Embryonic and Fetal Mortality in Dairy Cows: Incidence, Relevance, and Diagnosis Approach in Field Conditions
Abstract
:1. Introduction
2. Embryonic and Fetal Mortality Definitions
3. Incidence of Embryonic and Fetal Mortality
4. Impact of Embryonic and Fetal Mortality on Dairy Farms
5. Causes of Pregnancy Loss
5.1. Infectious Causes
5.2. Non-Infectious Causes
5.2.1. Endocrine Causes
5.2.2. Physical Causes
5.2.3. Genetic Causes
5.2.4. Nutritional Causes
5.2.5. Toxic Causes
5.2.6. Risk Factors
6. Approaching a Diagnosis of Pregnancy Losses in Bovine Dairy Farms
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dalcq, A.C.; Beckers, Y.; Mayeres, P.; Reding, E.; Wyzen, B.; Colinet, F.; Delhez, P.; Soyeurt, H. The feeding system impacts relationships between calving interval and economic results of dairy farms. Animal 2018, 12, 1662–1671. [Google Scholar] [CrossRef] [PubMed]
- Auldist, M.J.; O’Brien, G.; Cole, D.; Macmillan, K.L.; Grainger, C. Effects of Varying Lactation Length on Milk Production Capacity of Cows in Pasture-Based Dairying Systems. J. Dairy Sci. 2007, 90, 3234–3241. [Google Scholar] [CrossRef]
- Kok, A.; Lehmann, J.O.; Kemp, B.; Hogeveen, H.; van Middelaar, C.E.; de Boer, I.J.M.; van Knegsel, A.T.M. Production, partial cash flows and greenhouse gas emissions of simulated dairy herds with extended lactations. Animal 2019, 13, 1074–1083. [Google Scholar] [CrossRef] [PubMed]
- Bormann, J.; Wiggans, G.R.; Druet, T.; Gengler, N. Estimating Effects of Permanent Environment, Lactation Stage, Age, and Pregnancy on Test-Day Yield. J. Dairy Sci. 2002, 85, 263.e1–263.e21. [Google Scholar] [CrossRef]
- Roche, J.R. Effect of Pregnancy on Milk Production and Bodyweight from Identical Twin Study. J. Dairy Sci. 2003, 86, 777–783. [Google Scholar] [CrossRef]
- Gädicke, P.; Monti, G. Factors related to the level of occurrence of bovine abortion in Chilean dairy herds. Prev. Vet. Med. 2013, 110, 183–189. [Google Scholar] [CrossRef]
- Stevenson, J.S. Clinical reproductive physiology of the cow. In Current Therapy in Large Animal Theriogenology 2, 2nd ed.; Youngquist, R.S., Threlfall, W.R., Eds.; Saunders: St. Louis, MO, USA, 2007; pp. 258–270. [Google Scholar]
- Committee on Reproductive Nomenclature. Recommendations for standardizing bovine reproductive terms. Cornell Vet. 1972, 62, 216–237. [Google Scholar]
- Whitlock, B.K.; Maxwell, H.S. Pregnancy-associated glycoproteins and pregnancy wastage in cattle. Theriogenology 2008, 70, 550–559. [Google Scholar] [CrossRef]
- Jainudeen, M.R.; Hafez, B. Reproductive Failure in Females. In Reproduction in Farm Animals, 7th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2016; pp. 259–278. [Google Scholar] [CrossRef]
- Barrett, D.; Boyd, H.; Mihm, M. Failure to conceive and embryonic loss. In Bovine Medicine: Diseases and Husbandry of Cattle, 2nd ed.; Blackwell: Oxford, UK, 2004; pp. 552–576. [Google Scholar]
- Szenci, O. Recent Possibilities for the Diagnosis of Early Pregnancy and Embryonic Mortality in Dairy Cows. Animals 2021, 11, 1666. [Google Scholar] [CrossRef]
- Roche, J.F. Early embryo loss in cattle. In Current Therapy in Theriogenology; W. B. Saunders Co: Philadelphia, PA, USA, 1986; pp. 200–204. [Google Scholar]
- Diskin, M.G.; Parr, M.H.; Morris, D.G. Embryo death in cattle: An update. Reprod. Fertil. Dev. 2012, 24, 244. [Google Scholar] [CrossRef]
- Mee, J.F. Bovine abortion. In Bovine Prenatal, Perinatal and Neonatal Medicine; Hungarian Association for Buiatrics: Budapest, Hungary, 2021; pp. 58–66. [Google Scholar]
- Baumgartner, W. Fetal Disease and Abortion. In Bovine Reproduction, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2021; Volume 56, pp. 665–716. [Google Scholar] [CrossRef]
- Long, S. Abnormal development of the conceptus and its consequences. Arthur’s Vet. Reprod. Obstet. 2009, 8, 119–143. [Google Scholar]
- Wiltbank, M.C.; Souza, A.H.; Carvalho, P.D.; Cunha, A.P.; Giordano, J.O.; Fricke, P.M.; Baez, G.M.; Diskin, M.G. Physiological and practical effects of progesterone on reproduction in dairy cattle. Animal 2014, 8, 70–81. [Google Scholar] [CrossRef]
- Silke, V.; Diskin, M.G.; Kenny, D.A.; Boland, M.P.; Dillon, P.; Mee, J.F.; Sreenan, J.M. Extent, pattern and factors associated with late embryonic loss in dairy cows. Anim. Reprod. Sci. 2002, 71, 1–12. [Google Scholar] [CrossRef]
- Mee, J.F. Investigation of bovine abortion and stillbirth/perinatal mortality—Similar diagnostic challenges, different approaches. Ir. Vet. J. 2020, 73, 20. [Google Scholar] [CrossRef]
- Denis-Robichaud, J.; Kelton, D.F.; Bauman, C.A.; Barkema, H.W.; Keefe, G.P.; Dubuc, J. Biosecurity and herd health management practices on Canadian dairy farms. J. Dairy Sci. 2019, 102, 9536–9547. [Google Scholar] [CrossRef]
- Bronner, A.; Hénaux, V.; Fortané, N.; Hendrikx, P.; Calavas, D. Why do farmers and veterinarians not report all bovine abortions, as requested by the clinical brucellosis surveillance system in France? BMC Vet. Res. 2014, 10, 93. [Google Scholar] [CrossRef] [PubMed]
- Thobokwe, G.; Heuer, C. Incidence of abortion and association with putative causes in dairy herds in New Zealand. N. Zealand Vet. J. 2004, 52, 90–94. [Google Scholar] [CrossRef]
- Peter, A. Abortions in dairy cows: New insights and economic impact. Proc. West. Can. Dairy Semin. 2000, 2000, 233–244. [Google Scholar]
- Caldow, G.; Gray, D. Fetal loss. In Diseases and Husbandry of Cattle, 2nd ed.; Andrews, A.H., Blowey, R.W., Boyd, H., Eddy, R.G., Eds.; Blackwell Science Ltd.: Oxford, UK, 2004; pp. 577–593. [Google Scholar]
- Jonker, F.H. Fetal death: Comparative aspects in large domestic animals. Anim. Reprod. Sci. 2004, 82–83, 415–430. [Google Scholar] [CrossRef]
- Waldner, C.L.; Parker, S.; Campbell, J.R. Identifying performance benchmarks and determinants for reproductive performance and calf survival using a longitudinal field study of cow-calf herds in western Canada. PLoS ONE 2019, 14, e0219901. [Google Scholar] [CrossRef]
- Heersche, G. Benchmarks for Evaluating the Reproductive Performance of the Dairy Herd. Cooperative Extension Service Bulletin, University of Kentucky, College of Agriculture. 2023. Available online: https://afs.ca.uky.edu/files/benchmarks_for_evaluating_the_reproductive_performance_of_the_dairy_herd.pdf (accessed on 26 March 2024).
- Clothier, G.; Wapenaar, W.; Kenny, E.; Windham, E. Farmers’ and veterinary surgeons’ knowledge, perceptions and attitudes towards cattle abortion investigations in the UK. Vet. Rec. 2020, 187, 447. [Google Scholar] [CrossRef]
- McDougall, S.; Rhodes, F.; Verkerk, G. Pregnancy loss in dairy cattle in the Waikato region of New Zealand. N. Zealand Vet. J. 2005, 53, 279–287. [Google Scholar] [CrossRef] [PubMed]
- Norman, H.D.; Miller, R.H.; Wright, J.R.; Hutchison, J.L.; Olson, K.M. Factors associated with frequency of abortions recorded through Dairy Herd Improvement test plans. J. Dairy Sci. 2012, 95, 4074–4084. [Google Scholar] [CrossRef]
- Mee, J.F. Invited review: Bovine abortion—Incidence, risk factors and causes. Reprod. Domest. Anim. 2023, 58 (Suppl. 2), 23–33. [Google Scholar] [CrossRef]
- Maurer, R.R.; Chenault, J.R. Fertilization Failure and Embryonic Mortality in Parous and Nonparous Beef Cattle. J. Anim. Sci. 1983, 56, 1186–1189. [Google Scholar] [CrossRef] [PubMed]
- Berg, D.K.; van Leeuwen, J.; Beaumont, S.; Berg, M.; Pfeffer, P.L. Embryo loss in cattle between Days 7 and 16 of pregnancy. Theriogenology 2010, 73, 250–260. [Google Scholar] [CrossRef] [PubMed]
- Lonergan, P.; Forde, N.; Spencer, T.E. Progesterone and conceptus-derived factors important for conceptus survival and growth. Anim. Reprod. 2016, 13, 143–152. [Google Scholar] [CrossRef]
- Wiltbank, M.C.; Baez, G.M.; Garcia-Guerra, A.; Toledo, M.Z.; Monteiro, P.L.J.; Melo, L.F.; Ochoa, J.C.; Santos, J.E.P.; Sartori, R. Pivotal periods for pregnancy loss during the first trimester of gestation in lactating dairy cows. Theriogenology 2016, 86, 239–253. [Google Scholar] [CrossRef]
- Pohler, K.G.; Fernando, M.; Lopes, F.L.; Lawrence, J.; Keisler, D.H.; Smith, K.; Luiz, J.; Green, J.C. Circulating concentrations of bovine pregnancy-associated glycoproteins and late embryonic mortality in lactating dairy herds. J. Dairy Sci. 2016, 99, 1584–1594. [Google Scholar] [CrossRef]
- Hansen, P.J. Reproduction, events and management: Pregnancy: Physiology. In Encyclopedia of Dairy Science, 3rd ed.; Elsevier, Ltd.: Amsterdam, The Netherlands, 2022; Volume 1, pp. 1038–1050. [Google Scholar]
- Albaaj, A.; Durocher, J.; LeBlanc, S.J.; Dufour, S. Meta-analysis of the incidence of pregnancy losses in dairy cows at different stages to 90 days of gestation. JDS Commun. 2023, 4, 144–148. [Google Scholar] [CrossRef] [PubMed]
- Reese, S.T.; Franco, G.A.; Poole, R.K.; Hood, R.; Fernadez Montero, L.; Oliveira Filho, R.V.; Cooke, R.F.; Pohler, K.G. Pregnancy loss in beef cattle: A meta-analysis. Anim. Reprod. Sci. 2020, 212, 106251. [Google Scholar] [CrossRef]
- Meadows, C.; Rajala-Schultz, P.J.; Frazer, G.S. A Spreadsheet-Based Model Demonstrating the Nonuniform Economic Effects of Varying Reproductive Performance in Ohio Dairy Herds. J. Dairy Sci. 2005, 88, 1244–1254. [Google Scholar] [CrossRef] [PubMed]
- Plaizier JC, B.; King, G.J.; Dekkers JC, M.; Lissemore, K. Estimation of Economic Values of Indices for Reproductive Performance in Dairy Herds Using Computer Simulation. J. Dairy Sci. 1997, 80, 2775–2783. [Google Scholar] [CrossRef] [PubMed]
- De Vries, A. Economic Value of Pregnancy in Dairy Cattle. J. Dairy Sci. 2006, 89, 3876–3885. [Google Scholar] [CrossRef] [PubMed]
- Eicker, S.; Fetrow, J. New tools for deciding when to replace used dairy cows. In Proceedings of the Kentucky Dairy Conference, Cave City, KY, USA, 4 March 2003; The University of Kentucky: Lexington, KY, USA, 2003; pp. 33–46. [Google Scholar]
- Stevenson, J.S. Reproductive Management of Dairy Cows in High Milk-Producing Herds. J. Dairy Sci. 2001, 84, E128–E143. [Google Scholar] [CrossRef]
- Lee, J.I.; Kim, I.-H. Pregnancy loss in dairy cows: The contributing factors, the effects on reproductive performance and the economic impact. J. Vet. Sci. 2007, 8, 283–288. [Google Scholar] [CrossRef]
- Keshavarzi, H.; Sadeghi-Sefidmazgi, A.; Ghorbani, G.R.; Kowsar, R.; Razmkabir, M.; Amer, P. Effect of abortion on milk production, health, and reproductive performance of Holstein dairy cattle. Anim. Reprod. Sci. 2020, 217, 106458. [Google Scholar] [CrossRef]
- Albuja, C.; Ortiz, O.; López, C.; Hernández Cerón, J. Economic impact of pregnancy loss in an intensive dairy farming system. Vet. México OA 2019, 6. [Google Scholar] [CrossRef]
- Borsberry, S.; Dobson, H. Periparturient diseases and their effect on reproductive performance in five dairy herds. Vet. Rec. 1989, 124, 217–219. [Google Scholar] [CrossRef]
- Kim, I.H.; Kang, H.G. Risk Factors for Postpartum Endometritis and the Effect of Endometritis on Reproductive Performance in Dairy Cows in Korea. J. Reprod. Dev. 2003, 49, 485–491. [Google Scholar] [CrossRef]
- Bartels CJ, M.; van Schaik, G.; Veldhuisen, J.P.; van den Borne BH, P.; Wouda, W.; Dijkstra, T. Effect of Neospora caninum-serostatus on culling, reproductive performance and milk production in Dutch dairy herds with and without a history of Neospora caninum-associated abortion epidemics. Prev. Vet. Med. 2006, 77, 186–198. [Google Scholar] [CrossRef] [PubMed]
- El-Tarabany, M.S.; El-Tarabany, A.A. Impact of maternal heat stress at insemination on the subsequent reproductive performance of Holstein, Brown Swiss, and their crosses. Theriogenology 2015, 84, 1523–1529. [Google Scholar] [CrossRef] [PubMed]
- Kaneene, J.B.; Miller, R. Risk factors for metritis in Michigan dairy cattle using herd- and cow-based modelling approaches. Prev. Vet. Med. 1995, 23, 183–200. [Google Scholar] [CrossRef]
- Parkinson, T.J. Specific Infectious Diseases Causing Infertility and Subfertility in Cattle. In Veterinary Reproduction and Obstetrics, 10th ed.; WB Saunders: London, UK, 2019; pp. 434–466. [Google Scholar]
- Ouweltjes, W.; Smolders EA, A.; Elving, L.; van Eldik, P.; Schukken, Y.H. Fertility disorders and subsequent fertility in dairy cattle. Livest. Prod. Sci. 1996, 46, 213–220. [Google Scholar] [CrossRef]
- Livingstone, M.; Longbottom, D. What is the prevalence and economic impact of chlamydial infections in cattle? The need to validate and harmonise existing methods of detection. Vet. J. 2006, 172, 3–5. [Google Scholar] [CrossRef]
- Cantón, G.J.; Moreno, F.; Fiorentino, M.A.; Hecker, Y.P.; Spetter, M.; Fiorani, F.; Monterubbianesi, M.G.; García, J.A.; Altamiranda, E.G.; Cirone, K.M.; et al. Spatial–temporal trends and economic losses associated with bovine abortifacients in central Argentina. Trop. Anim. Health Prod. 2022, 54, 242. [Google Scholar] [CrossRef]
- Kirkbride, C.A. Etiologic Agents Detected in a 10-Year Study of Bovine Abortions and Stillbirths. J. Vet. Diagn. Investig. 1992, 4, 175–180. [Google Scholar] [CrossRef]
- Kirkbride, C.A. Bacterial agents detected in a 10-year study of bovine abortions and stillbirths. J. Vet. Diagn. Investig. 1993, 5, 64–68. [Google Scholar] [CrossRef]
- Anderson, M.L. Disorders of cattle. In Kirkbride’s—Diagnosis of Abortion and Neonatal Loss in Animals, 4th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2012; pp. 13–48. [Google Scholar]
- Corbellini, L.G.; Pescador, C.A.; Frantz, F.J.; Cardoso, M.; Driemeier, D. Staphylococcus spp. abortion: Skin lesions caused by Staphylococcus aureus infection in an aborted bovine-fetus. Vet. Res. Commun. 2006, 30, 717–721. [Google Scholar] [CrossRef]
- Clothier, K.; Anderson, M. Evaluation of bovine abortion cases and tissue suitability for identification of infectious agents in California diagnostic laboratory cases from 2007 to 2012. Theriogenology 2016, 85, 933–938. [Google Scholar] [CrossRef] [PubMed]
- Costa, L.S.; Snel GG, M.; Cristo, T.G.; Ribeiro, L.R.; Furlan, L.V.; Camargo, G.B.; Driemeier, D.; Casagrande, R.A. Trueperella pyogenes como causa de aborto em uma vaca—Relato de caso. Arq. Bras. Med. Vet. Zootec. 2019, 71, 1950–1954. [Google Scholar] [CrossRef]
- Antoniassi, N.A.B.; Juffo, G.D.; Santos, A.S.; Pescador, C.A.; Corbellini, L.G.; Driemeier, D. Causas de aborto bovino diagnosticadas no Setor de Patologia Veterinária da UFRGS de 2003 a 2011. Pesqui. Veterinária Bras. 2013, 33, 155–160. [Google Scholar] [CrossRef]
- Macías-Rioseco, M.; Caroline Fraga, M.; Casaux, L.; Cabrera, A.; Francia, M.E.; Robello, C.; Maya, L.; Zarantonelli, L.; Suanes, A.; Colina, R.; et al. Causes of abortion in dairy cows in Uruguay. Pesqui. Vet. Bras. 2020, 40, 325–332. [Google Scholar] [CrossRef]
- Yaeger, M.J.; Holler, L.D. Bacterial Causes of Bovine Infertility and Abortion. In Current Therapy in Large Animal Theriogenology; Elsevier: Amsterdam, The Netherlands, 2007; Volume 49, pp. 389–399. [Google Scholar] [CrossRef]
- Walker, R.L. Current Therapy in Large Animal Theriogenology, 2nd ed.; Elsevier Health Sciences: Amsterdam, The Netherlands, 2007; pp. 417–419. [Google Scholar]
- Austin, F.W. Infectious Agents: Mycotic Abortion. Bovine Reproduction; John Wiley & Sons: Hoboken, NJ, USA, 2021; pp. 837–841. [Google Scholar] [CrossRef]
- Kennedy, P.C.; Miller, R. The Female Genital System. In Pathology of Domestic Animals, 4th ed.; Elsevier BV: Amsterdam, The Netherlands, 1993; Volume 3, pp. 420–421. [Google Scholar] [CrossRef]
- Yadav, R.; Yadav, P.; Singh, G.; Kumar, S.; Dutt, R.; Pandey, A. Non-Infectious Causes of Abortion in Livestock Animals—A Review. Int. J. Livest. Res. 2021, 11, 1–9. [Google Scholar] [CrossRef]
- Kirkbride, C.A.; Bicknell, E.J.; Reed, D.E.; Robl, M.K.; Knudtson, M.S.; Wohlgemuth, K.A. A diagnostic survey of bovine abortion and stillbirth in the northern plain states. J. Am. Vet. Med. Assoc. 1973, 162, 556–560. [Google Scholar]
- Norton, J.; Tranter, W.; Campbell, R.; Ivers, N.; Martin, P. A farming systems study of abortion in dairy cattle on the Atherton Tableland: 4. Pasture composition and plasma progesterone concentrations of pregnant cows in affected herds. Aust. Vet. J. 1989, 66, 170–174. [Google Scholar] [CrossRef]
- Kindahl, H. Placenta functions with special emphasis on endocrine changes—A comparative overview. Acta Vet. Scand. 2007, 49, S15. [Google Scholar] [CrossRef]
- Dubey, J.P.; Schares, G. Diagnosis of bovine neosporosis. Vet. Parasitol. 2006, 140, 1–34. [Google Scholar] [CrossRef]
- Molefe, K.; Mwanza, M. Variability of serum reproductive hormones in cows presenting various reproductive conditions in semi-arid areas of the North West Province, South Africa. Vet. World 2020, 13, 502–507. [Google Scholar] [CrossRef]
- Purohit, G.N.; Shekher, C.; Kumar, P.; Solanki, K. Induced Termination of Pregnancy in Livestock Farm Animals. Iran. J. Appl. Anim. Sci. 2012, 2, 1–12. [Google Scholar]
- Barth, A.D.; Adams, W.M.; Manns, J.C.; Rawlings, N.C. Induction of parturition in beef cattle using estrogens in conjunction with dexamethasone. Can. Vet. J. 1978, 19, 175–180. [Google Scholar] [PubMed]
- Prakash, B.S.; Madan, M.L. Induction of parturition in water buffaloes (Bubalus bubalis). Theriogenology 1985, 23, 325–331. [Google Scholar] [CrossRef]
- Henricks, D.M.; Rawlings, N.C.; Ellicott, A.R.; Dickey, J.F.; Hill, J.R. Use of Prostaglandin F2α to Induce Parturition in Beef Heifers. J. Anim. Sci. 1977, 44, 438–441. [Google Scholar] [CrossRef] [PubMed]
- Nasser, L.F.; Rezende, L.F.; Bó, G.A.; Barth, A. Induction of parturition in Zebu-cross recipients carrying in vitro-produced Bos indicus embryos. Theriogenology 2008, 69, 116–123. [Google Scholar] [CrossRef]
- Compton, C.; McDougall, S. A longitudinal study of reproductive performance and management of 82 dairy herds in the Waikato region with differing policies on the routine use of induction of parturition. N. Zealand Vet. J. 2010, 58, 175–183. [Google Scholar] [CrossRef]
- Kumar, A.; Kumar, S.; Singh, M.; Gokuldas, P.P.; Kumar, P. Non-infectious causes of bubaline abortions. In Bubaline Theriogenology; International Veterinary Information Service: Ithaca, NY, USA, 2015. [Google Scholar]
- Murtaza, S.; Sattar, A.; Ahmed, N.; Ijaz, M.; Omer, T.; Akhtar, M.; Shahzad, M. Long term administration of exogenous oxytocin: Effects on pregnancy rate, and embryonic and fetal losses in nili-ravi buffaloes. J. Anim. Plant Sci. 2020, 30, 1. [Google Scholar]
- Abdullah, M.; Khan, B.B.; Ahmad, N.; Ahmad, Z.; Hanjra, S.H. Reproductive performances of buffaloes and cows as affected by oxytocin treatment. Pak. J. Agric. Sci. 1988, 25, 5. [Google Scholar]
- Roberts, S.J. Veterinary Obstetrics and Genital Diseases; C.B.S. Publishers: New Delhi, India, 1986. (In Indian) [Google Scholar]
- Cabell, E. Bovine abortion: Aetiology and investigations. Practice 2007, 29, 455–463. [Google Scholar] [CrossRef]
- Rafati, N.; Mehrabani-Yeganeh, H.; Hanson, T.E. Risk factors for abortion in dairy cows from commercial Holstein dairy herds in the Tehran region. Prev. Vet. Med. 2010, 96, 170–178. [Google Scholar] [CrossRef]
- Mellado, M.; López, R.; de Santiago, Á.; Veliz, F.G.; Macías-Cruz, U.; Avendaño-Reyes, L.; García, J.E. Climatic conditions, twining and frequency of milking as factors affecting the risk of fetal losses in high-yielding Holstein cows in a hot environment. Trop. Anim. Health Prod. 2016, 48, 1247–1252. [Google Scholar] [CrossRef] [PubMed]
- Kahn, C.M. The Merck Veterinary Manual, 9th ed.; Merck Sharp & Dohme Corp: Whitehouse Station, NJ, USA, 2011. [Google Scholar]
- Wakayo, B.; Brar, P.; Prabhakar, P. Review on mechanisms of dairy summer infertility and implications for hormonal intervention. Open Vet. J. 2015, 5, 6. [Google Scholar] [CrossRef] [PubMed]
- Krishnan, G.; Bagath, M.; Pragna, P.; Vidya, M.K.; Aleena, J.; Archana, P.R.; Sejian, V.; Bhatta, R. Mitigation of the Heat Stress Impact in Livestock Reproduction. In Theriogenology; IntechOpen: London, UK, 2017. [Google Scholar] [CrossRef]
- Thomsen, P.T.; Capion, N.; Foldager, L. Higher odds of abortion in dairy cows hoof trimmed late in gestation. Res. Vet. Sci. 2020, 133, 1–3. [Google Scholar] [CrossRef] [PubMed]
- Nadri, S.; Zamani, P.; Sadeghi-Sefidmazgi, A.; Abdoli, R.; Ghazi Khani Shad, A. Genetic predisposition to abortions is increasing in Iranian Holstein cows. Iran. J. Appl. Anim. Sci. 2021, 11, 79–85. [Google Scholar]
- Whitlock, B.K.; Beever, J.E.; Steffen, D.J. Heritable Congenital Defects. Bov. Reprod. 2021, 70, 863–875. [Google Scholar] [CrossRef]
- Mee, J.F. Congenital defects in calves. In Bovine Prenatal, Perinatal and Neonatal Medicine; Hungarian Association for Buiatrics: Budapest, Hungary, 2021; pp. 67–72. [Google Scholar]
- Ghanem, M.; Nishibori, M.; Isobe, N.; Hisaeda, K. Detection ofAPAF1mutation in Holstein cows and mummified foetuses in Japanese dairy herds. Reprod. Domest. Anim. 2017, 53, 137–142. [Google Scholar] [CrossRef]
- Coates, J.W.; Schmutz, S.M.; Rousseaux, C.G. A survey of malformed aborted bovine fetuses, stillbirths and nonviable neonates for abnormal karyotypes. Can. J. Vet. Res. 1988, 52, 258–263. [Google Scholar]
- Maxie, G. Etiologic agent or condition associated with abortion in cattle, VLS, Guelph, 1983–1985. Can. Vet. J. 1986, 27, A6. [Google Scholar]
- Rood, K.A. Reproduction and Immune Impacts from Vitamin or Mineral Deficiencies: Determining if Your Herd Is Deficient. 2011. Available online: https://digitalcommons.usu.edu/extension_curall/111/ (accessed on 28 April 2024).
- Toledo, M.Z.; Baez, G.M.; AGarcia-Guerra Lobos, N.; Guenther, J.; Trevisol, E.; Luchini, D.; Shaver, R.D.; Wiltbank, M.C. Effect of feeding rumen-protected methionine on productive and reproductive performance of dairy cows. PLoS ONE 2017, 12, e0189117. [Google Scholar] [CrossRef]
- Gädicke, P.; Chihuailaf, R.; Letelier, R.; Ruiz, A. Considerations for the interpretation of biochemical profiles in non-infectious abortions cows. Int. J. Dev. Res. 2020, 10, 34575–34579. [Google Scholar]
- McClellan, R.O. Concepts in Veterinary Toxicology; Elsevier EBooks: Amsterdam, The Netherlands, 2012; pp. 8–36. [Google Scholar] [CrossRef]
- Evans, T.J. Diminished Reproductive Performance and Selected Toxicants in Forages and Grains. Vet. Clin. N. Am. Food Anim. Pract. 2011, 27, 345–371. [Google Scholar] [CrossRef] [PubMed]
- Casteel, S.W. Reproductive Toxicants. In Current Therapy in Large Animal Theriogenology, 2nd ed.; Youngquist, C.R.S., Threlfall, W.R., Eds.; Saunders Elsevier: Philadelphia, PA, USA, 2007; pp. 420–427. [Google Scholar]
- Scudamore, K.A.; Livesey, C.T. Occurrence and Significance of Mycotoxins in Forage Crops and Silage: A Review. J. Sci. Food Agric. 1998, 77, 1–17. [Google Scholar] [CrossRef]
- Fink-Gremmels, J. The role of mycotoxins in the health and performance of dairy cows. Vet. J. 2008, 176, 84–92. [Google Scholar] [CrossRef] [PubMed]
- Kirkbride, C.A. Causes and prevention of bovine abortion. Am. Assoc. Bov. Pract. 1991, 23, 75–80. [Google Scholar] [CrossRef]
- Gardner, D.R.; Panter, K.E.; James, L.F.; Stegelmeier, B.L. Abortifacient effects of lodgepole pine (Pinus contortus), and common juniper (Juniperus communis) on cattle. Vet. Hum. Toxicol. 1998, 40, 260–263. [Google Scholar]
- Ford, S.P.; Christenson, L.K.; Rosazza, J.P.; Short, R.E. Effects of Ponderosa pine needle ingestion of uterine vascular function in late-gestation beef cows. J. Anim. Sci. 1992, 70, 1609–1614. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Gatius, F.; Szenci, O. Late embryonic/early foetal mortality (LEM/EFM). In Bovine Prenatal, Perinatal and Neonatal Medicine; Hungarian Association for Buiatrics: Budapest, Hungary, 2021; pp. 49–53. [Google Scholar]
- Rinell, E.; Heringstad, B. The effects of crossbreeding with Norwegian Red dairy cattle on common postpartum diseases, fertility and body condition score. Animal 2018, 12, 2619–2626. [Google Scholar] [CrossRef]
- Thurmond, M.C.; Branscum, A.J.; Johnson, W.O.; Bedrick, E.J.; Hanson, T.E. Predicting the probability of abortion in dairy cows: A hierarchical Bayesian logistic-survival model using sequential pregnancy data. Prev. Vet. Med. 2005, 68, 223–239. [Google Scholar] [CrossRef]
- Ghalmi, F.; Dramchini, N.; China, B. Risk factors for abortion in cattle herds in Algeria. Vet. Rec. 2009, 165, 475–476. [Google Scholar] [CrossRef]
- Waldner, C.L. Cow attributes, herd management, and reproductive history events associated with abortion in cow-calf herds from Western Canada. Theriogenology 2014, 81, 840–848. [Google Scholar] [CrossRef]
- Mellado, M.; Nájera, O.; Mellado, J.; García, J.; Macías-Cru, U.; Rodríguez, A.; Meza-Herrera, C.; Avendaño-Reyes, L. Vaccination programs, parity, and calving season as factors affecting the risk of fetal losses and mummified fetuses in Holstein cows. Span. J. Agric. Res. 2021, 19, e0402. [Google Scholar] [CrossRef]
- Toscano, L.C.P. Perdas De Gestação Em Vacas Leiteira. Master’s Thesis, Universidade de Lisboa, Lisboa, Portugal, 2016; pp. 55–56. [Google Scholar]
- Strelczuk, G. Diagnóstico precoce de Gestação em Bovinos Leiteiros. Bachelor’s Thesis, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil, 2015; pp. 15–17. [Google Scholar]
- White, M.E.; Lafaunce, N.; Mohammed, H.O. Calving outcomes for cows diagnosed pregnant or nonpregnant by per rectum examination at various intervals after insemination. Can. Vet. J. 1989, 30, 867–870. [Google Scholar] [PubMed]
- McLeod, B.; Williams, M. Incidence of ovarian dysfunction in post-partum dairy cows and the effectiveness of its clinical diagnosis and treatment. Vet. Rec. 1991, 128, 121–124. [Google Scholar] [CrossRef] [PubMed]
- Romano, J.E.; Bryan, K.; Ramos, R.S.; Velez, J.; Pinedo, P. Effect of early pregnancy diagnosis by per rectum amniotic sac palpation on pregnancy loss, calving rates, and abnormalities in newborn dairy calves. Theriogenology 2016, 85, 419–427. [Google Scholar] [CrossRef] [PubMed]
- Ginther, O.J. How ultrasound technologies have expanded and revolutionized research in reproduction in large animals. Theriogenology 2014, 81, 112–125. [Google Scholar] [CrossRef]
- Gábor, G.; Kastelic, J.P.; Abonyi-Tóth, Z.; Gábor, P.; Endrődi, T.; Balogh, O. Pregnancy Loss in Dairy Cattle: Relationship of Ultrasound, Blood Pregnancy-Specific Protein B, Progesterone and Production Variables. Reprod. Domest. Anim. 2016, 51, 467–473. [Google Scholar] [CrossRef]
- Curran, S.; Pierson, R.A.; Ginther, O.J. Ultrasonographic appearance of the bovine conceptus from days 20 through 60. J. Am. Vet. Med. Assoc. 1986, 189, 1295–1302. [Google Scholar]
- Nation, D.P.; Malmo, J.; Davis, G.R.; Macmillan, K.L. Accuracy of bovine pregnancy detection using transrectal ultrasonography at 28 to 35 days after insemination. Aust. Vet. J. 2003, 81, 63–65. [Google Scholar] [CrossRef]
- Romano, J.E.; Thompson, J.A.; Forrest, D.W.; Westhusin, M.E.; Tomaszweski, M.A.; Kraemer, D.C. Early pregnancy diagnosis by transrectal ultrasonography in dairy cattle. Theriogenology 2006, 66, 1034–1041. [Google Scholar] [CrossRef]
- Silva, E.; Sterry, R.A.; Kolb, D.; Mathialagan, N.; McGrath, M.F.; Ballam, J.M.; Fricke, P.M. Accuracy of a Pregnancy-Associated Glycoprotein ELISA to Determine Pregnancy Status of Lactating Dairy Cows Twenty-Seven Days After Timed Artificial Insemination. J. Dairy Sci. 2007, 90, 4612–4622. [Google Scholar] [CrossRef]
- López-Gatius, F.; Hunter RH, F. Spontaneous reduction of advanced twin embryos: Its occurrence and clinical relevance in dairy cattle. Theriogenology 2005, 63, 118–125. [Google Scholar] [CrossRef] [PubMed]
- Szelényi, Z.; Répási, A.; de Sousa, N.M.; Beckers, J.F.; Szenci, O. Accuracy of diagnosing double corpora lutea and twin pregnancy by measuring serum progesterone and bovine pregnancy-associated glycoprotein 1 in the first trimester of gestation in dairy cows. Theriogenology 2015, 84, 76–81. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Ispierto, I.; López-Gatius, F. Abortion in dairy cattle with advanced twin pregnancies: Incidence and timing. Reprod. Domest. Anim. = Zuchthyg. 2019, 54 (Suppl. 4), 50–53. [Google Scholar] [CrossRef] [PubMed]
- López-Gatius, F.; Garcia-Ispierto, I.; Hanzen, C. Unilateral twin pregnancy: A non-infectious factor required for the etiological diagnosis of abortion in dairy herds. J. Reprod. Dev. 2021, 67, 337–339. [Google Scholar] [CrossRef]
- López-Gatius, F.; García-Ispierto, I. Ultrasound and Endocrine Findings that Help to Assess the Risk of Late Embryo/Early Foetal Loss by Non-Infectious Cause in Dairy Cattle. Reprod. Domest. Anim. 2010, 45, 15–24. [Google Scholar] [CrossRef]
- Matsui, M.; Miyamoto, A. Evaluation of ovarian blood flow by colour Doppler ultrasound: Practical use for reproductive management in the cow. Vet. J. 2009, 181, 232–240. [Google Scholar] [CrossRef]
- Lüttgenau, J.; Bollwein, H. Evaluation of bovine luteal blood flow by using color Doppler ultrasonography. Reprod. Biol. 2014, 14, 103–109. [Google Scholar] [CrossRef]
- Bollwein, H.; Heppelmann, M.; Lüttgenau, J. Ultrasonographic Doppler Use for Female Reproduction Management. Vet. Clin. N. Am. Food Anim. Pract. 2016, 32, 149–164. [Google Scholar] [CrossRef]
- Romano, J.E.; Magee, D. Applications of trans-rectal ultrasonography in cow/heifer reproduction. In Annual Food Conference. Conception to Parturition: Fertility in Texas Beef Cattle; College of Veterinary Medicine: College Station, TX, USA, 2001; pp. 99–104. [Google Scholar]
- Van Loo, H.; Bogado Pascottini, O.; Ribbens, S.; Hooyberghs, J.; Opsomer, G.; Pardon, B. Enhancing bovine abortion surveillance: A learning experience. J. Dairy Sci. 2024, 107, 1766–1777. [Google Scholar] [CrossRef]
- Henker, L.C.; Lorenzett, M.P.; Lopes, B.C.; dos Santos, I.R.; Bandinelli, M.B.; Bassuino, D.M.; Juffo, G.D.; Antoniassi, N.A.B.; Pescador, C.A.; Sonne, L.; et al. Pathological and etiological characterization of cases of bovine abortion due to sporadic bacterial and mycotic infections. Braz. J. Microbiol. 2022, 53, 2251–2262. [Google Scholar] [CrossRef]
Risk Factor | References |
---|---|
Loss of body condition score in the post-partum period | [110] |
High milk production, especially in Holstein-Friesian cows | [31,111] |
Reduced period between calving and re-insemination | [87,112] |
Cohabitation with other species such as dogs (risk of infection by Neospora caninum) | [113] |
Negative energy balance | [16] |
Heat stress | [87,88] |
Corrective hoof trimming in the last month of gestation | [92] |
Mastitis and high somatic cell count | [30,110] |
History of dystocia, retained placenta, and recurrent uterine infections | [110,114] |
History of miscarriages | [87,115] |
Multiple pregnancies | [88,92] |
Lack of access to running water | [6] |
Absence of vaccination | [6,115] |
Inadequate progesterone levels | [16] |
Aged oocytes from persistent follicles | [16] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Andrade, M.F.; Simões, J. Embryonic and Fetal Mortality in Dairy Cows: Incidence, Relevance, and Diagnosis Approach in Field Conditions. Dairy 2024, 5, 526-541. https://doi.org/10.3390/dairy5030040
Andrade MF, Simões J. Embryonic and Fetal Mortality in Dairy Cows: Incidence, Relevance, and Diagnosis Approach in Field Conditions. Dairy. 2024; 5(3):526-541. https://doi.org/10.3390/dairy5030040
Chicago/Turabian StyleAndrade, Maria Francisca, and João Simões. 2024. "Embryonic and Fetal Mortality in Dairy Cows: Incidence, Relevance, and Diagnosis Approach in Field Conditions" Dairy 5, no. 3: 526-541. https://doi.org/10.3390/dairy5030040