Control of the Geometric Phase in Two Open Qubit–Cavity Systems Linked by a Waveguide
Abstract
:1. Introduction
2. The Physical Model and Its Differential Equations
3. Geometric Phase and Its Computational Results
3.1. Dynamics of GP of
3.2. Dynamics of GP of
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Louisell, W.H. Quantum Statistical Properties of Radiation; Wiley: New York, NY, USA, 1973. [Google Scholar]
- Milburn, G.J. Intrinsic decoherence in quantum mechanics. Phys. Rev. A 1991, 44, 5401. [Google Scholar] [CrossRef] [Green Version]
- Barnett, S.M.; Knight, P.L. Dissipation in a fundamental model of quantum optical resonance. Phys. Rev. A 1986, 33, 2444. [Google Scholar] [CrossRef]
- Puri, R.R.; Agarwal, G.S. Finite-Q cavity electrodynamics: Dynamical and statistical aspects. Phys. Rev. A 1987, 35, 3433. [Google Scholar] [CrossRef]
- Moya-Cessa, H. Decoherence in atomfield interactions: A treatment using superoperator techniques. Phys. Rep. 2006, 432, 1–41. [Google Scholar] [CrossRef]
- Obada, A.-S.F.; Hessian, H.A.; Mohamed, A.-B.A. The effects of thermal photons on entanglement dynamics for a dispersive JaynesCummings model. Phys. Lett. A 2008, 372, 3699. [Google Scholar] [CrossRef]
- Mohamed, A.-B.A.; Hashem, M.; Eleuch, H. Enhancing the Generated Stable Correlation in a Dissipative System of Two Coupled Qubits inside a Coherent Cavity via Their Dipole-Dipole Interplay. Entropy 2019, 21, 672. [Google Scholar] [CrossRef] [Green Version]
- Jones, J.A.; Vedral, V.; Ekert, A.; Castagnoli, G. Geometric quantum computation using nuclear magnetic resonance. Nature 2000, 403, 869. [Google Scholar] [CrossRef] [Green Version]
- Pancharatnam, S. Generalized theory of interference, and its applications. Proc. Indian Acad. Sci. A 1956, 44, 398–417. [Google Scholar] [CrossRef]
- Wagh, A.G.; Rakhecha, V.C.; Summhammer, J.; Badurek, G.; Weinfurter, H.; Allman, B.E.; Kaiser, H.; Hamacher, K.; Jacobson, D.L.; Werner, S.A. Experimental Separation of Geometric and Dynamical Phases Using Neutron Interferometry. Phys. Rev. Lett. 1997, 78, 755. [Google Scholar] [CrossRef]
- Wagh, A.G.; Rakhecha, V.C.; Fischer, P.; Ioffe, A. Neutron Interferometric Observation of Noncyclic Phase. Phys. Rev. Lett. 1998, 81, 1992. [Google Scholar] [CrossRef] [Green Version]
- Berry, M.V. Quantal phase factors accompanying adiabatic changes. Proc. R. Soc. London A 1984, 392, 45–57. [Google Scholar] [CrossRef]
- Aharonov, Y.; Anandan, J. Phase change during a cyclic quantum evolution. Phys. Rev. Lett. 1987, 58, 1593. [Google Scholar] [CrossRef]
- Samuel, J.; Bhandari, R. General Setting for Berry’s Phase. Phys. Rev. Lett. 1988, 60, 2339. [Google Scholar] [CrossRef]
- Marzlin, K.-P.; Ghose, S.; Sanders, B.C. Geometric Phase Distributions for Open Quantum Systems. Phys. Rev. Lett. 2004, 93, 260402. [Google Scholar] [CrossRef] [Green Version]
- Duan, L.-M.; Cirac, J.I.; Zoller, P. Geometric Manipulation of Trapped Ions for Quantum Computation. Science 2001, 292, 1695–1697. [Google Scholar] [CrossRef] [Green Version]
- Recati, A.; Calarco, T.; Zanardi, P.; Cirac, J.I.; Zoller, P. Holonomic quantum computation with neutral atoms. Phys. Rev. A 2002, 66, 032309. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.-X.; Sun, C.P.; Nori, F. Scalable superconducting qubit circuits using dressed states. Phys. Rev. A 2006, 74, 052321. [Google Scholar] [CrossRef] [Green Version]
- Mohamed, A.-B.A.; Eleuch, H. Geometric phase in cavity QED containing a nonlinear optical medium and a quantum well. J. Mod. Opt. 2015, 62, 1630–1637. [Google Scholar] [CrossRef]
- Mohamed, A.-B.A.; Obada, A.-S.F. Asymptotic geometric phase and purity for phase qubit dispersively coupled to lossy LC circuit. Ann. Phys. 2011, 326, 2369–2376. [Google Scholar] [CrossRef]
- Bouchene, M.A.; Abdel-Aty, M.; Mandal, S. Sensitivity of the population and the Pancharatnam phase for a trapped ion with Stark shift. Phys. Rev. A 2010, 82, 023409. [Google Scholar] [CrossRef]
- Zbinden, H.; Gautier, J.; Gisin, N.; Huttner, B.; Muller, A.; Tittel, W. Interferometry with Faraday mirrors for quantum cryptography. Electron Lett. 1997, 33, 586–588. [Google Scholar] [CrossRef] [Green Version]
- Cirac, J.I.; Ekert, A.K.; Huelga, S.F.; Macchiavello, C. Distributed quantum computation over noisy channels. Phys. Rev. A 1999, 59, 4249. [Google Scholar] [CrossRef] [Green Version]
- Mohamed, A.-B.A.; Eleuch, H. Generation and robustness of bipartite non-classical correlations in two nonlinear microcavities coupled by an optical fiber. J. Opt. Soc. Am. B 2018, 35, 47–53. [Google Scholar] [CrossRef]
- Obada, A.-S.F.; Hessian, H.A.; Mohamed, A.-B.A.; Homid, A.H. Implementing discrete quantum Fourier transform via superconducting qubits coupled to a superconducting cavity. J. Opt. Soc. Am. B 2013, 30, 1178–1185. [Google Scholar] [CrossRef]
- Obada, A.-S.F.; Hessian, H.A.; Mohamed, A.-B.A.; Homid, A.H. Efficient protocol of N-bit discrete quantum Fourier transform via transmon qubits coupled to a resonator. Quantum Information Process. 2014, 13, 475–489. [Google Scholar] [CrossRef]
- Haljan, P.C.; Brickman, K.-A.; Deslauriers, L.; Lee, P.J.; Monroe, C. Spin-Dependent Forces on Trapped Ions for Phase-Stable Quantum Gates and Entangled States of Spin and Motion. Phys. Rev. Lett. 2005, 94, 153602. [Google Scholar] [CrossRef] [Green Version]
- Van Enk, S.J.; Kimble, H.J.; Cirac, J.I.; Zoller, P. Quantum communication with dark photons. Phys. Rev. A 1999, 59, 2659. [Google Scholar] [CrossRef] [Green Version]
- Serafini, A.; Mancini, S.; Bose, S. Distributed Quantum Computation via Optical Fibers. Phys. Rev. Lett. 2006, 96, 010503. [Google Scholar] [CrossRef] [Green Version]
- Li, P.B.; Gu, Y.; Gong, Q.H.; Guo, G.C. Quantum-information transfer in a coupled resonator waveguide. Phys. Rev. A 2009, 79, 042339. [Google Scholar] [CrossRef] [Green Version]
- Vogell, B.; Vermersch, B.; Northup, T.E.; Lanyon, B.P.; Muschik, C.A. Deterministic quantum state transfer between remote qubits in cavities. Quantum Sci. Technol. 2017, 2, 045003. [Google Scholar] [CrossRef]
- Eleuch, H. Noise spectra of microcavity-emitting field in the linear regime. Eur. Phys. J. D 2008, 49, 391–395. [Google Scholar] [CrossRef]
- Mohamed, A.-B.A.; Eleuch, H. Non-classical effects in cavity QED containing a nonlinear optical medium and a quantum well: Entanglement and non-Gaussanity. Eur. Phys. J. D 2015, 69, 191. [Google Scholar] [CrossRef]
- Mohamed, A.-B.A.; Eleuch, H. Quantum correlation control for two semiconductor microcavities connected by an optical fiber. Phys. Scr. 2017, 92, 065101. [Google Scholar] [CrossRef]
- Peters, N.A.; Altepeter, J.B.; Branning, D.; Jeffrey, E.R.; Wei, T.-C.; Kwiat, P.G. Maximally eentangled mixed states: Creation and concentration. Phys. Rev. Lett. 2004, 92, 133601. [Google Scholar] [CrossRef] [Green Version]
- Singh, H.; Dorai, K. Evolution of tripartite entangled states in a decohering environment and their experimental protection using dynamical decoupling. Phys. Rev. A 2018, 97, 022302. [Google Scholar] [CrossRef] [Green Version]
- Cunha, M.M.; Fonseca, A.; Silva, E.O. Tripartite entanglement: Foundations and applications. Universe 2019, 5, 209. [Google Scholar] [CrossRef] [Green Version]
- Uhlmann, A. Geometric phases and related structures. Rep. Math. Phys. 1995, 36, 461–481. [Google Scholar] [CrossRef] [Green Version]
- Tong, D.M.; Sjöqvist, E.; Kwek, L.C.; Oh, C.H. Kinematic approach to the mixed state geometric phase in nonunitary evolution. Phys. Rev. Lett. 2004, 93, 080405. [Google Scholar] [CrossRef] [Green Version]
- Dilley, J.; Nisbet-Jones, P.; Shore, B.W.; Kuhn, A. Single-photon absorption in coupled atom-cavity systems. Phys. Rev. A 2012, 85, 023834. [Google Scholar] [CrossRef] [Green Version]
- Shen, H.Z.; Qin, M.; Yi, X.X. Single-photon storing in coupled non-Markovian atom-cavity system. Phys. Rev. A 2013, 88, 033835. [Google Scholar] [CrossRef] [Green Version]
- Bhandari, D.R.; Samuel, J. Observation of topological phase by use of a laser interferometer. Phys. Rev. Lett. 1988, 60, 1211. [Google Scholar] [CrossRef]
- Loredo, J.C.; Ortíz, O.; Weingärtner, R.; De Zela, F. Measurement of Pancharatnam’s phase by robust interferometric and polarimetric methods. Phys. Rev. A 2009, 80, 012113. [Google Scholar] [CrossRef] [Green Version]
- Kobayashi, H.; Tamate, S.; Nakanishi, T.; Sugiyama, K.; Kitano, M. Observation of Geometric Phases in Quantum Erasers. J. Phys. Soc. Jpn. 2011, 80, 034401. [Google Scholar] [CrossRef] [Green Version]
- Pellizzari, T. Quantum Networking with Optical Fibres. Phys. Rev. Lett. 1997, 79, 5242. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohamed, A.-B.A.; Masmali, I. Control of the Geometric Phase in Two Open Qubit–Cavity Systems Linked by a Waveguide. Entropy 2020, 22, 85. https://doi.org/10.3390/e22010085
Mohamed A-BA, Masmali I. Control of the Geometric Phase in Two Open Qubit–Cavity Systems Linked by a Waveguide. Entropy. 2020; 22(1):85. https://doi.org/10.3390/e22010085
Chicago/Turabian StyleMohamed, Abdel-Baset A., and Ibtisam Masmali. 2020. "Control of the Geometric Phase in Two Open Qubit–Cavity Systems Linked by a Waveguide" Entropy 22, no. 1: 85. https://doi.org/10.3390/e22010085