Entropy in Foundations of Quantum Physics
Acknowledgments
Conflicts of Interest
References
- Pavičić, M. Hypergraph Contextuality. Entropy 2019, 21, 1107. [Google Scholar] [CrossRef] [Green Version]
- Bengtsson, I.; Blanchfield, K.; Cabello, A. A Kochen–Specker Inequality from a SIC. Phys. Lett. A 2012, 376, 374–376. [Google Scholar] [CrossRef] [Green Version]
- Yu, S.; Oh, C.H. State-Independent Proof of Kochen-Specker Theorem with 13 Rays. Phys. Rev. Lett. 2012, 108, 030402. [Google Scholar] [CrossRef] [PubMed]
- Caticha, A. The Entropic Dynamics Approach to Quantum Mechanics. Entropy 2019, 21, 943. [Google Scholar] [CrossRef] [Green Version]
- Caticha, A. Entropic Dynamics, Time, and Quantum Theory. J. Phys. A Math. Theor. 2011, 44, 225303. [Google Scholar] [CrossRef] [Green Version]
- Caticha, A. Entropic Dynamics. Entropy 2015, 17, 6110–6128. [Google Scholar] [CrossRef] [Green Version]
- Caticha, A. Entropic Dynamics: Quantum Mechanics from Entropy and Information Geometry. Ann. Physik 2018, 1700408. [Google Scholar]
- López-Saldívar, J.A.; Castaños, O.; Man’ko, M.A.; Man’ko, V.I. A New Mechanism of Open System Evolution and Its Entropy Using Unitary Transformations in Noncomposite Qudit Systems. Entropy 2019, 21, 736. [Google Scholar] [CrossRef] [Green Version]
- Chernega, V.N.; Man’ko, O.V.; Man’ko, V.I. Triangle Geometry of the Qubit State in the Probability Representation Expressed in Terms of the Triada of Malevich’s Squares. J. Russ. Laser Res. 2017, 38, 141–149. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Ha, D.; Kwon, Y. Uniqueness of Minimax Strategy in View of Minimum Error Discrimination of Two Quantum States. Entropy 2019, 21, 671. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Zhang, Y.; Wang, X.; Yu, S.; Guo, H. Improving Parameter Estimation of Entropic Uncertainty Relation in Continuous-Variable Quantum Key Distribution. Entropy 2019, 21, 652. [Google Scholar] [CrossRef] [Green Version]
- Wei, L. On the Exact Variance of Tsallis Entanglement Entropy in a Random Pure State. Entropy 2019, 21, 539. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.-Y.; Gou, Y.-T.; Hou, J.-X.; Cao, L.-K.; Wang, X.-H. Probabilistic Resumable Quantum Teleportation of a Two-Qubit Entangled State. Entropy 2019, 21, 352. [Google Scholar] [CrossRef] [Green Version]
- Jiménez, O.; Solís-Prosser, M.A.; Neves, L.; Delgado, A. Quantum Discord, Thermal Discord, and Entropy Generation in the Minimum Error Discrimination Strategy. Entropy 2019, 21, 263. [Google Scholar] [CrossRef] [Green Version]
- Krismer, R. Representation Lost: The Case for a Relational Interpretation of Quantum Mechanics. Entropy 2018, 20, 975. [Google Scholar] [CrossRef] [Green Version]
- Fields, C. Some Consequences of the Thermodynamic Cost of System Identification. Entropy 2018, 20, 797. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Yang, C.; Xie, G.-S.; Liu, Z. Image Thresholding Segmentation on Quantum State Space. Entropy 2018, 20, 728. [Google Scholar] [CrossRef] [Green Version]
- Raffah, B.M.; Berrada, K. Quantum Quantifiers for an Atom System Interacting with a Quantum Field Based on Pseudoharmonic Oscillator States. Entropy 2018, 20, 607. [Google Scholar] [CrossRef] [Green Version]
- Zhong, H.; Wang, Y.; Wang, X.; Liao, Q.; Wu, X.; Guo, Y. Enhancing of Self-Referenced Continuous-Variable Quantum Key Distribution with Virtual Photon Subtraction. Entropy 2018, 20, 578. [Google Scholar] [CrossRef] [Green Version]
- Soh, D.B.S.; Brif, C.; Coles, P.J.; Lütkenhaus, N.; Camacho, R.M.; Urayama, J.; Sarovar, M. Self-Referenced Continuous-Variable Quantum Key Distribution Protocol. Phys. Rev. X 2015, 5, 041010. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.-Y.; Zhang, Y.-C.; Wang, X.-Y.; Xu, B.-J.; Peng, X.; Guo, H. Non-Gaussian postselection and virtual photon subtraction in continuous-variable quantum key distribution. Phys. Rev. A 2016, 93, 012310. [Google Scholar] [CrossRef] [Green Version]
- Wang, P.; Wang, X.; Li, Y. Security Analysis of Unidimensional Continuous-Variable Quantum Key Distribution Using Uncertainty Relations. Entropy 2018, 20, 157. [Google Scholar] [CrossRef] [Green Version]
- Carmi, A.; Moskovich, D. Tsirelson’s Bound Prohibits Communication through a Disconnected Channel. Entropy 2018, 20, 151. [Google Scholar] [CrossRef] [Green Version]
- Pawlowski, M.; Paterek, T.; Kaszlikowski, D.; Scarani, V.; Winter, A.; Zukowski, M. Information causality as a physical principle. Nature 2009, 461, 1101–1104. [Google Scholar] [CrossRef] [PubMed]
- Van Dam, W. Implausible consequences of superstrong nonlocality. Nat. Comput. 2013, 12, 9–12. [Google Scholar] [CrossRef]
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pawłowski, M. Entropy in Foundations of Quantum Physics. Entropy 2020, 22, 371. https://doi.org/10.3390/e22030371
Pawłowski M. Entropy in Foundations of Quantum Physics. Entropy. 2020; 22(3):371. https://doi.org/10.3390/e22030371
Chicago/Turabian StylePawłowski, Marcin. 2020. "Entropy in Foundations of Quantum Physics" Entropy 22, no. 3: 371. https://doi.org/10.3390/e22030371