A Co-Opetitive Automated Negotiation Model for Vertical Allied Enterprises Teams and Stakeholders
Abstract
:1. Introduction
2. Framework of the Automated Negotiation Model
2.1. Negotiation Scenario
2.1.1. Problem Analysis
2.1.2. Automated Negotiation Process of the Proposed Model
2.2. Automated Negotiation Model ANT
2.2.1. Allied Team for Negotiation
2.2.2. Members of Allied Team
2.3. Definition of Sa
3. Collaborative Game Process of Allied Team
3.1. Counter-Offer Calculation of Team Members
3.2. Shapley Value based Distribution Rate of Collaboration Profit
4. Numerical Simulation and Analysis
4.1. Simulation Experiments
4.2. Parameter Settings
4.3. Analysis of Experimental results
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Zhang, H.; Li, L.; Chen, T.; Li, V. Where will China’s real estate market go under the economy’s new normal? Cities 2016, 55, 42–48. [Google Scholar] [CrossRef]
- Dai, D.; Si, F.; Wang, J. Stability and complexity analysis of a dual-channel closed-loop supply chain with delayed decision under government intervention. Entropy 2017, 19, 577. [Google Scholar] [CrossRef]
- Ai, X.; Chen, J.; Zhao, H.; Tang, X. Competition among supply chains: Implications of full returns policy. Int. J. Prod. Econ. 2012, 139, 257–265. [Google Scholar] [CrossRef]
- Esposito, E.; Evangelista, P. Investigating virtual enterprise models: Literature review and empirical findings. Int. J. Prod. Econ. 2014, 148, 145–157. [Google Scholar] [CrossRef]
- Grauberger, W.; Kimms, A. Revenue management under horizontal and vertical competition within airline alliances. Omega 2016, 59, 228–237. [Google Scholar] [CrossRef]
- Kenyon, G.N.; Meixell, M.J.; Westfall, P.H. Production outsourcing and operational performance: An empirical study using secondary data. Int. J. Prod. Econ. 2016, 171, 336–349. [Google Scholar] [CrossRef]
- Huang, M.; Cui, Y.; Yang, S.; Wang, X. Fourth party logistics routing problem with fuzzy duration time. Int. J. Prod. Econ. 2013, 145, 107–116. [Google Scholar] [CrossRef]
- Dudek, G.; Stadtler, H. Negotiation-based collaborative planning between supply chains partners. Eur. J. Oper. Res. 2005, 163, 668–687. [Google Scholar] [CrossRef]
- Yenipazarli, A. To collaborate or not to collaborate: Prompting upstream eco-efficient innovation in a supply chain. Eur. J. Oper. Res. 2017, 260, 571–587. [Google Scholar] [CrossRef]
- Bigliardi, B.; Bottani, E.; Galati, F. Open innovation and supply chain management in food machinery supply chain: A case study. Int. J. Eng. Sci. Technol. 2010, 2, 244–255. [Google Scholar] [CrossRef]
- West, J.; Bogers, M. Leveraging external sources of innovation: A review of research on open innovation. J. Prod. Innov. Manag. 2014, 31, 814–831. [Google Scholar] [CrossRef]
- Greco, M.; Grimaldi, M.; Cricelli, L. Open innovation actions and innovation performance: A literature review of European empirical evidence. Eur. J. Innov. Manag. 2015, 18, 150–171. [Google Scholar] [CrossRef]
- Bogers, M.; Zobel, A.K.; Afuah, A.; Almirall, E.; Brunswicker, S.; Dahlander, L.; Frederiksen, L.; Gawer, A.; Gruber, M.; Haefliger, S.; et al. The open innovation research landscape: Established perspectives and emerging themes across different levels of analysis. Ind. Innov. 2017, 24, 8–40. [Google Scholar] [CrossRef]
- Barchi, M.; Greco, M. Negotiation in open innovation: A literature review. Group Decis. Negot. 2018, 1–32. [Google Scholar] [CrossRef]
- Ren, Z.; Anumba, C.J. Learning in multi-agent systems: A case study of construction claims negotiation. Adv. Eng. Inform. 2002, 16, 265–275. [Google Scholar] [CrossRef]
- Hashmi, K.; Malik, Z.; Najmi, E.; Rezgui, A. SNRNeg: A social network enabled negotiation service. Inf. Sci. 2016, 349, 248–262. [Google Scholar] [CrossRef]
- Patrikar, M.; Vij, S.; Mukhopadhyay, D. An approach on multilateral automated negotiation. Procedia Comput. Sci. 2015, 49, 298–305. [Google Scholar] [CrossRef]
- Baarslag, T.; Hindriks, K.; Jonker, C. Effective acceptance conditions in real-time automated negotiation. Decis. Support Syst. 2014, 60, 68–77. [Google Scholar] [CrossRef]
- Cao, M.; Luo, X.; Luo, X.R.; Dai, X. Automated negotiation for e-commerce decision making: A goal deliberated agent architecture for multi-strategy selection. Decis. Support Syst. 2015, 73, 1–14. [Google Scholar] [CrossRef]
- Hernández, J.E.; Mula, J.; Poler, R.; Lyons, A.C. Collaborative planning in multi-tier supply chains supported by a negotiation-based mechanism and multi-agent system. Group Decis. Negot. 2014, 23, 235–269. [Google Scholar] [CrossRef]
- Wang, G.; Gunasekaran, A.; Ngai, E.W.; Papadopoulos, T. Big data analytics in logistics and supply chain management: Certain investigations for research and applications. Int. J. Prod. Econ. 2016, 176, 98–110. [Google Scholar] [CrossRef]
- Tan, K.H.; Zhan, Y.; Ji, G.; Ye, F.; Chang, C. Harvesting big data to enhance supply chain innovation capabilities: An analytic infrastructure based on deduction graph. Int. J. Prod. Econ. 2015, 165, 223–233. [Google Scholar] [CrossRef]
- Giannakis, M.; Giannakis, M.; Louis, M.; Louis, M. A multi-agent based system with big data processing for enhanced supply chain agility. J. Enterp. Inf. Manag. 2016, 29, 706–727. [Google Scholar] [CrossRef]
- Rauh, J. Secret sharing and shared information. Entropy 2017, 19, 601. [Google Scholar] [CrossRef]
- Schoenherr, T.; Speier-Pero, C. Data science, predictive analytics, and big data in supply chain management: Current state and future potential. J. Bus. Logist. 2015, 36, 120–132. [Google Scholar] [CrossRef]
- Sanchez-Anguix, V.; Julian, V.; Botti, V.; Garcia-Fornes, A. Reaching unanimous agreements within agent-based negotiation teams with linear and monotonic utility functions. IEEE Trans. Syst. Man Cybern. Part B 2012, 42, 778–792. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Anguix, V.; Julian, V.; Botti, V.; García-Fornes, A. Tasks for agent-based negotiation teams: Analysis, review, and challenges. Eng. Appl. Artif. Intell. 2013, 26, 2480–2494. [Google Scholar] [CrossRef]
- Sanchez-Anguix, V.; Julian, V.; Botti, V.; García-Fornes, A. Studying the impact of negotiation environments on negotiation teams’ performance. Inf. Sci. 2013, 219, 17–40. [Google Scholar] [CrossRef]
- Sheu, J.B.; Gao, X.Q. Alliance or no alliance—Bargaining power in competing reverse supply chains. Eur. J. Oper. Res. 2014, 233, 313–325. [Google Scholar] [CrossRef]
- Lou, W.; Ma, J.; Zhan, X. Bullwhip entropy analysis and chaos control in the supply chain with sales game and consumer returns. Entropy 2017, 19, 64. [Google Scholar] [CrossRef]
- Gao, J.; Yang, X.; Liu, D. Uncertain Shapley value of coalitional game with application to supply chain alliance. Appl. Soft Comput. 2017, 56, 551–556. [Google Scholar] [CrossRef]
- Niu, B.; Wang, Y.; Guo, P. Equilibrium pricing sequence in a co-opetitive supply chain with the ODM as a downstream rival of its OEM. Omega 2015, 57, 249–270. [Google Scholar] [CrossRef]
- Luo, Z.; Chen, X.; Wang, X. The role of co-opetition in low carbon manufacturing. Eur. J. Oper. Res. 2016, 253, 392–403. [Google Scholar] [CrossRef]
- Harré, M.S. Strategic information processing from behavioural data in iterated games. Entropy 2018, 20, 27. [Google Scholar] [CrossRef]
- Zhang, J.; Frazier, G.V. Strategic alliance via co-opetition: Supply chain partnership with a competitor. Decis. Support Syst. 2011, 51, 853–863. [Google Scholar] [CrossRef]
- Chen, X.; Hao, G. Co-opetition alliance models of parallel flights for determining optimal overbooking policies. Math. Comput. Model. 2013, 57, 1101–1111. [Google Scholar] [CrossRef]
- Fielder, A.; Panaousis, E.; Malacaria, P.; Hankin, C.; Smeraldi, F. Game Theory Meets Information Security Management. In Proceedings of the IFIP International Information Security Conference, Marrakech, Morocco, 2–4 June 2014. [Google Scholar]
- Panaousis, E.; Fielder, A.; Malacaria, P.; Hankin, C.; Smeraldi, F. Cybersecurity Games and Investments: A decision support approach. In Proceedings of the 5th International Conference on Decision and Game Theory for Security, Los Angeles, CA, USA, 6–7 November 2014. [Google Scholar]
- Cheng, Q.; Ning, S.; Xia, X.; Yang, F. Modelling of coal trade process for the logistics enterprise and its optimization with stochastic predictive control. Int. J. Prod. Res. 2016, 54, 2241–2259. [Google Scholar] [CrossRef]
- Faratin, P.; Sierra, C.; Jennings, N.R. Negotiation decision functions for autonomous agents. Robot. Auton. Syst. 1998, 24, 159–182. [Google Scholar] [CrossRef]
- Fatima, S.; Kraus, S.; Wooldridge, M. Principles of Automated Negotiation; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Roth, A.E. The Shapley Value: Essays in Honor of Lloyd S. Shapley; Cambridge University Press: Cambridge, UK, 1998. [Google Scholar]
- Shapley, L.S. A value for n-person games. Contrib. Theory Games 1953, 2, 307–317. [Google Scholar]
- Nagarajan, M.; Sošić, G. Game-theoretic analysis of cooperation among supply chain agents: Review and extensions. Eur. J. Oper. Res. 2008, 187, 719–745. [Google Scholar] [CrossRef]
- Guardiola, L.A.; Meca, A.; Timmer, J. Cooperation and profit allocation in distribution chains. Decis. Support Syst. 2007, 44, 17–27. [Google Scholar] [CrossRef]
- Kemahlıoğlu-Ziya, E.; Bartholdi III, J.J. Centralizing inventory in supply chains by using Shapley value to allocate the profits. Manuf. Serv. Oper. Manag. 2011, 13, 146–162. [Google Scholar] [CrossRef]
- Lozano, S.; Moreno, P.; Adenso-Díaz, B.; Algaba, E. Cooperative game theory approach to allocating benefits of horizontal cooperation. Eur. J. Oper. Res. 2013, 229, 444–452. [Google Scholar] [CrossRef]
- Leng, M.; Parlar, M. Allocation of cost savings in a three-level supply chain with demand information sharing: A cooperative-game approach. Oper. Res. 2009, 57, 200–213. [Google Scholar] [CrossRef]
- Dong, C.; Qi, Y.; Dong, W.; Lu, X.; Liu, T.; Qian, S. Decomposing driving factors for wind curtailment under economic new normal in China. Appl. Energy 2018, 217, 178–188. [Google Scholar] [CrossRef]
- Wang, C.; Ducruet, C. Transport corridors and regional balance in China: The case of coal trade and logistics. J. Transp. Geogr. 2014, 40, 3–16. [Google Scholar] [CrossRef]
- Ortmann, G.F.; King, R.P. Agricultural cooperatives I: History, theory and problems. Agrekon 2007, 46, 18–46. [Google Scholar] [CrossRef]
Notations | Descriptions |
---|---|
Pa, La | the agents delegating Production enterprise and Logistics enterprise in an automated negotiation |
, | the ideal and threshold value for quantity () |
, | the ideal and threshold value for delivery time () |
the round-dependent price function | |
the average unit price in the market, and we set bTa = (1 + γb)(cPa + cLa) in this paper | |
the general markup percentage of price relative to total cost value | |
the deadline designated when the automated negotiation is initialized | |
the influence factor of the quantity on unit price, | |
the influence factor of the delivery times of Pa and La on unit price | |
the delivery time requested by Ta at the tth round, | |
the alliance collaboration profit from the team offer at the t-th round | |
the distribution rates set of for Pa and La, αTa = {αPa,αLa} and αPa + αLa = 1 | |
the distribution rates set of for Pa and La, βTa = {βPa,βLa} and βPa + βLa = 1 | |
the negotiation strategy of Ta | |
, | the ideal and threshold quantities of agent i, , |
, | the ideal and threshold deliver times of agent i, , |
the delivery time requested by agent i, | |
the unit cost of agent i with the team offer at the tth round, | |
the basic unit cost of agent i in general case, | |
the influence factor of quantity on the unit cost of agent i, , | |
the influence factor of delivery time on the unit cost of agent i, | |
the correlation factor of historical negotiation information for agent i, |
Parameters | Value Ranges | Parameters | Value Ranges |
---|---|---|---|
Parameters | Value Ranges | Parameters | Value Ranges |
---|---|---|---|
Parameters | Value Ranges | Parameters | Value Ranges |
---|---|---|---|
Parameters | Value | Parameters | Value | Parameters | Value | Parameters | Value |
---|---|---|---|---|---|---|---|
46,384 | 31,384 | 119 | 79 | ||||
51,384 | 31,384 | 67 | 42 | ||||
46,384 | 28,384 | 57 | 37 | ||||
47 | 0.32 | 514 | 623 | ||||
31,384 | 46,384 | 39 | 69 | ||||
578 | 1078 | 0.59 | 4 | ||||
52 | 0.30 | 0.20 | 0.50 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, T.; Wang, Q.; Huang, M.; Wang, X.; Zhang, Y. A Co-Opetitive Automated Negotiation Model for Vertical Allied Enterprises Teams and Stakeholders. Entropy 2018, 20, 286. https://doi.org/10.3390/e20040286
Gao T, Wang Q, Huang M, Wang X, Zhang Y. A Co-Opetitive Automated Negotiation Model for Vertical Allied Enterprises Teams and Stakeholders. Entropy. 2018; 20(4):286. https://doi.org/10.3390/e20040286
Chicago/Turabian StyleGao, Taiguang, Qing Wang, Min Huang, Xingwei Wang, and Yu Zhang. 2018. "A Co-Opetitive Automated Negotiation Model for Vertical Allied Enterprises Teams and Stakeholders" Entropy 20, no. 4: 286. https://doi.org/10.3390/e20040286
APA StyleGao, T., Wang, Q., Huang, M., Wang, X., & Zhang, Y. (2018). A Co-Opetitive Automated Negotiation Model for Vertical Allied Enterprises Teams and Stakeholders. Entropy, 20(4), 286. https://doi.org/10.3390/e20040286