Effect of Breed on the Fatty Acid Composition of Milk from Dairy Cows Milked Once and Twice a Day in Different Stages of Lactation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Farms and Cows
2.2. Sampling of Cows
2.3. Analysis of Milk Samples
2.4. Measurement of Body Condition Scores of the Cows
2.5. Statistical Analysis
- Yijklmn is the observation n for any of the production traits and composition traits in milking frequency i, breed j, lactation number k, stage of lactation l, and cow m.
- μ is the population mean.
- Mi is the fixed effect of milking frequency (i = OAD and TAD).
- Bj (Mi) is the fixed effect of breed j nested in milking frequency i (j = F, F × J, and J).
- Lk is the fixed effect of lactation number (k = 1st and 2nd lactation).
- Sl is the fixed effect of the stage of lactation (l = early, mid, and late).
- SlBj (Mi) is the fixed effect of interaction between stage of lactation l and breed j nested in milking frequency i.
- β1 is the regression coefficient of the linear effect of deviation (days) from herd median calving date on trait Y of cow m.
- Cm is the random effect of cow (m = 1, 2, …, 287) assumed with mean zero and variance . eijklmn is the residual random error assumed with mean zero and variance .
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tong, M.J.; Clark, D.A.; Cooper, C.V. Once-a-day milking: Possible and profitable? Proc. New Zealand Grassl. Assoc. 2002, 64, 33–37. [Google Scholar] [CrossRef]
- Davis, S.R. Lactational traits of importance in dairy cows and applications for emerging biotechnologies. N. Z. Vet. J. 2005, 53, 400–405. [Google Scholar] [CrossRef] [PubMed]
- Harris, B.L. Breeding dairy cows for the future in New Zealand. N. Z. Vet. J. 2005, 53, 384–390. [Google Scholar] [CrossRef] [PubMed]
- Livestock Improvement Corporation and DairyNZ. New Zealand Dairy Statistics 2019–2020. 2020. Available online: https://www.clal.it/upload/NZ_Dairy_Statistics_2019-20_WEB_FINAL.pdf (accessed on 20 July 2021).
- Lembeye, F.; López-Villalobos, N.; Burke, J.L.; Davis, S.R. Breed and heterosis effects for milk yield traits at different production levels, lactation number and milking frequencies. N. Z. J. Agric. Res. 2016, 59, 156–164. [Google Scholar] [CrossRef]
- Dezetter, C.; Leclerc, H.; Mattalia, S.; Barbat, A.; Boichard, D.; Ducrocq, V. Inbreeding and crossbreeding parameters for production and fertility traits in Holstein, Montbéliarde, and Normande cows. J. Dairy Sci. 2015, 98, 4904–4913. [Google Scholar] [CrossRef] [PubMed]
- Clasen, J.B.; Fogh, A.; Kargo, M. Differences between performance of F1 crossbreds and Holsteins at different production levels. J. Dairy Sci. 2019, 102, 436–441. [Google Scholar] [CrossRef] [PubMed]
- Clasen, J.B.; Fikse, W.F.; Kargo, M.; Rydhmer, L.; Strandberg, E.; Østergaard, S. Economic consequences of dairy crossbreeding in conventional and organic herds in Sweden. J. Dairy Sci. 2020, 103, 514–528. [Google Scholar] [CrossRef]
- Auldist, M.J.; Johnston, K.A.; White, N.J.; Fitzsimons, W.P.; Boland, M.J. A comparison of the composition, coagulation characteristics and cheesemaking capacity of milk from Friesian and Jersey dairy cows. J. Dairy Sci. 2004, 71, 51–57. [Google Scholar] [CrossRef]
- MacGibbon, A.K.H.; Taylor, M.M. Composition and structure of bovine milk lipids. In Advanced Dairy Chemistry, 3rd ed.; Fox, P.F., McSweeney, P.L.H., Eds.; Springer: New York, NY, USA, 2006; Volume 2, pp. 1–42. [Google Scholar]
- MacGibbon, A.K. Herd-to-herd variations in the properties of milkfat. Proc. N. Z. Soc. Anim. Prod. 1996, 56, 224–227. [Google Scholar]
- Soyeurt, H.; Dardenne, P.; Gillon, A.; Croquet, C.; Vanderick, S.; Mayeres, P.; Bertozzi, C.; Gengler, N. Variation in fatty acid contents of milk and milk fat within and across breeds. J. Dairy Sci. 2006, 89, 4858–4865. [Google Scholar] [CrossRef]
- Stoop, W.M.; Bovenhuis, H.; Heck, J.M.L.; van Arendonk, J.A.M. Effect of lactation stage and energy status on milk fat composition of Holstein-Friesian cows. J. Dairy Sci. 2009, 92, 1469–1478. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palladino, R.A.; Buckley, F.; Prendiville, R.; Murphy, J.J.; Callan, J.; Kenny, D.A. A comparison between Holstein-Friesian and Jersey dairy cows and their F1 hybrid on milk fatty acid composition under grazing conditions. J. Dairy Sci. 2010, 93, 2176–2184. [Google Scholar] [CrossRef] [PubMed]
- Auldist, M.J.; Walsh, B.J.; Thomson, N.A. Seasonal and lactational influences on bovine milk composition in New Zealand. J. Dairy Res. 1998, 65, 401–411. [Google Scholar] [CrossRef] [PubMed]
- Back, P.J.; Thomson, N.A. Exploiting cow genotype to increase milk value through production of minor milk components. Proc. N. Z. Soc. Anim. Prod. 2005, 65, 53–58. [Google Scholar]
- Palmquist, D.L.; Beaulieu, A.D.; Barbano, D.M. Feed and animal factors influencing milk fat composition. J. Dairy Sci. 1993, 76, 1753–1771. [Google Scholar] [CrossRef]
- Dewhurst, R.J.; Shingfield, K.J.; Lee, M.R.; Scollan, N.D. Increasing the concentrations of beneficial polyunsaturated fatty acids in milk produced by dairy cows in high-forage systems. Anim. Feed Sci. Technol. 2006, 131, 168–206. [Google Scholar] [CrossRef]
- Heck, J.M.; Van Valenberg, H.J.; Dijkstra, J.; Van Hooijdonk, A.C. Seasonal variation in the Dutch bovine raw milk composition. J. Dairy Sci. 2009, 92, 4745–4755. [Google Scholar] [CrossRef]
- Schwendel, B.H.; Morel, P.C.; Wester, T.J.; Tavendale, M.H.; Deadman, C.; Fong, B.; Shadbolt, N.M.; Thatcher, A.; Otter, D.E. Fatty acid profile differs between organic and conventionally produced cow milk independent of season or milking time. J. Dairy Sci. 2015, 98, 1411–1425. [Google Scholar] [CrossRef]
- Yang, W.; Zhang, B.; Xu, C.; Zhang, H.; Xia, C. Effects of ketosis in dairy cows on blood biochemical parameters, milk yield and composition, and digestive capacity. J. Vet. Res. 2019, 63, 555–560. [Google Scholar] [CrossRef]
- Guliński, P. Ketone bodies–causes and effects of their increased presence in cows’ body fluids: A review. Vet. World 2021, 14, 1492–1503. [Google Scholar] [CrossRef]
- Xu, C.; Shen, T.; Yang, W.; Yu, H.; Gao, S.; Huang, B. The effect of subacute ruminal acidosis of dairy cows on productivity, digestibility and greenhouse gas emission. J. Agric. Sci. 2016, 8, 92–100. [Google Scholar] [CrossRef]
- Nejash, A. Sub-acute ruminal acidosis (SARA) and its consequence in dairy cattle: A review of past and recent research at global prospective. Achiev. Life Sci. 2016, 10, 187–196. [Google Scholar] [CrossRef] [Green Version]
- Lopez-Villalobos, N.; Spelman, R.J.; Melis, J.; Davis, S.R.; Berry, S.D.; Lehnert, K.; Holroyd, S.E.; MacGibbon, A.K.; Snell, R.G. Estimation of genetic and crossbreeding parameters of fatty acid concentrations in milk fat predicted by mid-infrared spectroscopy in New Zealand dairy cattle. J. Dairy Sci. 2014, 81, 340–349. [Google Scholar] [CrossRef]
- Arnould, V.R.; Soyeurt, H. Genetic variability of milk fatty acids. J. Appl. Genet. 2009, 50, 29–39. [Google Scholar] [CrossRef]
- Lembeye, F.; López-Villalobos, N.; Burke, J.L.; Davis, S.R. Estimation of breed and heterosis effects for milk traits and somatic cell scores in cows milked once and twice daily in New Zealand. Proc. N. Z. Soc. Anim. Prod. 2015, 75, 60–63. [Google Scholar]
- Kgwatalala, P.M.; Ibeagha-Awemu, E.M.; Mustafa, A.F.; Zhao, X. Stearoyl-CoA desaturase 1 genotype and stage of lactation influences milk fatty acid composition of Canadian Holstein cows. Anim. Genet. 2009, 40, 609–615. [Google Scholar] [CrossRef]
- Bilal, G.; Cue, R.I.; Mustafa, A.F.; Hayes, J.F. Effects of parity, age at calving and stage of lactation on fatty acid composition of milk in Canadian Holsteins. Can. J. Anim. Sci. 2014, 94, 401–410. [Google Scholar] [CrossRef]
- Correa-Luna, M.; Donaghy, D.; Kemp, P.; Schutz, M.; López-Villalobos, N. Efficiency of crude protein utilisation in grazing dairy cows: A case study comparing two production systems differing in intensification level in New Zealand. Animals 2020, 10, 1036. [Google Scholar] [CrossRef]
- Corson, D.C.; Waghorn, G.C.; Ulyatt, M.J.; Lee, J. NIRS: Forage analysis and livestock feeding. Proc. New Zealand Grassl. Assoc. 1999, 61, 127–132. [Google Scholar] [CrossRef]
- DairyNZ. Body Condition Scoring Made Easy. 2004. Available online: https://www.dairynz.co.nz/media/5790783/body-condition-scoring-made-easy-booklet.pdf (accessed on 16 September 2021).
- Alderman, G.; Cottrill, B.R. Energy and Protein Requirements of Ruminants: An Advisory Manual Prepared by the AFRC Technical Committee on Responses to Nutrients; CAB International: Wallingford, UK, 1993; pp. 62–63. [Google Scholar]
- Zbinden, R.S.; Falk, M.; Münger, A.; Dohme-Meier, F.; van Dorland, H.A.; Bruckmaier, R.M.; Gross, J.J. Metabolic load in dairy cows kept in herbage-based feeding systems and suitability of potential markers for compromised well-being. J. Anim. Physiol Anim. Nutr. 2017, 101, 767–778. [Google Scholar] [CrossRef]
- DairyNZ. Dietary Fibre Is Needed by the Cow to Maintain Healthy Rumen Function. Eating Fibre Stimulates Chewing, Saliva Production and Rumination. Available online: https://www.dairynz.co.nz/feed/nutrition/principles-of-nutrition/fibre/#:~:text=for%20cows%20grazing%20high%20quality,27%25%20and%20eNDF%2020%25 (accessed on 15 July 2022).
- Mackle, T.R.; Petch, S.F.; Bryant, A.M.; Auldist, M.J.; Henderson, H.V.; MacGibbon, A.K.H. Variation in the characteristics of milkfat from pasture-fed dairy cows during late spring and the effects of grain supplementation. N. Z. J. Agric. Res. 1997, 40, 349–359. [Google Scholar] [CrossRef]
- Lucey, J.A.; Fox, P.F. Rennet coagulation properties of late-lactation milk, Effect of pH adjustment, addition of CaCl2, variation in rennet level and blending with mid-lactation milk. Ir. J. Agric. Food Res. 1992, 31, 173–184. [Google Scholar]
- Lucey, J. Cheesemaking from grass based seasonal milk and problems associated with late-lactation milk. Int. J. Dairy Technol. 1996, 49, 59–64. [Google Scholar] [CrossRef]
- Sneddon, N.W.; Lopez-Villalobos, N.; Hickson, R.E.; Shalloo, L.; Garrick, D.J. Estimation of crossbreeding effects on yields of dairy products and value of milk processed in different product portfolios. Proc. N. Z. Soc. Anim. Prod. 2015, 75, 48–53. [Google Scholar]
- DePeters, E.J.; Medrano, J.F.; Reed, B.A. Fatty acid composition of milk fat from three breeds of dairy cattle. Can. J. Anim. Sci. 1995, 75, 267–269. [Google Scholar] [CrossRef]
- Townsend, S.J.; Siebert, B.D.; Pitchford, W.S. Variation in milk fat content and fatty acid composition of Jersey and Friesian cattle. Proc. Assoc. Adv. Anim. Breed. Genet. 1997, 12, 283–291. [Google Scholar]
- Drackley, J.K.; Beaulieu, A.D.; Elliott, J.P. Responses of milk fat composition to dietary fat or nonstructural carbohydrates in Holstein and Jersey cows. J. Dairy Sci. 2001, 84, 1231–1237. [Google Scholar] [CrossRef]
- MacGibbon, A.K.H. Composition and Structure of Bovine Milk Lipids. In Advanced Dairy Chemistry, 4th ed.; McSweeney, P.L.H., Fox, P.F., O’Mahony, J.A., Eds.; Springer: New York, NY, USA, 2020; Volume 2, pp. 1–32. [Google Scholar]
- Gross, J.; van Dorland, H.A.; Bruckmaier, R.M.; Schwarz, F.J. Milk fatty acid profile related to energy balance in dairy cows. J. Dairy Sci. 2011, 78, 479–488. [Google Scholar] [CrossRef]
- Rémond, B.; Coulon, J.B.; Nicloux, M.; Levieux, D. Effect of temporary once-daily milking in early lactation on milk production and nutritional status of dairy cows. Ann. Zootech. 1999, 48, 341–352. [Google Scholar] [CrossRef]
- Rémond, B.; Aubailly, S.; Chilliard, Y.; Dupont, D.; Pomiès, D.; Petit, M. Combined effects of once-daily milking and feeding level in the first three weeks of lactation on milk production and enzyme activities, and nutritional status, in Holstein cows. Anim. Res. 2002, 51, 101–117. [Google Scholar] [CrossRef] [Green Version]
Farm | No. 1 Dairy (OAD 11) | No. 4 Dairy (TAD 12) | ||||
---|---|---|---|---|---|---|
Lactation Stage | Early (September) | Mid (December) | Late (March) | Early (September) | Mid (December) | Late (March) |
Feed ingredients (kg DM per cow per day) | ||||||
Pasture | 8.0 | 12.0 | 4.5 | 17.0 | 17.0 | 10.0 |
Herb mix crop 1 | 4.0 | 4.0 | 3.0 | - | - | - |
Maize silage | 1.0 | - | - | 5.0 | 5.0 | 2.0 |
DDG 2 | 1.5 | - | - | - | 1.0 | - |
Tapioca pellets | 1.5 | - | 1.5 | - | - | - |
Concentrate 3 | - | - | 2.0 | 4.0 | - | 1.0 |
Dry roughage 4 | - | - | - | 0.2 | - | 1.0 |
Baleage 5 | - | - | 4.0 | - | 1.0 | 10.0 |
Feed chemical composition | ||||||
ME 6 MJ ME/kg DM | 11.89 | 12.12 | 9.98 | 11.36 | 10.58 | 11.28 |
CP 7 % of DM | 20.08 | 19.48 | 21.91 | 19.49 | 19.08 | 21.27 |
NDF 8 % of DM | 38.18 | 38.66 | 39.88 | 44.13 | 43.48 | 45.69 |
ADF 9 % of DM | 20.94 | 20.38 | 26.00 | 20.71 | 23.60 | 25.40 |
SSS 10 % of DM | 16.77 | 14.11 | 8.79 | 19.13 | 17.55 | 8.59 |
Lipid % of DM | 4.08 | 4.69 | 4.54 | 4.40 | 4.09 | 4.77 |
Variable | Mean | SD | Milking Frequency | Lactation Number | Breed (MF) | Stage of Lactation | Breed (MF) × S | dmcd |
---|---|---|---|---|---|---|---|---|
Milk yield (L/cow/day) | 17.6 | 5.8 | 320.5 *** | 207.2 *** | 6.7 *** | 498.7 *** | 6.9 *** | 3.1 * |
Fat yield (kg/cow/day) | 0.84 | 0.3 | 58.7 *** | 110.6 *** | 2.4 | 153.8 *** | 1.2 * | 7.2 ** |
Protein yield (kg/cow/day) | 0.67 | 0.2 | 146.6 *** | 209.9 *** | 3.6 * | 288.9 *** | 4.3 *** | 0.7 |
Lactose yield (kg/cow/day) | 0.88 | 0.32 | 372.7 *** | 175.9 *** | 5.2 ** | 586.3 *** | 9.3 *** | 3.5 |
Fat% | 4.41 | 1.1 | 241.2 *** | 2.2 | 15.8 *** | 34.8 *** | 8.6 *** | 0.2 |
Protein% | 3.92 | 0.4 | 236.4 *** | 10.1 ** | 16.8 *** | 851.6 *** | 5.8 *** | 7.8 ** |
Lactose% | 4.95 | 0.3 | 127.3 *** | 9.9 ** | 1.6 | 633.4 *** | 11.8 *** | 1.6 |
Fatty acid (% of the total FA) | ||||||||
SFA 1 | 70.0 | 3.1 | 5.0 * | 71.0 *** | 4.6 ** | 215.4 *** | 4.1 *** | 3.7 |
UFA 2 | 30.2 | 2.6 | 32.5 *** | 87.5 *** | 3.8 * | 168.9 *** | 5.1 *** | 2.7 |
PUFA 3 | 2.95 | 0.5 | 107.1 *** | 64.0 *** | 2.0 | 377.2 *** | 73.8 *** | 0.2 |
C4:0 | 4.01 | 0.3 | 167.7 *** | 9.2 ** | 0.1 | 566.6 *** | 28.4 *** | 11.8 ** |
C6:0 | 2.81 | 0.2 | 13.4 *** | 29.0 *** | 1.0 | 435.8 *** | 25.8 *** | 1.1 |
C8:0 | 1.52 | 0.2 | 13.0 *** | 28.6 *** | 1.0 | 494.4 *** | 23.3 *** | 0.2 |
C10:0 | 3.42 | 0.4 | 45.4 *** | 38.3 *** | 1.0 | 283.0 *** | 19.2 *** | 1.0 |
C12:0 | 3.82 | 0.4 | 82.2 *** | 32.7 *** | 0.8 | 62.2 *** | 10.8 *** | 9.6 ** |
C14:0 | 12.7 | 1.3 | 5.3 * | 45.3 *** | 1.5 | 191.8 *** | 4.9 *** | 20.6 *** |
C16:0 | 31.9 | 2.5 | 20.8 *** | 51.8 *** | 1.9 | 292.6 *** | 3.6 *** | 1.6 |
C18:0 | 13.1 | 1.5 | 8.2 ** | 5.1 * | 9.6 *** | 13.4 *** | 10.1 *** | 22.7 *** |
C18:1 cis-9 | 20.2 | 2.8 | 8.0 ** | 60.6 *** | 1.6 | 199.7 *** | 7.1 *** | 17.4 *** |
Omega6 | 1.59 | 0.4 | 29.3 *** | 19.7 *** | 4.1 ** | 676.6 *** | 65.5 *** | 0.4 |
SCFA 4 | 8.33 | 0.6 | 49.9 *** | 24.2 *** | 0.4 | 607.6 *** | 32.0 *** | 5.2 * |
MCFA 5 | 20.0 | 1.8 | 22.9 *** | 47.1 *** | 0.9 | 63.2 *** | 6.4 *** | 14.3 *** |
LCFA 6 | 66.7 | 2.6 | 63.5 *** | 4.8 * | 2.6 | 1.1 | 7.8 *** | 30.0 *** |
Variable | Milking Frequency | ||||
---|---|---|---|---|---|
OAD | TAD | ||||
F | F × J | J | F | F × J | |
Milk yield (L/cow/day) | 14.95 ± 0.39 a | 14.85 ± 0.40 a | 12.8 ± 0.46 b | 20.29 ± 0.25 a | 19.53 ± 0.27 b |
Fat yield (kg/cow/day) | 0.74 ± 0.02 b | 0.81 ± 0.02 a | 0.74 ± 0.03 b | 0.89 ± 0.01 a | 0.91 ± 0.02 a |
Protein yield (kg/cow/day) | 0.6 ± 0.01 ab | 0.62 ± 0.01 a | 0.56 ± 0.02 b | 0.74 ± 0.01 a | 0.72 ± 0.01 a |
Lactose yield (kg/cow/day) | 0.72 ± 0.02 a | 0.72 ± 0.02 a | 0.63 ± 0.02 b | 1.02 ± 0.01 a | 0.99 ± 0.01 a |
Fat% | 4.82 ± 0.10 c | 5.26 ± 0.11 b | 5.76 ± 0.12 a | 3.83 ± 0.06 b | 4.13 ± 0.07 a |
Protein% | 4.02 ± 0.04 c | 4.22 ± 0.04 b | 4.39 ± 0.04 a | 3.74 ± 0.02 a | 3.79 ± 0.02 a |
Lactose% | 4.79 ± 0.02 a | 4.8 ± 0.02 a | 4.85 ± 0.03 a | 5.01 ± 0.01 a | 5.03 ± 0.02 a |
Fatty acid (% of the total FA) | |||||
SFA 1 | 69.47 ± 0.29 b | 69.64 ± 0.3 b | 70.73 ± 0.34 a | 70.19 ± 0.18 b | 70.76 ± 0.2 a |
UFA 2 | 30.93 ± 0.24 a | 30.99 ± 0.25 a | 30.14 ± 0.28 b | 29.83 ± 0.15 a | 29.35 ± 0.16 b |
PUFA 3 | 3.14 ± 0.03 a | 3.09 ± 0.03 a | 3.09 ± 0.04 a | 2.86 ± 0.02 a | 2.8 ± 0.02 b |
C4:0 | 3.83 ± 0.03 a | 3.84 ± 0.03 a | 3.84 ± 0.03 a | 4.11 ± 0.02 a | 4.12 ± 0.02 a |
C6:0 | 2.77 ± 0.02 a | 2.76 ± 0.02 a | 2.81 ± 0.02 a | 2.83 ± 0.01 a | 2.84 ± 0.01 a |
C8:0 | 1.54 ± 0.01 a | 1.53 ± 0.01 a | 1.56 ± 0.02 a | 1.51 ± 0.01 a | 1.51 ± 0.01 a |
C10:0 | 3.61 ± 0.04 a | 3.54 ± 0.04 a | 3.58 ± 0.05 a | 3.38 ± 0.03 a | 3.34 ± 0.03 a |
C12:0 | 4.04 ± 0.04 a | 3.97 ± 0.04 a | 4.03 ± 0.04 a | 3.76 ± 0.02 a | 3.74 ± 0.03 a |
C14:0 | 12.92 ± 0.12 ab | 12.78 ± 0.12 a | 13.14 ± 0.13 b | 12.7 ± 0.07 a | 12.76 ± 0.08 a |
C16:0 | 31.52 ± 0.24 a | 31.18 ± 0.26 a | 31.76 ± 0.28 a | 32.19 ± 0.15 a | 32.59 ± 0.17 a |
C18:0 | 12.27 ± 0.16 b | 12.99 ± 0.17 a | 13.22 ± 0.19 a | 12.96 ± 0.1 b | 13.46 ± 0.11 a |
C18:1 cis-9 | 19.85 ± 0.24 a | 19.84 ± 0.25 a | 19.24 ± 0.28 a | 20.31 ± 0.15 a | 20.07 ± 0.16 a |
Omega6 | 1.71 ± 0.03 a | 1.63 ± 0.03 b | 1.61 ± 0.03 b | 1.55 ± 0.02 a | 1.5 ± 0.02 b |
SCFA 4 | 8.14 ± 0.05 a | 8.13 ± 0.05 a | 8.21 ± 0.06 a | 8.45 ± 0.03 a | 8.47 ± 0.04 a |
MCFA 5 | 20.58 ± 0.18 a | 20.29 ± 0.19 a | 20.74 ± 0.21 a | 19.83 ± 0.11 a | 19.84 ± 0.12 a |
LCFA 6 | 65.36 ± 0.26 a | 65.66 ± 0.29 a | 65.78 ± 0.31 a | 67.01 ± 0.17 b | 67.62 ± 0.18 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sanjayaranj, I.; Lopez-Villalobos, N.; Blair, H.T.; Janssen, P.W.M.; Holroyd, S.E.; MacGibbon, A.K.H. Effect of Breed on the Fatty Acid Composition of Milk from Dairy Cows Milked Once and Twice a Day in Different Stages of Lactation. Dairy 2022, 3, 608-621. https://doi.org/10.3390/dairy3030043
Sanjayaranj I, Lopez-Villalobos N, Blair HT, Janssen PWM, Holroyd SE, MacGibbon AKH. Effect of Breed on the Fatty Acid Composition of Milk from Dairy Cows Milked Once and Twice a Day in Different Stages of Lactation. Dairy. 2022; 3(3):608-621. https://doi.org/10.3390/dairy3030043
Chicago/Turabian StyleSanjayaranj, Inthujaa, Nicolas Lopez-Villalobos, Hugh T. Blair, Patrick W. M. Janssen, Stephen E. Holroyd, and Alastair K. H. MacGibbon. 2022. "Effect of Breed on the Fatty Acid Composition of Milk from Dairy Cows Milked Once and Twice a Day in Different Stages of Lactation" Dairy 3, no. 3: 608-621. https://doi.org/10.3390/dairy3030043