Coordination of a Pyrazole Functionalized Acetylacetone to the Coinage Metal Cations: An Unexpected Packing Similarity and a Trinuclear CuII/AuI Complex
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis and Crystallization of [Ag(HacacMePz)2]PF6, 1
2.2. Synthesis and Crystallization of [AuCl(HacacMePz)], 2
2.3. Synthesis and Crystallization of [Cu(acacMePzAuCl)2], 3
2.4. Structure Determinations
2.5. Powder Diffraction and Rietveld Refinement
3. Results
4. Discussion
4.1. Surprising Packing Similarity of 1 and 2
Two crystals are said to be isomorphous if (a) both have the same space group and unit-cell dimensions and (b) the types and the positions of atoms in both are the same except for a replacement of one or more atoms in one structure with different types of atoms in the other (diadochy), such as heavy atoms, or the presence of one or more additional atoms in one of them (isomorphous addition). Isomorphous crystals can form solid solutions.
4.2. Structural Features of 3
5. Conclusions
- Packing in each structure is dominated by the necessity to accommodate eight neutral N-coordinated HacacMePz ligands per unit cell; in either case, this involves the interaction of methyl H atoms with the pyrazole -system;
- Both metal cations prefer a linear coordination;
- The distance between the non-coordinating counter-anion PF6− and the AgI cation is compatible with the Au⋯Au separation between neighboring molecules.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CCDC | Cambridge Crystallographic Data Centre |
CP | coordination polymer |
CSD | Cambridge Structural Database |
HacacMePz | 3-(1,3,5-trimethyl-1H-pyrazol-4-yl)acetylacetone |
IUCr | International Union of Crystallography |
PXRD | powder X-ray diffraction |
SCXRD | single-crystal X-ray diffraction |
THT | tetrahydrothiophen |
References
- Batten, S.R.; Neville, S.M.; Turner, D.R. Coordination Polymers: Design, Analysis and Application, 1st ed.; RSC Publishing: Cambridge, UK, 2009. [Google Scholar]
- Seki, K.; Takamizawa, S.; Mori, W. Design and Gas Adsorption Property of a Three-Dimensional Coordination Polymer with a Stable and Highly Porous Framwork. Chem. Lett. 2001, 30, 332–333. [Google Scholar] [CrossRef]
- Lee, H.J.; Cho, W.; Jung, S.; Oh, M. Morphology-Selective Formation and Morphology-Dependent Gas-Adsorption Properties of Coordination Polymer Particles. Adv. Mater. 2009, 21, 674–677. [Google Scholar] [CrossRef]
- Agarwal, R.A.; Mukherjee, S.; Sañudo, E.C.; Ghosh, S.K.; Bharadwaj, P.K. Gas Adsorption, Magnetism, and Single-Crystal to Single-Crystal Transformation Studies of a Three-Dimensional Mn(II) Porous Coordination Polymer. Cryst. Growth Des. 2014, 14, 5585–5592. [Google Scholar] [CrossRef] [Green Version]
- Duan, J.; Jin, W.; Krishna, R. Natural gas purification using a porous coordination polymer with water and chemical stability. Inorg. Chem. 2015, 54, 4279–4284. [Google Scholar] [CrossRef] [PubMed]
- Noro, S.; Ochi, R.; Inubushi, Y.; Kubo, K.; Nakamura, T. CH4/CO2 and CH4/C2H6 gas separation using a flexible one-dimensional copper(II) porous coordination polymer. Microporous Mesoporous Mat. 2015, 216, 92–96. [Google Scholar] [CrossRef] [Green Version]
- Yoo, S.K.; Ryu, J.Y.; Lee, J.Y.; Kim, C.; Kim, S.J.; Kim, Y. Synthesis, structure and heterogeneous catalytic activity of a coordination polymer containing tetranuclear Cu(ii)-btp units connected by nitrates. Dalton Trans. 2003, 1454–1456. [Google Scholar] [CrossRef]
- Hong, S.J.; Seo, J.S.; Ryu, J.Y.; Lee, J.H.; Kim, C.; Kim, S.J.; Kim, Y.; Lough, A.J. Structure and heterogeneous catalytic activity of a coordination polymer containing Cu(NO3)2 and units bridged alternatively by btp ligands (btp=2,6-bis(N’-1,2,4-triazolyl)pyridine). J. Mol. Struct. 2005, 751, 22–28. [Google Scholar] [CrossRef]
- Zhou, Z.; He, C.; Yang, L.; Wang, Y.; Liu, T.; Duan, C. Alkyne Activation by a Porous Silver Coordination Polymer for Heterogeneous Catalysis of Carbon Dioxide Cycloaddition. ACS Catal. 2017, 7, 2248–2256. [Google Scholar] [CrossRef]
- Chandler, B.D.; Coté, A.P.; Cramb, D.T.; Hill, J.M.; Shimizu, G.K.H. A sponge-like luminescent coordination framework via an Aufbau approach. Chem. Commun. 2002, 17, 1900–1901. [Google Scholar] [CrossRef]
- Fenton, H.; Tidmarsh, I.S.; Ward, M.D. Luminescent silver(i) coordination networks based on bis-(3,5-dimethylpyrazolyl)naphthalene ligands. CrystEngComm 2011, 13, 1432–1440. [Google Scholar] [CrossRef]
- Zhang, Y.Q.; Blatov, V.A.; Zheng, T.R.; Yang, C.H.; Qian, L.L.; Li, K.; Li, B.L.; Wu, B. A luminescent zinc(ii) coordination polymer with unusual (3,4,4)-coordinated self-catenated 3D network for selective detection of nitroaromatics and ferric and chromate ions: A versatile luminescent sensor. Dalton Trans. 2018, 47, 6189–6198. [Google Scholar] [CrossRef] [PubMed]
- Şerb, M.D.; Speldrich, M.; Lueken, H.; Englert, U. Isomorphous Catena Transition Metal Squarates [MII(C4O4)(dmso)2(OH2)2] (M = Co, Mn) and Magnetic Investigation into their Solid Solution M = CoxMn1-x. Z. Anorg. Allg. Chem. 2011, 637, 536–542. [Google Scholar] [CrossRef]
- Kondracka, M.; Englert, U. Bimetallic coordination polymers via combination of substitution-inert building blocks and labile connectors. Inorg. Chem. 2008, 47, 10246–10257. [Google Scholar] [CrossRef] [PubMed]
- Merkens, C.; Englert, U. Ordered bimetallic coordination networks featuring rare earth and silver cations. Dalton Trans. 2012, 41, 4664–4673. [Google Scholar] [CrossRef]
- Gildenast, H.; Nölke, S.; Englert, U. 3-(4-Methylthiophenyl)acetylacetone—Ups and downs of flexibility in the synthesis of mixed metal–organic frameworks. Ditopic bridging of hard and soft cations and site-specific desolvation. CrystEngComm 2020, 22, 1041–1049. [Google Scholar] [CrossRef]
- van Terwingen, S.; Nachtigall, N.; Ebel, B.; Englert, U. N-Donor-Functionalized Acetylacetones for Heterobimetallic Coordination Polymers, the Next Episode: Trimethylpyrazoles. Cryst. Growth Des. 2021, 21, 2962–2969. [Google Scholar] [CrossRef]
- Vreshch, V.D.; Chernega, A.N.; Howard, J.A.K.; Sieler, J.; Domasevitch, K.V. Two-step construction of molecular and polymeric mixed-metal Cu(Co)/Be complexes employing functionality of a pyridyl substituted acetylacetonate. Dalton Trans. 2003, 9, 1707–1711. [Google Scholar] [CrossRef]
- Mackay, L.G.; Anderson, H.L.; Sanders, J.K.M. A platinum-linked porphyrin trimer and a complementary aluminium tris[3-(4-pyridyl)acetylacetonate] guest. J. Chem. Soc., Perkin Trans. 1995, 1, 2269. [Google Scholar] [CrossRef]
- Pearson, R.G. Hard and Soft Acids and Bases. J. Am. Chem. Soc. 1963, 85, 3533–3539. [Google Scholar] [CrossRef]
- Pearson, R.G. Hard and soft acids and bases, HSAB, part 1: Fundamental principles. J. Chem. Educ. 1968, 45, 581–587. [Google Scholar] [CrossRef]
- Goodwin, F.; Guruswamy, S.; Kainer, K.U.; Kammer, C.; Knabl, W.; Koethe, A.; Leichtfried, G.; Schlamp, G.; Stickler, R.; Warlimont, H. Metals. In Springer Handbook of Condensed Matter and Materials Data; Martienssen, W., Warlimont, H., Eds.; Springer: Berlin/Heidelberg, Germany, 2005; Volume 2, pp. 161–430. [Google Scholar] [CrossRef]
- Uson, R.; Laguna, A.; Laguna, M.; Briggs, D.A.; Murray, H.H.; Fackler, J.P. (Tetrahydrothiophene)Gold(I) or Gold(III) Complexes. In Inorganic Syntheses; Kaesz, H.D., Ed.; John Wiley & Sons, Inc: Hoboken, NJ, USA, 1989; Volume 103, pp. 85–91. [Google Scholar] [CrossRef]
- STOE. X-Area: Single Crystal Diffraction Software; STOE & Cie GmbH: Darmstadt, Germany, 2019. [Google Scholar]
- Koziskova, J.; Hahn, F.; Richter, J.; Kožíšek, J. Comparison of different absorption corrections on the model structure of tetrakis(2-acetato)-diaqua-di-copper(II). Acta Chim. Slov. 2016, 9, 136–140. [Google Scholar] [CrossRef] [Green Version]
- Bruker. SMART: Program for Bruker CCD X-ray Diffractometer Control; Bruker: Madison, WI, USA, 2001. [Google Scholar]
- Bruker. SAINT+: Program for Reduction of Data Collected on Bruker CCD Area Detector Diffractometer; Bruker: Madison, WI, USA, 2009. [Google Scholar]
- Bruker. SADABS: Program for Empirical Absorption Correction of Area Detector Data; Bruker: Madison, WI, USA, 2008. [Google Scholar]
- Sheldrick, G.M. SHELXT—integrated space-group and crystal-structure determination. Acta Crystallogr. 2015, A71, 3–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8. [Google Scholar] [CrossRef]
- Toby, B.H.; von Dreele, R.B. GSAS-II: The genesis of a modern open-source all purpose crystallography software package. J. Appl. Crystallogr. 2013, 46, 544–549. [Google Scholar] [CrossRef]
- Chen, X.D.; Mak, T.C.W. Order of the coordinating ability of polyatomic monoanions established from their interaction with a disilver(I) metallacyclophane skeleton. Chem. Commun. 2005, 28, 3529–3531. [Google Scholar] [CrossRef]
- Spek, A.L. Structure validation in chemical crystallography. Acta Crystallogr. 2009, D65, 148–155. [Google Scholar] [CrossRef] [PubMed]
- Kessler, F.; Szesni, N.; Maaß, C.; Hohberger, C.; Weibert, B.; Fischer, H. Transfer of heterocyclic carbene ligands from chromium to gold, palladium and platinum. J. Organomet. Chem. 2007, 692, 3005–3018. [Google Scholar] [CrossRef]
- Williams, D.B.G.; Traut, T.; Kriel, F.H.; van Zyl, W.E. Bidentate amino- and iminophosphine ligands in mono- and dinuclear gold(I) complexes: Synthesis, structures and AuCl displacement by AuC6F5. Inorg. Chem. Commun. 2007, 10, 538–542. [Google Scholar] [CrossRef]
- Wimberg, J.; Meyer, S.; Dechert, S.; Meyer, F. Gold(I), Gold(III), and Heterometallic Gold(I)–Silver(I) and Gold(I)–Copper(I) Complexes of a Pyridazine-Bridged NHC/Pyrazole Hybrid Ligand and Their Initial Application in Catalysis. Organometallics 2012, 31, 5025–5033. [Google Scholar] [CrossRef]
- Riedel, D.; Wurm, T.; Graf, K.; Rudolph, M.; Rominger, F.; Hashmi, A.S.K. From Isonitriles to Unsaturated NHC Complexes of Gold, Palladium and Platinum. Adv. Synth. Catal. 2015, 357, 1515–1523. [Google Scholar] [CrossRef]
- Sun, R.W.Y.; Xu, R.F.; Song, H.Q.; Saint-Germain, C.; Zhang, M.; Ni, W.X.; Chen, C.X.; Hemmert, C.; Gornitzka, H.; Li, D. A gold(I)–pyrazolato complex as a switch-on luminescent probe for cysteine: In situ formation of fluorescent nanoparticles and rose-like microspheres. Inorg. Chem. Front. 2016, 3, 1406–1410. [Google Scholar] [CrossRef]
- Authier, A.; Chapuis, G. A Little Dictionary of Crystallography; IUCr: Chester, UK, 2014. [Google Scholar]
- Chapuis, G.; Authier, A.; Brock, C.P. Online Dictionary of Crystallography; IUCr: Chester, UK, 2022. [Google Scholar]
- Groom, C.R.; Bruno, I.J.; Lightfoot, M.P.; Ward, S.C. The Cambridge Structural Database. Acta Crystallogr. 2016, B72, 171–179. [Google Scholar] [CrossRef] [PubMed]
- Sarto, L.E.; Badaró, W.P.D.; de Gois, E.P.; Barbosa, M.I.F.; Torres, C.; Viana, R.B.; Honorato, J.; Castellano, E.E.; de Almeida, E.T. Crystal structures and DFT analysis of Palladium(II) complexes with Schiff bases derived from N,N-dialkyl-p-phenylenediamines. J. Mol. Struct. 2020, 1204, 127549. [Google Scholar] [CrossRef]
- Chou, C.C.; Yang, C.C.; Chang, H.C.; Lee, W.Z.; Kuo, T.S. Weaving an infinite 3-D supramolecular network via Au(I)···Au(III) aurophilicity and C–H···Cl hydrogen bonding. New J. Chem. 2016, 40, 1944–1947. [Google Scholar] [CrossRef]
- van Terwingen, S.; Nachtigall, N.; Englert, U. Synthesis and coordination to the coinage metals of a trimethylpyrazolyl substituted 3-arylacetylacetone. Z. Kristallogr. Cryst. Mater. 2021, 237, 93–99. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
van Terwingen, S.; Ebel, B.; Nachtigall, N.; Englert, U. Coordination of a Pyrazole Functionalized Acetylacetone to the Coinage Metal Cations: An Unexpected Packing Similarity and a Trinuclear CuII/AuI Complex. Crystals 2022, 12, 984. https://doi.org/10.3390/cryst12070984
van Terwingen S, Ebel B, Nachtigall N, Englert U. Coordination of a Pyrazole Functionalized Acetylacetone to the Coinage Metal Cations: An Unexpected Packing Similarity and a Trinuclear CuII/AuI Complex. Crystals. 2022; 12(7):984. https://doi.org/10.3390/cryst12070984
Chicago/Turabian Stylevan Terwingen, Steven, Ben Ebel, Noah Nachtigall, and Ulli Englert. 2022. "Coordination of a Pyrazole Functionalized Acetylacetone to the Coinage Metal Cations: An Unexpected Packing Similarity and a Trinuclear CuII/AuI Complex" Crystals 12, no. 7: 984. https://doi.org/10.3390/cryst12070984