||
2.0 | 1.07829 | 1.06870 | 1.09196 | |||||||||
2.0 | 1.1 | 1.1 | 3.0 | 1.5 | 0.0 | 0.3 | 0.3 | 1.1 | 0.1 | 1.28077 | 1.27229 | 1.28646 |
0.1 | 1.21696 | 1.20783 | 1.22679 | |||||||||
0.3 | 1.09811 | 1.08785 | 1.11512 | |||||||||
2.0 | 1.1 | 1.1 | 3.0 | 1.5 | 0.2 | 0.5 | 0.3 | 1.1 | 0.1 | 0.75746 | 0.75223 | 0.74922 |
0.6 | 0.55799 | 0.55499 | 0.53882 | |||||||||
0.7 | 0.35843 | 0.35767 | 0.32834 | |||||||||
2.0 | 1.1 | 1.1 | 3.0 | 1.5 | 0.2 | 0.3 | 0.0 | 1.1 | 0.1 | 1.09425 | 1.08172 | 1.11263 |
0.4 | 1.16916 | 1.15964 | 1.18257 | |||||||||
0.8 | 1.22079 | 1.21096 | 1.23532 | |||||||||
2.0 | 1.1 | 1.1 | 3.0 | 1.5 | 0.2 | 0.3 | 0.3 | 1.0 | 0.1 | 1.14395 | 1.13379 | 1.15834 |
1.4 | 1.18662 | 1.17787 | 1.19835 | |||||||||
1.8 | 1.19871 | 1.19025 | 1.21112 | |||||||||
2.0 | 1.1 | 1.1 | 3.0 | 1.5 | 0.2 | 0.3 | 0.3 | 1.1 | −0.2 | 1.55119 | 1.53599 | 1.57635 |
0.0 | 1.30480 | 1.29301 | 1.32259 | |||||||||
0.2 | 0.97895 | 0.97161 | 0.98815 |
Okechi et al. [28] | Present | |
---|---|---|
5 | 1.4196 | 1.45703 |
10 | 1.3467 | 1.36819 |
20 | 1.3135 | 1.32810 |
30 | 1.3028 | 1.31536 |
40 | 1.2975 | 1.30912 |
50 | 1.2944 | 1.30539 |
100 | 1.2881 | 1.29804 |
200 | 1.2850 | 1.29443 |
1000 | 1.2826 | 1.29152 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sadiq, M.A.; Haider, F.; Hayat, T. Entropy Generation Analysis of Hybrid Nanomaterial through Porous Space with Variable Characteristics. Entropy 2021, 23, 89. https://doi.org/10.3390/e23010089
Sadiq MA, Haider F, Hayat T. Entropy Generation Analysis of Hybrid Nanomaterial through Porous Space with Variable Characteristics. Entropy. 2021; 23(1):89. https://doi.org/10.3390/e23010089
Chicago/Turabian StyleSadiq, Muhammad Adil, Farwa Haider, and Tasawar Hayat. 2021. "Entropy Generation Analysis of Hybrid Nanomaterial through Porous Space with Variable Characteristics" Entropy 23, no. 1: 89. https://doi.org/10.3390/e23010089