Comparative Assessment of Shell Structural, Mechanical, and Elemental Properties in Adult Acorn Barnacles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Barnacle Collection, Larval Culture, and Analysis Overview
2.2. Sample Preparation
2.3. Structural Assessments
2.4. Micromechanical Testing
2.5. Shell Composition
2.6. Statistical Analyses
3. Results
3.1. Structure
3.2. Mechanical Properties
3.3. Composition
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pérez-Losada, M.; Høeg, J.T.; Simon-Blecher, N.; Achituv, Y.; Jones, D.; Crandall, K.A. Molecular phylogeny, systematics and morphological evolution of the acorn barnacles (Thoracica: Sessilia: Balanomorpha). Mol. Phylogen. Evol. 2014, 81, 147–158. [Google Scholar] [CrossRef] [PubMed]
- Barnes, M. The use of intertidal barnacle shells. In Oceanography and Marine Biology: An Annual Review; Gibson, R.N., Barnes, M., Eds.; Taylor & Francis: London, UK, 2000; Volume 38, pp. 157–187. [Google Scholar]
- Jernakoff, P. Factors affecting the recruitment of algae in a midshore region dominated by barnacles. J. Exp. Mar. Biol. Ecol. 1983, 67, 17–31. [Google Scholar] [CrossRef]
- Reimer, A. Description of a Tetraclita stalactifera panamensis community on a rocky intertidal Pacific shore of Panama. Mar. Biol. 1976, 35, 225–238. [Google Scholar] [CrossRef]
- Sarkar, P.K.; Pawar, S.S.; Rath, S.K.; Kandasubramanian, B. Anti-barnacle biofouling coatings for the protection of marine vessels: Synthesis and progress. Environ. Sci. Pollut. Res. 2022, 29, 26078–26112. [Google Scholar] [CrossRef] [PubMed]
- Thomason, J.C.; Hills, J.M.; Clare, A.S.; Neville, A.; Richardson, M. Hydrodynamic consequences of barnacle colonization. Hydrobiologia 1998, 376, 191–201. [Google Scholar] [CrossRef]
- Lively, C.M. Competition, comparative life histories, and maintenance of shell dimorphism in a barnacle. Ecology 1986, 67, 858–864. [Google Scholar] [CrossRef]
- Chan, B.K.; Dreyer, N.; Gale, A.S.; Glenner, H.; Ewers-Saucedo, C.; Pérez-Losada, M.; Kolbasov, G.A.; Crandall, K.A.; Høeg, J.T. The evolutionary diversity of barnacles, with an updated classification of fossil and living forms. Zool. J. Linn. Soc. 2021, 193, 789–846. [Google Scholar] [CrossRef]
- Seoane Miraz, D. Genetic Analyses in the Gooseneck Barnacles (genus Pollicipes). Ph.D. Theses, Universidad de Coruña, Coruña, Spain, 2015. [Google Scholar]
- Anderson, D.T. Barnacles: Structure, Function, Development and Evolution; Chapman & Hall: London, UK, 1994; p. 357. [Google Scholar]
- Crisp, D.J.; Bourget, E. Growth in barnacles. Adv. Mar. Biol. 1985, 22, 199–244. [Google Scholar] [CrossRef]
- Matsumura, K.; Qian, P.-Y. Larval vision contributes to gregarious settlement in barnacles: Adult red fluorescence as a possible visual signal. J. Exp. Biol. 2014, 217, 743–750. [Google Scholar] [CrossRef]
- Darwin, C.R. A Monograph on the Sub-Class Cirripedia: The Balanidć (or Sessile Cirrepedes) the Verrucidć, etc., etc., etc.; Ray Society: London, UK, 1854; Volume 2, p. 684. [Google Scholar]
- Pitombo, F.B. Comparative morphology of the Balanidae (Cirripedia): A primer to a phylogenetic analysis. In Crustaceans and the Biodiversity Crisis; Schram, F., von Vaupel Klein, C., Eds.; Brill: Amsterdam, The Netherlands, 1999; pp. 151–171. [Google Scholar]
- Pitombo, F.B. Phylogenetic analysis of the Balanidae (Cirripedia, Balanomorpha). Zool. Scr. 2004, 33, 261–276. [Google Scholar] [CrossRef]
- Trenn, T.J. Charles Darwin, fossil cirripedes, and Robert Fitch: Presenting sixteen hitherto unpublished Darwin letters of 1849 to 1851. Proc. Am. Philos. Soc. 1974, 118, 471–491. [Google Scholar]
- Astachov, L.; Nevo, Z.; Brosh, T.; Vago, R. The structural, compositional and mechanical features of the calcite shell of the barnacle Tetraclita rufotincta. J. Struct. Biol. 2011, 175, 311–318. [Google Scholar] [CrossRef] [PubMed]
- Barnes, H.; Read, R.; Topinka, J. The behaviour on impaction by solids of some common cirripedes and relation to their normal habitat. J. Exp. Mar. Biol. Ecol. 1970, 5, 70–87. [Google Scholar] [CrossRef]
- Murdock, G.R.; Currey, J.D. Strength and design of shells of the two ecologically distinct barnacles, Balanus balanus and Semibalanus (Balanus) balanoides (Cirripedia). Biol. Bull. 1978, 155, 169–192. [Google Scholar] [CrossRef]
- Khalifa, G.M.; Weiner, S.; Addadi, L. Mineral and matrix components of the operculum and shell of the barnacle Balanus amphitrite: Calcite crystal growth in a hydrogel. Cryst. Growth Des. 2011, 11, 5122–5130. [Google Scholar] [CrossRef]
- Checa, A.G.; González-Segura, A.; Rodríguez-Navarro, A.B.; Lagos, N.A. Microstructure and crystallography of the wall plates of the giant barnacle Austromegabalanus psittacus: A material organized by crystal growth. J. R. Soc. Interface 2020, 17, 20190743. [Google Scholar] [CrossRef] [PubMed]
- Checa, A.G.; Salas, C.; Rodríguez-Navarro, A.B.; Grenier, C.; Lagos, N.A. Articulation and growth of skeletal elements in balanid barnacles (Balanidae, Balanomorpha, Cirripedia). R. Soc. Open Sci. 2019, 6, 190458. [Google Scholar] [CrossRef]
- Lewis, A.C.; Burden, D.K.; Wahl, K.J.; Everett, R.K. Electron backscatter diffraction (EBSD) study of the structure and crystallography of the barnacle Balanus amphitrite. JOM 2014, 66, 143–148. [Google Scholar] [CrossRef]
- Mitchell, R.; Coleman, M.; Davies, P.; North, L.; Pope, E.; Pleydell-Pearce, C.; Harris, W.; Johnston, R. Macro-to-nanoscale investigation of wall-plate joints in the acorn barnacle Semibalanus balanoides: Correlative imaging, biological form and function, and bioinspiration. J. R. Soc. Interface 2019, 16, 20190218. [Google Scholar] [CrossRef]
- Meyers, M.A.; Chen, P.-Y.; Lopez, M.I.; Seki, Y.; Lin, A.Y. Biological materials: A materials science approach. J. Mech. Behav. Biomed. Mater. 2011, 4, 626–657. [Google Scholar] [CrossRef]
- Meyers, M.A.; McKittrick, J.; Chen, P.-Y. Structural biological materials: Critical mechanics-materials connections. Science 2013, 339, 773–779. [Google Scholar] [CrossRef] [PubMed]
- Rittschof, D.; Branscomb, E.; Costlow, J. Settlement and behavior in relation to flow and surface in larval barnacles, Balanus amphitrite Darwin. J. Exp. Mar. Biol. Ecol. 1984, 82, 131–146. [Google Scholar] [CrossRef]
- Rittschof, D.; Clare, A.; Gerhart, D.; Mary, S.A.; Bonaventura, J. Barnacle in vitro assays for biologically active substances: Toxicity and settlement inhibition assays using mass cultured Balanus amphitrite amphitrite Darwin. Biofouling 1992, 6, 115–122. [Google Scholar] [CrossRef]
- Figueroa, M.A.; Schablik, J.D.; Mastroberte, M.; Singh, L.; Dickinson, G.H. The effect of hydrophobic alkyl silane self-assembled monolayers on adult barnacle adhesion. Mar. Technol. Soc. J. 2017, 51, 39–48. [Google Scholar] [CrossRef]
- Nardone, J.A.; Patel, S.; Siegel, K.R.; Tedesco, D.; McNicholl, C.G.; O’Malley, J.; Herrick, J.; Metzler, R.A.; Orihuela, B.; Rittschof, D.; et al. Assessing the impacts of ocean acidification on adhesion and shell formation in the barnacle Amphibalanus amphitrite. Front. Mar. Sci. 2018, 5, 369. [Google Scholar] [CrossRef]
- Lakens, D. Calculating and reporting effect sizes to facilitate cumulative science: A practical primer for t-tests and ANOVAs. Front. Psychol. 2013, 4, 863. [Google Scholar] [CrossRef]
- Chakrabarty, D.; Mahapatra, S. Aragonite crystals with unconventional morphologies. J. Mater. Chem. 1999, 9, 2953–2957. [Google Scholar] [CrossRef]
- Bourget, E. Barnacle shells: Composition, structure and growth. In Barnacle Biology; Crustacean Issues; Southward, A.J., Schram, F.R., Eds.; A.A. Balkema: Rotterdam, The Netherlands, 1987; Volume 5, pp. 267–285. [Google Scholar]
- Gubbay, S. Compressive and adhesive strengths of a variety of British barnacles. J. Mar. Biol. Assoc. U. K. 1983, 63, 541–555. [Google Scholar] [CrossRef]
- Karande, A.; Udhayakumar, M. Shell structure and shell strength in Cirripedes. Proc. Anim. Sci. 1989, 98, 223–231. [Google Scholar] [CrossRef]
- Gohad, N.V.; Dickinson, G.H.; Orihuela, B.; Rittschof, D.; Mount, A.S. Visualization of putative ion-transporting epithelia in Amphibalanus amphitrite using correlative microscopy: Potential function in osmoregulation and biomineralization. J. Exp. Mar. Biol. Ecol. 2009, 380, 88–98. [Google Scholar] [CrossRef]
- Costlow, J.D. Shell development in Balanus improvisus Darwin. J. Morphol. 1956, 99, 359–415. [Google Scholar] [CrossRef]
- Wang, C.; Schultzhaus, J.N.; Taitt, C.R.; Leary, D.H.; Shriver-Lake, L.C.; Snellings, D.; Sturiale, S.; North, S.H.; Orihuela, B.; Rittschof, D. Characterization of longitudinal canal tissue in the acorn barnacle Amphibalanus amphitrite. PLoS ONE 2018, 13, e0208352. [Google Scholar] [CrossRef] [PubMed]
- Schultzhaus, J.; Hervey, J.; Fears, K.; Spillmann, C. Proteomic comparison of the organic matrices from parietal and base plates of the acorn barnacle Amphibalanus amphitrite. Open Biol. 2024, 14, 230246. [Google Scholar] [CrossRef] [PubMed]
- Schultzhaus, J.N.; Wang, C.; Patel, S.; Smerchansky, M.; Phillips, D.; Taitt, C.R.; Leary, D.H.; Hervey, J.; Dickinson, G.H.; So, C.R. Distribution of select cement proteins in the acorn barnacle Amphibalanus amphitrite. Front. Mar. Sci. 2020, 7, 586281. [Google Scholar] [CrossRef]
- De Gregorio, B.T.; Stroud, R.M.; Burden, D.K.; Fears, K.P.; Everett, R.K.; Wahl, K.J. Shell structure and growth in the base plate of the barnacle Amphibalanus amphitrite. ACS Biomater. Sci. Eng. 2015, 1, 1085–1095. [Google Scholar] [CrossRef] [PubMed]
- Dickinson, G.H.; Vega, I.E.; Wahl, K.J.; Orihuela, B.; Beyley, V.; Rodriguez, E.N.; Everett, R.K.; Bonaventura, J.; Rittschof, D. Barnacle cement: A polymerization model based on evolutionary concepts. J. Exp. Biol. 2009, 212, 3499–3510. [Google Scholar] [CrossRef] [PubMed]
- Hur, S.; Méthivier, C.; Wilson, A.; Salmain, M.; Boujday, S.; Miserez, A. Biomineralization in barnacle base plate in association with adhesive cement protein. ACS Appl. Bio Mater. 2023, 6, 3423–3432. [Google Scholar] [CrossRef] [PubMed]
- Burden, D.K.; Spillmann, C.M.; Everett, R.K.; Barlow, D.E.; Orihuela, B.; Deschamps, J.R.; Fears, K.P.; Rittschof, D.; Wahl, K.J. Growth and development of the barnacle Amphibalanus amphitrite: Time and spatially resolved structure and chemistry of the base plate. Biofouling 2014, 30, 799–812. [Google Scholar] [CrossRef] [PubMed]
- Hui, C.-Y.; Long, R.; Wahl, K.J.; Everett, R.K. Barnacles resist removal by crack trapping. J. R. Soc. Interface 2011, 8, 868–879. [Google Scholar] [CrossRef]
- Checa, A.G.; Macías-Sánchez, E.; Rodríguez-Navarro, A.B.; Sánchez-Navas, A.; Lagos, N.A. Origin of the biphase nature and surface roughness of biogenic calcite secreted by the giant barnacle Austromegabalanus psittacus. Sci. Rep. 2020, 10, 16784. [Google Scholar] [CrossRef]
- Rodríguez-Navarro, A.B.; Grenier, C.; Checa, A.G.; Jiménez-López, C.; Sánchez-Sánchez, P.; Bertone, D.; Lagos, N.A. Role of the organic matter in the structural organization of giant barnacle Austromegabalanus psittacus shell from the micro-to nanoscale. Cryst. Growth Des. 2021, 21, 357–365. [Google Scholar] [CrossRef]
- Bourget, E. Shell structure in sessile barnacles. Nat. Can. 1977, 104, 281–323. [Google Scholar]
- Lowenstam, H.A. Coexisting calcites and aragonites from skeletal carbonates of marine organisms and their strontium and magnesium contents. In Recent Researches in the Fields of Hydrosphere, Atmosphere and Nuclear Chemistry; Miyake, Y., Koyama, T., Eds.; Maruzen Co., Ltd.: Tokyo, Japan, 1964; pp. 373–404. [Google Scholar]
- Khouzani, M.F.; Chevrier, D.M.; Güttlein, P.; Hauser, K.; Zhang, P.; Hedin, N.; Gebauer, D. Disordered amorphous calcium carbonate from direct precipitation. CrystEngComm 2015, 17, 4842–4849. [Google Scholar] [CrossRef]
- Bourget, E.; Crisp, D.J. Factors affecting deposition of shell in Balanus balanoides (L). J. Mar. Biol. Assoc. U. K. 1975, 55, 231–249. [Google Scholar] [CrossRef]
- Hockett, D.; Ingram, P.; LeFurgey, A. Strontium and manganese uptake in the barnacle shell: Electron probe microanalysis imaging to attain fine temporal resolution of biomineralization activity. Mar. Environ. Res. 1997, 43, 131–143. [Google Scholar] [CrossRef]
- Nousek, N.A. Shell formation and calcium transport in the barnacle Chthamalus fragilis. Tissue Cell 1984, 16, 433–442. [Google Scholar] [CrossRef] [PubMed]
- Bourget, E. Environmental and structural control of trace elements in barnacle shells. Mar. Biol. 1974, 28, 27–36. [Google Scholar] [CrossRef]
- Findlay, H.S.; Kendall, M.A.; Spicer, J.I.; Widdicombe, S. Post-larval development of two intertidal barnacles at elevated CO2 and temperature. Mar. Biol. 2010, 157, 725–735. [Google Scholar] [CrossRef]
- Piwoni-Piórewicz, A.S.; Strekopytov, S.; Humphreys-Williams, E.; Kukliński, P. Environmental variables affect the elemental composition of calcitic skeletons: A case study of barnacle Amphibalanus improvisus and bryozoan Einhornia crustulenta from the brackish Baltic Sea (Preprint). SSRN, 4616289. [CrossRef]
- Cho, K.R.; Kim, Y.-Y.; Yang, P.; Cai, W.; Pan, H.; Kulak, A.N.; Lau, J.L.; Kulshreshtha, P.; Armes, S.P.; Meldrum, F.C. Direct observation of mineral–organic composite formation reveals occlusion mechanism. Nat. Commun. 2016, 7, 10187. [Google Scholar] [CrossRef]
- Kim, Y.-Y.; Carloni, J.D.; Demarchi, B.; Sparks, D.; Reid, D.G.; Kunitake, M.E.; Tang, C.C.; Duer, M.J.; Freeman, C.L.; Pokroy, B. Tuning hardness in calcite by incorporation of amino acids. Nat. Mater. 2016, 15, 903. [Google Scholar] [CrossRef]
- Kunitake, M.E.; Baker, S.P.; Estroff, L.A. The effect of magnesium substitution on the hardness of synthetic and biogenic calcite. MRS Commun. 2012, 2, 113–116. [Google Scholar] [CrossRef]
- Meyers, M.A.; Chen, P.-Y. Biological Materials Science: Biological Materials, Bioinspired Materials, and Biomaterials; Cambridge University Press: Cambridge, MA, USA, 2014. [Google Scholar]
- Raman, S.; Kumar, R. Construction and nanomechanical properties of the exoskeleton of the barnacle, Amphibalanus reticulatus. J. Struct. Biol. 2011, 176, 360–369. [Google Scholar] [CrossRef] [PubMed]
- Han, Z.; Wang, Z.; Rittschof, D.; Huang, Z.; Chen, L.; Hao, H.; Yao, S.; Su, P.; Huang, M.; Zhang, Y.-Y. New genes helped acorn barnacles adapt to a sessile lifestyle. Nat. Genet. 2024, 56, 970–981. [Google Scholar] [CrossRef] [PubMed]
Variable | df | F | p | η2 |
---|---|---|---|---|
Plate thickness | ||||
Parallel | 13 | 5.635 | 0.021 | 0.506 |
Perpendicular | 13 | 47.65 | 0.000 | 0.897 |
Microhardness | ||||
Parallel | 14 | 0.093 | 0.911 | 0.015 |
Perpendicular | 13 | 0.588 | 0.572 | 0.097 |
Calcium content | ||||
Parallel | 8 | 1.189 | 0.367 | 0.284 |
Perpendicular | 8 | 3.285 | 0.109 | 0.523 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shaw, J.; Kang, Y.; Triano, C.; Hoppe, C.J.; Aldred, N.; Metzler, R.A.; Dickinson, G.H. Comparative Assessment of Shell Structural, Mechanical, and Elemental Properties in Adult Acorn Barnacles. Diversity 2024, 16, 482. https://doi.org/10.3390/d16080482
Shaw J, Kang Y, Triano C, Hoppe CJ, Aldred N, Metzler RA, Dickinson GH. Comparative Assessment of Shell Structural, Mechanical, and Elemental Properties in Adult Acorn Barnacles. Diversity. 2024; 16(8):482. https://doi.org/10.3390/d16080482
Chicago/Turabian StyleShaw, Jazmine, Yeram Kang, Callie Triano, Corin J. Hoppe, Nick Aldred, Rebecca A. Metzler, and Gary H. Dickinson. 2024. "Comparative Assessment of Shell Structural, Mechanical, and Elemental Properties in Adult Acorn Barnacles" Diversity 16, no. 8: 482. https://doi.org/10.3390/d16080482