The C/C Genotype of rs1231760 in RGS2 Is a Risk Factor for the Progression of H. pylori-Positive Atrophic Gastritis by Increasing RGS2 Expression
Abstract
:1. Introduction
2. Materials and Methods
2.1. Selection of Candidate Genes and Their SNPs
2.2. Study Participants
2.3. Classification of Gastric Mucosal Atrophy
2.4. Genotype Determination
2.5. Preparation of Reporter Plasmid DNA
2.6. Transfection and Dual-Luciferase Assay
2.7. Statistical Analyses
3. Results
3.1. The Clinical Characteristics of the Participants
3.2. Candidate Gene Extraction by Transcriptome Data Matching
3.3. RGS2 rs1231760 SNP Is Associated with Atrophic Gastritis in Patients Who Are H. pylori-Positive
3.4. PG I Is Significantly Lower in Patients with C/C-Genotype rs1231760 SNP
3.5. Transcriptional Activity Is Higher for the C Allele of rs1231760
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bouvard, V.; Baan, R.; Straif, K.; Grosse, Y.; Secretan, B.; El Ghissassi, F.; Benbrahim-Tallaa, L.; Guha, N.; Freeman, C.; Galichet, L.; et al. A review of human carcinogens—Part B: Biological agents. Lancet Oncol. 2009, 10, 321–322. [Google Scholar] [CrossRef] [PubMed]
- Alexander, S.M.; Retnakumar, R.J.; Chouhan, D.; Devi, T.N.B.; Dharmaseelan, S.; Devadas, K.; Thapa, N.; Tamang, J.P.; Lamtha, S.C.; Chattopadhyay, S. Helicobacter pylori in Human Stomach: The Inconsistencies in Clinical Outcomes and the Probable Causes. Front. Microbiol. 2021, 12, 713955. [Google Scholar] [CrossRef] [PubMed]
- Tomb, J.F.; White, O.; Kerlavage, A.R.; Clayton, R.A.; Sutton, G.G.; Fleischmann, R.D.; Ketchum, K.A.; Klenk, H.P.; Gill, S.; Dougherty, B.A.; et al. The complete genome sequence of the gastric pathogen Helicobacter pylori. Nature 1997, 388, 539–547. [Google Scholar] [CrossRef] [PubMed]
- Lahner, E.; Conti, L.; Annibale, B.; Corleto, V.D. Current Perspectives in Atrophic Gastritis. Curr. Gastroenterol. Rep. 2020, 22, 38. [Google Scholar] [CrossRef]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Barrozo, R.M.; Hansen, L.M.; Lam, A.M.; Skoog, E.C.; Martin, M.E.; Cai, L.P.; Lin, Y.; Latoscha, A.; Suerbaum, S.; Canfield, D.R.; et al. CagY Is an Immune-Sensitive Regulator of the Helicobacter pylori Type IV Secretion System. Gastroenterology 2016, 151, 1164–1175.e3. [Google Scholar] [CrossRef]
- Sitarz, R.; Skierucha, M.; Mielko, J.; Offerhaus, G.J.A.; Maciejewski, R.; Polkowski, W.P. Gastric cancer: Epidemiology, prevention, classification, and treatment. Cancer Manag. Res. 2018, 10, 239–248. [Google Scholar] [CrossRef]
- Masuyama, H.; Yoshitake, N.; Sasai, T.; Nakamura, T.; Masuyama, A.; Zuiki, T.; Kurashina, K.; Mieda, M.; Sunada, K.; Yamamoto, H.; et al. Relationship between the degree of endoscopic atrophy of the gastric mucosa and carcinogenic risk. Digestion 2015, 91, 30–36. [Google Scholar] [CrossRef]
- Kim, S.G.; Jung, H.K.; Lee, H.L.; Jang, J.Y.; Lee, H.; Kim, C.G.; Shin, W.G.; Shin, E.S.; Lee, Y.C. Guidelines for the diagnosis and treatment of Helicobacter pylori infection in Korea, 2013 revised edition. J Gastroenterol Hepatol 2014, 29, 1371–1386. [Google Scholar] [CrossRef]
- Lee, S.Y. Endoscopic gastritis, serum pepsinogen assay, and Helicobacter pylori infection. Korean J. Intern. Med. 2016, 31, 835–844. [Google Scholar] [CrossRef]
- Ricuarte, O.; Gutierrez, O.; Cardona, H.; Kim, J.G.; Graham, D.Y.; El-Zimaity, H.M. Atrophic gastritis in young children and adolescents. J. Clin. Pathol. 2005, 58, 1189–1193. [Google Scholar] [CrossRef] [PubMed]
- Kakiuchi, T.; Nakayama, A.; Shimoda, R.; Matsuo, M. Atrophic gastritis and chronic diarrhea due to Helicobacter pylori infection in early infancy: A case report. Medicine 2019, 98, e17986. [Google Scholar] [CrossRef] [PubMed]
- Honma, H.; Nakayama, Y.; Kato, S.; Hidaka, N.; Kusakari, M.; Sado, T.; Suda, A.; Lin, Y. Clinical features of Helicobacter pylori antibody-positive junior high school students in Nagano Prefecture, Japan. Helicobacter 2019, 24, e12559. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, N.; Sakaguchi, T.; Isomoto, H.; Inamine, T.; Ueda, H.; Fukuda, D.; Ohnita, K.; Kanda, T.; Kurumi, H.; Matsushima, K.; et al. ATG16L1 and ATG12 Gene Polymorphisms Are Involved in the Progression of Atrophic Gastritis. J. Clin. Med. 2023, 12, 5384. [Google Scholar] [CrossRef]
- Yamaguchi, N.; Sakaguchi, T.; Taira, M.; Fukuda, D.; Ohnita, K.; Hirayama, T.; Yashima, K.; Isomoto, H.; Tsukamoto, K. Autophagy-Related Gene ATG7 Polymorphism Could Potentially Serve as a Biomarker of the Progression of Atrophic Gastritis. J. Clin. Med. 2024, 13, 629. [Google Scholar] [CrossRef]
- Yamaguchi, N.; Sakaguchi, T.; Isomoto, H.; Inamine, T.; Tsukamoto, R.; Fukuda, D.; Ohnita, K.; Kanda, T.; Matsushima, K.; Hirayama, T.; et al. Polymorphism in autophagy-related genes LRP1 and CAPZA1 may promote gastric mucosal atrophy. Genes Environ. 2023, 45, 18. [Google Scholar] [CrossRef]
- Lonsdale, J.; Thomas, J.; Salvatore, M.; Phillips, R.; Lo, E.; Shad, S.; Hasz, R.; Walters, G.; Garcia, F.; Moore, H.F.; et al. The Genotype-Tissue Expression (GTEx) project. Nat. Genet. 2013, 45, 580–585. [Google Scholar] [CrossRef]
- Clough, E.; Barrett, T. The Gene Expression Omnibus Database. Methods Mol. Biol. 2016, 1418, 93–110. [Google Scholar] [CrossRef]
- Nookaew, I.; Thorell, K.; Worah, K.; Wang, S.; Hibberd, M.L.; Sjövall, H.; Pettersson, S.; Nielsen, J.; Lundin, S.B. Transcriptome signatures in Helicobacter pylori-infected mucosa identifies acidic mammalian chitinase loss as a corpus atrophy marker. BMC Med. Genom. 2013, 6, 41. [Google Scholar] [CrossRef]
- Hanada, K.; Uchida, T.; Tsukamoto, Y.; Watada, M.; Yamaguchi, N.; Yamamoto, K.; Shiota, S.; Moriyama, M.; Graham, D.Y.; Yamaoka, Y. Helicobacter pylori infection introduces DNA double-strand breaks in host cells. Infect. Immun. 2014, 82, 4182–4189. [Google Scholar] [CrossRef]
- Ward, L.D.; Kellis, M. HaploReg v4: Systematic mining of putative causal variants, cell types, regulators and target genes for human complex traits and disease. Nucleic Acids Res. 2016, 44, D877–D881. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.; Fornes, O.; Stigliani, A.; Gheorghe, M.; Castro-Mondragon, J.A.; van der Lee, R.; Bessy, A.; Chèneby, J.; Kulkarni, S.R.; Tan, G.; et al. JASPAR 2018: Update of the open-access database of transcription factor binding profiles and its web framework. Nucleic Acids Res 2018, 46, D260–D266. [Google Scholar] [CrossRef] [PubMed]
- Mukoubayashi, C.; Yanaoka, K.; Ohata, H.; Arii, K.; Tamai, H.; Oka, M.; Ichinose, M. Serum pepsinogen and gastric cancer screening. Intern. Med. 2007, 46, 261–266. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Ye, Q.; Cao, Y.; Tan, J.; Wang, F.; Jiang, J.; Cao, Y. Downregulation of regulator of G protein signaling 2 expression in breast invasive carcinoma of no special type: Clinicopathological associations and prognostic relevance. Oncol. Lett. 2018, 15, 213–220. [Google Scholar] [CrossRef]
- Cao, X.; Qin, J.; Xie, Y.; Khan, O.; Dowd, F.; Scofield, M.; Lin, M.F.; Tu, Y. Regulator of G-protein signaling 2 (RGS2) inhibits androgen-independent activation of androgen receptor in prostate cancer cells. Oncogene 2006, 25, 3719–3734. [Google Scholar] [CrossRef]
- Hurst, J.H.; Mendpara, N.; Hooks, S.B. Regulator of G-protein signalling expression and function in ovarian cancer cell lines. Cell Mol. Biol. Lett. 2009, 14, 153–174. [Google Scholar] [CrossRef]
- Schwäble, J.; Choudhary, C.; Thiede, C.; Tickenbrock, L.; Sargin, B.; Steur, C.; Rehage, M.; Rudat, A.; Brandts, C.; Berdel, W.E.; et al. RGS2 is an important target gene of Flt3-ITD mutations in AML and functions in myeloid differentiation and leukemic transformation. Blood 2005, 105, 2107–2114. [Google Scholar] [CrossRef]
- Yang, S.; Sun, B.; Li, W.; Yang, H.; Li, N.; Zhang, X. Fatty acid metabolism is related to the immune microenvironment changes of gastric cancer and RGS2 is a new tumor biomarker. Front. Immunol. 2022, 13, 1065927. [Google Scholar] [CrossRef]
- Kim, E.H.; Kang, H.; Park, C.H.; Choi, H.S.; Jung, D.H.; Chung, H.; Park, J.C.; Shin, S.K.; Lee, S.K.; Lee, Y.C. The optimal serum pepsinogen cut-off value for predicting histologically confirmed atrophic gastritis. Dig. Liver Dis. 2015, 47, 663–668. [Google Scholar] [CrossRef]
- Chen, X.Z.; Huang, C.Z.; Hu, W.X.; Liu, Y.; Yao, X.Q. Gastric Cancer Screening by Combined Determination of Serum Helicobacter pylori Antibody and Pepsinogen Concentrations: ABC Method for Gastric Cancer Screening. Chin. Med. J. 2018, 131, 1232–1239. [Google Scholar] [CrossRef]
- Baricević, I.; Nedić, O.; Nikolić, J.A.; Bojić, B.; Jojić, N. Circulating insulin-like growth factors in patients infected with Helicobacter pylori. Clin. Biochem. 2004, 37, 997–1001. [Google Scholar] [CrossRef] [PubMed]
- Shah, S.C.; Piazuelo, M.B.; Kuipers, E.J.; Li, D. AGA Clinical Practice Update on the Diagnosis and Management of Atrophic Gastritis: Expert Review. Gastroenterology 2021, 161, 1325–1332.e7. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Weck, M.N.; Stegmaier, C.; Rothenbacher, D.; Brenner, H. Alcohol consumption and chronic atrophic gastritis: Population-based study among 9444 older adults from Germany. Int. J. Cancer 2009, 125, 2918–2922. [Google Scholar] [CrossRef] [PubMed]
Characteristic | Pepsinogen Classification | p Value * | |
---|---|---|---|
Atrophy (+) (n = 94) | Atrophy (−) (n = 106) | ||
Age (year) | 59.2 ± 9.52 | 54.9 ± 10.93 | 0.002 |
Sex (male/female) | 37/57 | 50/56 | 0.266 |
Characteristic | Pepsinogen Classification | p Value * | |
---|---|---|---|
Atrophy (+) (n = 11) | Atrophy (−) (n = 291) | ||
Age (year) | 55.0 ± 13.83 | 50.28 ± 10.24 | 0.174 |
Sex (male/female) | 4/7 | 126/165 | 0.763 |
Gene | Expression | Function |
---|---|---|
UGGT2 | down | Quality control for protein transport out of the endoplasmic reticulum |
ECHDC3 | down | Catalytic enzymes |
SYTL4 | down | Proteins that participate in intracellular membrane trafficking |
HYAL3 | down | Endoglycosidases that degrade hyaluronan |
ZNF85 | down | Transcriptional repressor |
ZNF160 | down | Transcriptional repressor |
PTPN14 | down | Signaling molecules that regulate a variety of cellular processes |
PPP2R3A | down | Negative control of cell growth and division |
LPIN1 | up | Nuclear transcriptional coactivator |
GNLY | up | Antimicrobial activity against Mycobacterium tuberculosis and other organisms |
RGS2 | up | GTPase-activating proteins |
PEPD | up | Proline recycling enzyme |
SLC35F2 | up | Transmembrane transporter |
ARSE | up | Essential enzymes in bone and cartilage matrix composition |
BAK1 | up | Apoptosis-inducing proteins |
SNP | Genotype | Number of Genotypes | Genetic Model | OR (95% CI) | p Value * | |
---|---|---|---|---|---|---|
AG n = 94 (%) | Non-AG n = 106 (%) | |||||
rs1231760 | MAF | 0.202 | 0.132 | Allele model | 0.6007 (0.3523–1.0243) | 0.0596 |
T/T | 60 (63.8) | 78 (73.6) | ||||
C/T | 30 (31.9) | 28 (26.4) | Dominant model | 1.5786 (0.8638–2.8846) | 0.1365 | |
C/C | 4 (4.3) | 0 (0) | Recessive model | - | 0.0471 |
SNP | Genotype | Number of Genotypes | Genetic Model | OR (95% CI) | p Value * | |
---|---|---|---|---|---|---|
AG n = 94 (%) | Non-AG n = 106 (%) | |||||
rs1231760 | MAF | 0.227 | 0.167 | Allele model | 1.471 (0.5298–4.082) | 0.3947 |
T/T | 7 (63.6) | 200 (68.7) | ||||
C/T | 3 (27.3) | 85 (29.2) | Dominant model | 1.2559 (0.3587–4.3977) | 0.7459 | |
C/C | 1 (9.1) | 6 (2.1) | Recessive model | 4.750 (0.5216–43.2547) | 0.2308 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yamaguchi, N.; Sakaguchi, T.; Wei, J.-J.; Tazoe, Y.; Inamine, T.; Fukuda, D.; Ohnita, K.; Hirayama, T.; Isomoto, H.; Matsushima, K.; et al. The C/C Genotype of rs1231760 in RGS2 Is a Risk Factor for the Progression of H. pylori-Positive Atrophic Gastritis by Increasing RGS2 Expression. Diagnostics 2024, 14, 2563. https://doi.org/10.3390/diagnostics14222563
Yamaguchi N, Sakaguchi T, Wei J-J, Tazoe Y, Inamine T, Fukuda D, Ohnita K, Hirayama T, Isomoto H, Matsushima K, et al. The C/C Genotype of rs1231760 in RGS2 Is a Risk Factor for the Progression of H. pylori-Positive Atrophic Gastritis by Increasing RGS2 Expression. Diagnostics. 2024; 14(22):2563. https://doi.org/10.3390/diagnostics14222563
Chicago/Turabian StyleYamaguchi, Naoyuki, Takuki Sakaguchi, Jing-Jing Wei, Yuna Tazoe, Tatsuo Inamine, Daisuke Fukuda, Ken Ohnita, Tatsuro Hirayama, Hajime Isomoto, Kayoko Matsushima, and et al. 2024. "The C/C Genotype of rs1231760 in RGS2 Is a Risk Factor for the Progression of H. pylori-Positive Atrophic Gastritis by Increasing RGS2 Expression" Diagnostics 14, no. 22: 2563. https://doi.org/10.3390/diagnostics14222563