A Critical Review on the 3D Cephalometric Analysis Using Machine Learning
Abstract
:1. Introduction
- To elucidate the existing automated approaches in which machine learning has facilitated appropriate treatment and surgical planning in cephalometric analysis.
- To study the accuracy and reliability of ML algorithms in 3D cephalometric analysis to identify landmarks.
Paper Organization
2. Cephalometric Automation Using ML Approaches
Automated Identification of Landmarks
S. No | Machine Learning Algorithm | Applications | Merits | Demerits | References |
---|---|---|---|---|---|
1. | Support Vector Machine, Naïve Bayes, K-NN, Logistic Regression, ANN, Random forest | Determining the development of the cervical vertebrae in orthodontics |
|
| [35] |
2. | Random Forest | Diagnosing orthodontic extractions | Random forest used as an ensemble classifier minimize overfitting | Several trees could slow the algorithm and degrade its overall performance | [36] |
3. | Decision Tree | Inverse bio-medical modelling of tongue through synthetic training data and Machine Learning |
|
| [37] |
4. | Genetic Algorithm | Orthodontics |
| Complex in representing training data and resultant data | [38,39] |
5. | Fuzzy Logic | Diagnosing orthodontics |
|
| [40,41] |
3. Reliability and Accuracy of 3D Cephalometrics Using ML
4. The Nexus of DL Approaches in 3D Cephalometric Analysis
5. Applications of Machine Learning in Orthodontics
6. Challenges of ML in Cephalometric Analysis
6.1. Reproducibility Crisis
6.2. Insufficiency of Data
6.3. Overfitting
7. Critical Analysis
8. Future Scope
9. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hlongwa, P. Cephalometric analysis: Manual tracing of a lateral cephalogram. S. Afr. Dent. J. 2019, 74, 318–322. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.; Shim, E.; Park, J.; Kim, Y.-J.; Lee, U.; Kim, Y. Web-based fully automated cephalometric analysis by deep learning. Comput. Methods Programs Biomed. 2020, 194, 105513. [Google Scholar] [CrossRef] [PubMed]
- Kunz, F.; Stellzig-Eisenhauer, A.; Zeman, F.; Boldt, J. Artificial intelligence in orthodontics. J. Orofac. Orthop. Fortschr. Der Kieferorthopädie 2020, 81, 52–68. [Google Scholar] [CrossRef]
- Pattanaik, S. Evolution of Cephalometric Analysis of Orthodontic Diagnosis. Indian J. Forensic Med. Toxicol. 2019, 13, 1830–1834. [Google Scholar] [CrossRef]
- Shin, S.; Kim, D. Comparative Validation of the Mixed and Permanent Dentition at Web-Based Artificial Intelligence Cephalometric Analysis. J. Korean Acad. PEDTATRIC Dent. 2022, 49, 85–94. [Google Scholar] [CrossRef]
- Mohammad-Rahimi, H.; Nadimi, M.; Rohban, M.H.; Shamsoddin, E.; Lee, V.Y.; Motamedian, S.R. Machine learning and orthodontics, current trends and the future opportunities: A scoping review. Am. J. Orthod. Dentofac. Orthop. 2021, 160, 170–192.e4. [Google Scholar] [CrossRef]
- Büyük, S.K.; Hatal, S. Artificial intelligence and machine learning in orthodontics. J. Orofac. Orthop. Fortschr. Der Kieferorthopädie 2019, 11, 517–523. [Google Scholar] [CrossRef] [Green Version]
- Silva, T.P.; Hughes, M.M.; Menezes, L.D.S.; Melo, M.D.F.B.D.; Takeshita, W.M.; de Freitas, P.H.L. Artificial intelligence-based cephalometric landmark annotation and measurements according to Arnett’s analysis: Can we trust a bot to do that? Dentomaxillofacial Radiol. 2021, 51, 20200548. [Google Scholar] [CrossRef]
- Tanikawa, C.; Chonho, L. Machine Learning for Facial Recognition in Orthodontics. In Machine Learning in Dentistry; Springer: Cham, Switzerland, 2021; pp. 55–65. [Google Scholar]
- Juneja, M.; Garg, P.; Kaur, R.; Manocha, P.; Prateek; Batra, S.; Singh, P.; Singh, S.; Jindal, P. A review on cephalometric landmark detection techniques. Biomed. Signal Process. Control 2021, 66, 102486. [Google Scholar] [CrossRef]
- Palomo, J.M.; El, H.; Stefanovic, N.; Eliliwi, M.; Elshebiny, T.; Pugliese, F. 3D Cephalometry. In 3D Diagnosis and Treatment Planning in Orthodontics; Springer: Cham, Switzerland, 2021; pp. 93–127. [Google Scholar]
- Park, J.H.; Pruzansky, D.P. Imaging and Analysis for the Orthodontic Patient. In Craniofacial 3D Imaging 2019; Springer: Cham, Switzerland, 2019; pp. 71–83. [Google Scholar]
- Tanna, N.K.; AlMuzaini, A.A.; Mupparapu, M. Imaging in Orthodontics. Dent. Clin. N. Am. 2021, 65, 623–641. [Google Scholar] [CrossRef]
- Helal, N.M.; Basri, O.A.; Baeshen, H.A. Significance of cephalometric radiograph in orthodontic treatment plan decision. J. Contemp. Dent. Pract. 2019, 20, 789–793. [Google Scholar] [CrossRef]
- Jodeh, D.S.; Kuykendall, L.V.; Ford, J.M.; Ruso, S.; Decker, S.J.; Rottgers, S.A. Adding depth to cephalometric analysis: Comparing two-and three-dimensional angular cephalometric measurements. J. Craniofacial Surg. 2019, 30, 1568–1571. [Google Scholar] [CrossRef] [PubMed]
- Bollen, A.-M. Cephalometry in orthodontics: 2D and 3D. Am. J. Orthod. Dentofac. Orthop. 2019, 156, 161. [Google Scholar] [CrossRef]
- Dot, G.; Schouman, T.; Chang, S.; Rafflenbeul, F.; Kerbrat, A.; Rouch, P.; Gajny, L. Three-Dimensional Cephalometric Landmarking and Analysis of Craniomaxillofacial CT scans via Deep Learning. J. Dent. Res. 2022, 101, 1380–1387. [Google Scholar] [CrossRef]
- Zeng, M.; Yan, Z.; Liu, S.; Zhou, Y.; Qiu, L. Cascaded convolutional networks for automatic cephalometric landmark detection. Med. Image Anal. 2020, 68, 101904. [Google Scholar] [CrossRef]
- Montúfar, J.; Romero, M.; Scougall-Vilchis, R.J. Automatic 3-dimensional cephalometric landmarking based on active shape models in related projections. Am. J. Orthod. Dentofac. Orthop. 2018, 153, 449–458. [Google Scholar] [CrossRef] [Green Version]
- Hwang, H.-W.; Park, J.-H.; Moon, J.-H.; Yu, Y.; Kim, H.; Her, S.-B.; Srinivasan, G.; Aljanabi, M.N.A.; Donatelli, R.E.; Lee, S.-J. Automated Identification of Cephalometric Landmarks: Part 2- Might It Be Better Than human? Angle Orthod. 2020, 90, 69–76. [Google Scholar] [CrossRef] [Green Version]
- Kim, M.-J.; Liu, Y.; Oh, S.H.; Ahn, H.-W.; Kim, S.-H.; Nelson, G. Automatic Cephalometric Landmark Identification System Based on the Multi-Stage Convolutional Neural Networks with CBCT Combination Images. Sensors 2021, 21, 505. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Teixeira, H.; Tanna, N.; Zheng, Z.; Chen, S.H.Y.; Zou, M.; Chung, C.-H. The Reliability of Two- and Three-Dimensional Cephalometric Measurements: A CBCT Study. Diagnostics 2021, 11, 2292. [Google Scholar] [CrossRef] [PubMed]
- Farronato, M.; Maspero, C.; Abate, A.; Grippaudo, C.; Connelly, S.T.; Tartaglia, G.M. 3D cephalometry on reduced FOV CBCT: Skeletal class assessment through AF-BF on Frankfurt plane—Validity and reliability through comparison with 2D measurements. Eur. Radiol. 2020, 30, 6295–6302. [Google Scholar] [CrossRef]
- Bulatova, G.; Kusnoto, B.; Grace, V.; Tsay, T.P.; Avenetti, D.M.; Sanchez, F.J.C. Assessment of automatic cephalometric landmark identification using artificial intelligence. Orthod. Craniofacial Res. 2021, 24, 37–42. [Google Scholar] [CrossRef]
- Qi, C.R.C. Deep learning on 3D data. In 3D Imaging, Analysis and Applications; Springer: Berlin/Heidelberg, Germany, 2020; pp. 513–566. [Google Scholar]
- Hwang, H.-W.; Moon, J.-H.; Kim, M.-G.; Donatelli, R.E.; Lee, S.-J. Evaluation of automated cephalometric analysis based on the latest deep learning method. Angle Orthod. 2021, 91, 329–335. [Google Scholar] [CrossRef] [PubMed]
- Dot, G.; Rafflenbeul, F.; Arbotto, M.; Gajny, L.; Rouch, P.; Schouman, T. Accuracy and reliability of automatic three-dimensional cephalometric landmarking. Int. J. Oral Maxillofac. Surg. 2020, 49, 1367–1378. [Google Scholar] [CrossRef]
- Gao, J.; Jiang, Q.; Zhou, B.; Chen, D. Convolutional neural networks for computer-aided detection or diagnosis in medical image analysis: An overview. Math. Biosci. Eng. 2019, 16, 6536–6561. [Google Scholar] [CrossRef]
- Kulkarni, S.; Seneviratne, N.; Baig, M.S.; Khan, A.H.A. Artificial Intelligence in Medicine: Where Are We Now? Acad. Radiol. 2020, 27, 62–70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berne, M.L.Z.; Lin, F.-C.; Li, Y.; Wu, T.-H.; Chien, E.; Ko, C.-C. Machine Learning in Orthodontics: A New Approach to the Extraction Decision; Springer: Berlin/Heidelberg, Germany, 2021; pp. 79–90. [Google Scholar]
- Shetty, V.G.; Rai, R.; Shetty, K.N. Artificial intelligence and machine learning: The new paradigm in orthodontic practice. Int. J. Orthod. Rehabil. 2020, 11, 175. [Google Scholar] [CrossRef]
- Lee, S.M.; Kim, H.P.; Jeon, K.; Lee, S.-H.; Seo, J.K. Automatic 3D cephalometric annotation system using shadowed 2D image-based machine learning. Phys. Med. Biol. 2019, 64, 055002. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.H.; Jeon, K.; Kang, S.H.; Lee, S.H. 3D cephalometric landmark detection by multiple stage deep reinforcement learning. Sci. Rep. 2021, 11, 17509. [Google Scholar] [CrossRef]
- Kang, S.H.; Jeon, K.; Kang, S.H.; Lee, S.H. 3D cephalometric landmark detection by multiple stage deep reinforcemenlogical structures in images. Methods Ecol. Evol. 2020, 11, 500–512. [Google Scholar]
- Kök, H.; Acilar, A.M.; Izgi, M.S. Usage and comparison of artificial intelligence algorithms for determination of growth and development by cervical vertebrae stages in orthodontics. Prog. Orthod. 2019, 20, 41. [Google Scholar] [CrossRef]
- Suhail, Y.; Upadhyay, M.; Chhibber, A. Machine Learning for the Diagnosis of Orthodontic Extractions: A Computational Analysis Using Ensemble Learning. Bioengineering 2020, 7, 55. [Google Scholar] [CrossRef]
- Tolpadi, A.A.; Stone, M.L.; Carass, A.; Prince, J.L.; Gomez, A.D. Inverse biomechanical modeling of the tongue via machine learning and synthetic training data. In Medical Imaging 2018: Image-Guided Procedures, Robotic Interventions, and Modeling; SPIE: Washington DC, USA, 2018; pp. 28–35. [Google Scholar]
- Palanivel, J.; Davis, D.; Srinivasan, D.; Nc, S.C.; Kalidass, P.; Kishore, S.; Suvetha, S. Artificial Intelligence-Creating the Future in Orthodontics-A Review. J. Evol. Med. Dent. Sci. 2021, 10, 2108–2114. [Google Scholar] [CrossRef]
- Asiri, S.N.; Tadlock, L.P.; Schneiderman, E.; Buschang, P.H. Applications of artificial intelligence and machine learning in orthodontics. APOS Trends Orthod. 2020, 10, 17–24. [Google Scholar] [CrossRef] [Green Version]
- Tanikawa, C.; Kajiwara, T.; Shimizu, Y.; Yamashiro, T.; Chu, C.; Nagahara, H. Machine/Deep Learning for Performing Orthodontic Diagnoses and Treatment Planning; Springer: Cham, Switzerland, 2021; pp. 69–78. [Google Scholar]
- Tandon, D.; Rajawat, J.; Banerjee, M. Present and future of artificial intelligence in dentistry. J. Oral Biol. Craniofacial Res. 2020, 10, 391–396. [Google Scholar] [CrossRef]
- Porto, L.F.; Lima, L.N.C.; Flores, M.R.P.; Valsecchi, A.; Ibanez, O.; Palhares, C.E.M.; Vidal, F.D.B. Automatic cephalometric landmarks detection on frontal faces: An approach based on supervised learning techniques. Digit. Investig. 2019, 30, 108–116. [Google Scholar] [CrossRef] [Green Version]
- Verhelst, P.-J.; Matthews, H.; Verstraete, L.; Van der Cruyssen, F.; Mulier, D.; Croonenborghs, T.M.; Da Costa, O.; Smeets, M.; Fieuws, S.; Shaheen, E.; et al. Automatic 3D dense phenotyping provides reliable and accurate shape quantification of the human mandible. Sci. Rep. 2021, 11, 8532. [Google Scholar] [CrossRef] [PubMed]
- Mohan, A.; Sivakumar, A.; Nalabothu, P. Evaluation of accuracy and reliability of OneCeph digital cephalometric analysis in comparison with manual cephalometric analysis—A cross-sectional study. BDJ Open 2021, 7, 22. [Google Scholar] [CrossRef]
- Amasya, H.; Yildirim, D.; Aydogan, T.; Kemaloglu, N.; Orhan, K. Cervical vertebral maturation assessment on lateral cephalometric radiographs using artificial intelligence: Comparison of machine learning classifier models. Dentomaxillofacial Radiol. 2020, 49, 20190441. [Google Scholar] [CrossRef]
- Pinheiro, M.; Ma, X.; Fagan, M.J.; McIntyre, G.T.; Lin, P.; Sivamurthy, G.; Mossey, P.A. A 3D cephalometric protocol for the accurate quantification of the craniofacial symmetry and facial growth. J. Biol. Eng. 2019, 13, 42. [Google Scholar] [CrossRef]
- Porto, L.F.; Lima, L.N.C.; Franco, A.; Pianto, D.M.; Palhares, C.E.M.; Vidal, F.d.B. Estimating sex and age for forensic applications using machine learning based on facial measurements from frontal cephalometric landmarks. arXiv 2019, arXiv:1908.02353. [Google Scholar]
- Kaźmierczak, S.; Juszka, Z.; Fudalej, P.; Mańdziuk, J. Prediction of the facial growth direction with Machine Learning methods. arXiv 2021, arXiv:2106.10464. [Google Scholar]
- Montúfar, J.; Romero, M.; Scougall-Vilchis, R.J. Hybrid approach for automatic cephalometric landmark annotation on cone-beam computed tomography volumes. Am. J. Orthod. Dentofac. Orthop. 2018, 154, 140–150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neelapu, B.C.; Kharbanda, O.P.; Sardana, V.; Gupta, A.; Vasamsetti, S.; Balachandran, R.; Sardana, H.K. Automatic localization of three-dimensional cephalometric landmarks on CBCT images by extracting symmetry features of the skull. Dentomaxillofacial Radiol. 2018, 47, 20170054. [Google Scholar] [CrossRef] [PubMed]
- Ghowsi, A.; Hatcher, D.; Suh, H.; Wile, D.; Castro, W.; Krueger, J.; Park, J.; Oh, H. Automated landmark identification on cone-beam computed tomography: Accuracy and reliability. Angle Orthod. 2022, 92, 642–654. [Google Scholar] [CrossRef] [PubMed]
- Bermejo, E.; Taniguchi, K.; Ogawa, Y.; Martos, R.; Valsecchi, A.; Mesejo, P.; Ibáñez, O.; Imaizumi, K. Automatic landmark annotation in 3D surface scans of skulls: Methodological proposal and reliability study. Comput. Methods Programs Biomed. 2021, 210, 106380. [Google Scholar] [CrossRef]
- Kok, H.; Izgi, M.S.; Acilar, A.M.; Practice, I.P. Evaluation of the Artificial Neural Network and Naive Bayes Models Trained with Vertebra Ratios for Growth and Development Determination. Turk. J. Orthod. 2021, 34, 2–9. [Google Scholar] [CrossRef]
- Ren, R.; Luo, H.; Su, C.; Yao, Y.; Liao, W. Machine learning in dental, oral and craniofacial imaging: A review of recent progress. PeerJ 2021, 9, e11451. [Google Scholar] [CrossRef]
- Noothout, J.M.H.; De Vos, B.D.; Wolterink, J.M.; Postma, E.M.; Smeets, P.A.M.; Takx, R.A.P.; Leiner, T.; Viergever, M.A.; Isgum, I. Deep Learning-Based Regression and Classification for Automatic Landmark Localization in Medical Images. IEEE Trans. Med. Imaging 2020, 39, 4011–4022. [Google Scholar] [CrossRef]
- Lee, C.; Tanikawa, C.; Lim, J.-Y.; Yamashiro, T. Deep learning based cephalometric landmark identification using landmark-dependent multi-scale patches. arXiv 2019, arXiv:1906.02961. [Google Scholar]
- Yun, H.S.; Jang, T.J.; Lee, S.M.; Lee, S.-H.; Seo, J.K. Learning-based local-to-global landmark annotation for automatic 3D cephalometry. Phys. Med. Biol. 2020, 65, 085018. [Google Scholar] [CrossRef]
- Kang, S.H.; Jeon, K.; Kim, H.J.; Seo, J.K.; Lee, S.-H. Automatic three-dimensional cephalometric annotation system using three-dimensional convolutional neural networks: A developmental trial. Comput. Methods Biomech. Biomed. Eng. Imaging Vis. 2019, 8, 210–218. [Google Scholar] [CrossRef]
- Park, J.-H.; Hwang, H.-W.; Moon, J.-H.; Yu, Y.; Kim, H.; Her, S.-B.; Srinivasan, G.; Aljanabi, M.N.A.; Donatelli, R.E.; Lee, S.-J. Automated identification of cephalometric landmarks: Part 1—Comparisons between the latest deep-learning methods YOLOV3 and SSD. Angle Orthod. 2019, 89, 903–909. [Google Scholar] [CrossRef] [Green Version]
- Shan, T.; Tay, F.; Gu, L. Application of Artificial Intelligence in Dentistry. J. Dent. Res. 2020, 100, 232–244. [Google Scholar] [CrossRef] [PubMed]
- Raut, A.; Samantaray, S.; Sahu, R.R. Digital Technology and Artificial Intelligence in Dentistry: Recent Applications and Imminent Perspectives. Cogn. Inform. Soft Comput. 2022, 375, 417–430. [Google Scholar]
- Hung, H.-C.; Wang, Y.-C.; Wang, Y.-C. Applications of artificial intelligence in orthodontics. Taiwan J. Orthod. 2020, 32, 3. [Google Scholar]
- Amasya, H.; Cesur, E.; Yıldırım, D.; Orhan, K. Validation of cervical vertebral maturation stages: Artificial intelligence vs human observer visual analysis. Am. J. Orthod. Dentofac. Orthop. 2020, 158, e173–e179. [Google Scholar] [CrossRef]
- Kök, H.; Izgi, M.S.; Acilar, A.M. Determination of growth and development periods in orthodontics with artificial neural network. Orthod. Craniofacial Res. 2020, 24, 76–83. [Google Scholar] [CrossRef]
- Huang, X.; Wang, J.; Tang, F.; Zhong, T.; Zhang, Y. Metal artifact reduction on cervical CT images by deep residual learning. Biomed. Eng. Online 2018, 17, 175. [Google Scholar] [CrossRef] [Green Version]
- Jiang, D.; Dou, W.; Vosters, L.; Xu, X.; Sun, Y.; Tan, T. Denoising of 3D magnetic resonance images with multi-channel residual learning of convolutional neural network. Jpn. J. Radiol. 2018, 36, 566–574. [Google Scholar] [CrossRef] [Green Version]
- Minnema, J.; van Eijnatten, M.; Hendriksen, A.A.; Liberton, N.; Pelt, D.M.; Batenburg, K.J.; Forouzanfar, T.; Wolff, J. Segmentation of dental cone-beam CT scans affected by metal artifacts using a mixed-scale dense convolutional neural network. Med. Phys. 2019, 46, 5027–5035. [Google Scholar] [CrossRef]
- Zhang, Y.; Yu, H. Convolutional Neural Network Based Metal Artifact Reduction in X-ray Computed Tomography. IEEE Trans. Med. Imaging 2018, 37, 1370–1381. [Google Scholar] [CrossRef] [PubMed]
- Hwang, J.-J.; Jung, Y.-H.; Cho, B.-H.; Heo, M.-S. An overview of deep learning in the field of dentistry. Imaging Sci. Dent. 2019, 49, 1–7. [Google Scholar] [CrossRef]
- Al-Taai, N.; Jäghagen, E.L.; Persson, M.; Ransjö, M.; Westerlund, A. A Superimposition-Based Cephalometric Method to Quantitate Craniofacial Changes. Int. J. Environ. Res. Public Health 2021, 18, 5260. [Google Scholar] [CrossRef]
- Choi, H.-I.; Jung, S.-K.; Baek, S.-H.; Lim, W.H.; Ahn, S.-J.; Yang, I.-H.; Kim, T.-W. Artificial Intelligent Model with Neural Network Machine Learning for the Diagnosis of Orthognathic Surgery. J. Craniofacial Surg. 2019, 30, 1986–1989. [Google Scholar] [CrossRef]
- Patcas, R.; Bernini, D.; Volokitin, A.; Agustsson, E.; Rothe, R.; Timofte, R. Applying artificial intelligence to assess the impact of orthognathic treatment on facial attractiveness and estimated age. Int. J. Oral Maxillofac. Surg. 2019, 48, 77–83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Auconi, P.; Gili, T.; Capuani, S.; Saccucci, M.; Caldarelli, G.; Polimeni, A.; Di Carlo, G. The Validity of Machine Learning Procedures in Orthodontics: What Is Still Missing? J. Pers. Med. 2022, 12, 957. [Google Scholar] [CrossRef]
- Joda, T.; Pandis, N. The challenge of eHealth data in orthodontics. Am. J. Orthod. Dentofac. Orthop. 2021, 159, 393–395. [Google Scholar] [CrossRef]
- Bichu, Y.M.; Hansa, I.; Bichu, A.Y.; Premjani, P.; Flores-Mir, C.; Vaid, N.R. Applications of artificial intelligence and machine learning in orthodontics: A scoping review. Prog. Orthod. 2021, 22, 18. [Google Scholar] [CrossRef]
- Liu, J.; Chen, Y.; Li, S.; Zhao, Z.; Wu, Z. Machine learning in orthodontics: Challenges and perspectives. Adv. Clin. Exp. Med. 2021, 30, 1065–1074. [Google Scholar] [CrossRef] [PubMed]
- Su, M.; Feng, G.; Liu, Z.; Li, Y.; Wang, R. Tapping on the Black Box: How Is the Scoring Power of a Machine-Learning Scoring Function Dependent on the Training Set? J. Chem. Inf. Model. 2020, 60, 1122–1136. [Google Scholar] [CrossRef] [PubMed]
- Du, W.; Bi, W.; Liu, Y.; Zhu, Z.; Tai, Y.; Luo, E. Decision Support System for Orthgnathic diagnosis and treatment planning based on machine learning. Res. Sq. 2022; preprint. [Google Scholar]
- de Oro, J.E.C.G.; Koch, P.J.; Krois, J.; Ros, A.G.C.; Patel, J.; Meyer-Lueckel, H.; Schwendicke, F. Hyperparameter Tuning and Automatic Image Augmentation for Deep Learning-Based Angle Classification on Intraoral Photographs—A Retrospective Study. Diagnostics 2022, 12, 1526. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Martin, M.; Le Clainche, S.; Carro, B. Model-free short-term fluid dynamics estimator with a deep 3D-convolutional neural network. Expert Syst. Appl. 2021, 177, 114924. [Google Scholar] [CrossRef]
- Hung, K.F.; Ai, Q.Y.H.; Leung, Y.Y.; Yeung, A.W.K. Potential and impact of artificial intelligence algorithms in dento-maxillofacial radiology. Clin. Oral Investig. 2022, 26, 5355–5555. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Guo, Z.; Lin, J.; Ying, S. Artificial Intelligence for Classifying and Archiving Orthodontic Images. BioMed Res. Int. 2022, 2022, 1–11. [Google Scholar]
- Khanagar, S.B.; Al-Ehaideb, A.; Vishwanathaiah, S.; Maganur, P.C.; Patil, S.; Naik, S.; Baeshen, H.A.; Sarode, S.S. Scope and performance of artificial intelligence technology in orthodontic diagnosis, treatment planning, and clinical decision-making-a systematic review. J. Dent. Sci. 2021, 16, 482–492. [Google Scholar] [CrossRef]
S. No | References | Objective/Method | Accuracy/Outcome | Advantages/Disadvantages |
---|---|---|---|---|
1. | [49] | The study has endeavored to use a hybrid method to accomplish automatic CLA (Cephalometric Landmark Annotation) on CBCT (Cone Beam Computed Tomography) volumes. | Outcomes showed a mean-localization error of 2.51 mm. |
|
2. | [50] | Template-Matching algorithm has been used to perform automatic landmark identification on a three dimensional CBCT image. | Overall detection has been identified as 64.16% within 2 mm range, 85.89% within 3 mm range and 93.60% within 4 mm range. | Robustness of endorsed system has to be further tested for confirming its effectiveness. |
3. | [43] | The research has assessed automatic three dimensional dense CMF (Craniomaxillofacial) phenotyping of human mandible through identification of outliers commonly known as meshmonk toolbox. |
|
|
4. | [51] | The work has intended for testing the reliability and accuracy of ALI (Automated Landmark Identification) developed through Stratovan Corporation when compared with ground-truth undertaken by the human-judges. | Results showed that, 98% of the landmarks possessed MAE (Mean Absolute Error) lesser than 3 mm in comparison to human judges. | ALI has shown precise results in comparison to humans while determining the landmarks on similar image at distinct time interval. |
5. | [52] | Template and Knowledge oriented method has been exploited for locating the landmarks in the three dimensional surface-model of a skull. | Localization error has been found to be at an average rate of 2.19 mm ± 1.5 mm in comparison with automatic landmarks for the reference location. Visual analysis proved the reliability of the suggested method. | Suggested system has confirmed to be an optimal alternative strategy for manual annotation of landmark and robust to deteriorating situation of skull. |
6. | [53] | The research has intended for examining the prediction rates of NNM (Neural Network Models) and NBM (Naïve Bayes Model) trained with varied ratios of the cervical vertebra in cephalometric radiographs to find the growth as well as the development. | Better performance has been revealed by NNM with 0.95 success rate. | The study has disregarded landmark automation. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alsubai, S. A Critical Review on the 3D Cephalometric Analysis Using Machine Learning. Computers 2022, 11, 154. https://doi.org/10.3390/computers11110154
Alsubai S. A Critical Review on the 3D Cephalometric Analysis Using Machine Learning. Computers. 2022; 11(11):154. https://doi.org/10.3390/computers11110154
Chicago/Turabian StyleAlsubai, Shtwai. 2022. "A Critical Review on the 3D Cephalometric Analysis Using Machine Learning" Computers 11, no. 11: 154. https://doi.org/10.3390/computers11110154
APA StyleAlsubai, S. (2022). A Critical Review on the 3D Cephalometric Analysis Using Machine Learning. Computers, 11(11), 154. https://doi.org/10.3390/computers11110154