The Microbiota in Children and Adolescents with Asthma
Abstract
:1. Background
2. The Roles of the Gut Microbiota and Microbiome
3. The Gut–Lung Axis
4. Interaction between the Gut and the Lungs
ID Trial | Title | Design | AIM & Target | Status |
---|---|---|---|---|
NCT04527016 | Airway Microbiota Based Treatment of Asthma in Preschool Children (AMBT) | Phase 4, single-center, randomized-controlled study | Microbiota phenotype and blood eosinophils level | Completed |
NCT05192499 | Respiratory Dysbiosis in Preschool Children With Asthma: Predictive of a Severe Form (DREAM) | Exploratory multicentric prospective case-control study. | To find the impact of respiratory dysbiosis and severe asthma | Recruiting |
NCT05028153 | Azithromycin Treatment of Hospitalized Children With Asthmatic Symptoms (COPSACazt) | Phase 2, double-blind, randomized, controlled clinical trial. | To investigate the effect of a 3-day azithromycin treatment vs placebo in children aged 1–5 years who are hospitalized due to asthma-like symptoms. Airway microbiota, pathogenic bacteria and vira as measured by 16S-rRNA and whole genome sequencing. | Recruiting. Kyvsgaard JN, Ralfkiaer U, Følsgaard N, et al. Azithromycin and high-dose vitamin D for treatment and prevention of asthma-like episodes in hospitalised preschool children: study protocol for a combined double-blind randomised controlled trial. BMJ Open. 2022; 12(4):e054762. doi: 10.1136/bmjopen-2021-054762 [45] |
NCT06271213 | The Gut-Lung Axis and Respiratory Illness in Children |
|
| Recruiting |
NCT04641000 | The Alberta BLOOM Long Term Follow Up Study (BLOOM-LTFU) | Prospective, observational clinical cohort study Population: very preterm children (<31 weeks and six days gestation). | To investigate the microbiome alternations resulting from preterm birth and its associations with the risk of immune dysregulation, asthma and allergies. | Terminated |
NCT05011071 | The Alberta BLOOM Premature Child Study (BLOOM-PCS) | Prospective, observational clinical cohort study Population: 405 premature children (<37 weeks gestation) and their mother/parent/guardian. | To investigate how the microbiome of children develops over the first years of life and its associations with the risk of childhood health outcomes including allergies and asthma. The study will also examine how perinatal factors associate with patterns of microbiome development, and their effects on the microbiome, metabolome and immune development of this population in the first years of life. | Enrolling by invitation |
NCT04289441 | Probiotics in Paediatric Asthma Management (ProPAM) | Randomized controlled double-blind trial. Population: child allergic asthma and recurring wheezing. | Child undergo probiotic treatment with Bifiasthm with the aim of assessing the reduction in asthma attacks. | Completed Ciprandi G, Schiavetti I, Cioffi L, et al. Probiotics in Pediatric Asthma Management (PROPAM) study: A Post Hoc analysis in allergic children. Ann Allergy Asthma Immunol. 2022; 129(1):111–113. doi: 10.1016/j.anai.2022.04.026. [46] |
NCT01366222 | Food Concentrates Supplementation to Alleviate Asthma in Children (FSAC) |
| To determine whether food concentrates supplementation encompassing probiotics are effective to alleviate drug used against symptoms and improve lung function in children with asthma. | Completed |
5. Asthma and Microbiome
6. Azithromycin and Wheezing in Children
7. Green Living
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Content Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Global Iniziative for Asthma Management and Prevention, 2024, Updated May 2024. Available online: https://www.ginasthma.com (accessed on 1 September 2024).
- Campbell, C.D.; Barnett, C.; Sulaiman, I. A clinicians’ review of the respiratory microbiome. Breathe 2022, 18, 210161. [Google Scholar] [CrossRef] [PubMed]
- Campbell, C.D.; Gleeson, M.; Sulaiman, I. The role of the respiratory microbiome in asthma. Front. Allergy 2023, 4, 1120999. [Google Scholar] [CrossRef] [PubMed]
- Logoń, K.; Świrkosz, G.; Nowak, M.; Wrześniewska, M.; Szczygieł, A.; Gomułka, K. The Role of the Microbiome in the Pathogenesis and Treatment of Asthma. Biomedicines 2023, 11, 1618. [Google Scholar] [CrossRef]
- Thorsen, J.; Stokholm, J.; Rasmussen, M.A.; Roggenbuck-Wedemeyer, M.; Vissing, N.H.; Mortensen, M.S.; Brejnrod, A.D.; Fleming, L.; Bush, A.; Roberts, G.; et al. Asthma and Wheeze Severity and the Oropharyngeal Microbiota in Children and Adolescents. Ann. Am. Thorac. Soc. 2022, 19, 2031–2043. [Google Scholar] [CrossRef] [PubMed]
- Martinez, F.D.; Vercelli, D. Asthma. Lancet 2013, 382, 1360–1372. [Google Scholar] [CrossRef]
- Bønnelykke, K.; Sleiman, P.; Nielsen, K.; Kreiner-Møller, E.; Mercader, J.M.; Belgrave, D.; den Dekker, H.T.; Husby, A.; Sevelsted, A.; Faura-Tellez, G.; et al. A genome-wide association study identifies CDHR3 as a susceptibility locus for early childhood asthma with severe exacerbations. Nat. Genet. 2014, 46, 51–55. [Google Scholar] [CrossRef]
- Pijnenburg, M.W.; Frey, U.; De Jongste, J.C.; Saglani, S. Childhood asthma: Pathogenesis and phenotypes. Eur. Respir. J. 2022, 59, 2100731. [Google Scholar] [CrossRef]
- van Beveren, G.J.; de Steenhuijsen Piters, W.A.A.; Boeschoten, S.A.; Louman, S.; Chu, M.L.; Arp, K.; Fraaij, P.L.; de Hoog, M.; Buysse, C.; van Houten, M.A.; et al. Nasopharyngeal microbiota in children is associated with severe asthma exacerbations. J. Allergy Clin. Immunol. 2024, 153, 1574–1585. [Google Scholar] [CrossRef] [PubMed]
- Boeschoten, S.A.; Boehmer, A.L.; Merkus, P.J.; van Rosmalen, J.; de Jongste, J.C.; Fraaij, P.L.A.; Molenkamp, R.; Heisterkamp, S.G.; van Woensel, J.B.; Kapitein, B.; et al. Risk factors for intensive care admission in children with severe acute asthma in the Netherlands: A prospective multicentre study. ERJ Open Res. 2020, 6, 00126–02020. [Google Scholar] [CrossRef]
- Kozik, A.J.; Holguin, F.; Segal, L.N.; Chatila, T.A.; Dixon, A.E.; Gern, J.E.; Lozupone, C.; Lukacs, N.; Lumeng, C.; Molyneaux, P.L.; et al. Microbiome, Metabolism, and Immunoregulation of Asthma: An American Thoracic Society and National Institute of Allergy and Infectious Diseases Workshop Report. Am. J. Respir. Cell Mol. Biol. 2022, 67, 155–163. [Google Scholar] [CrossRef]
- Robertson, L.A. Antoni van Leeuwenhoek 1723–2023: A review to commemorate Van Leeuwenhoek’s death, 300 years ago: For submission to Antonie van Leeuwenhoek journal of microbiology. Antonie Van Leeuwenhoek 2023, 116, 919–935. [Google Scholar] [CrossRef] [PubMed]
- Hayes, W.; Sahu, S. The Human Microbiome: History and Future. J. Pharm. Pharm. Sci. 2020, 23, 404–411. [Google Scholar] [CrossRef] [PubMed]
- Segal, L.N.; Rom, W.N.; Weiden, M.D. Lung microbiome for clinicians. New discoveries about bugs in healthy and diseased lungs. Ann. Am. Thorac. Soc. 2014, 11, 108–116. [Google Scholar] [CrossRef]
- Man, W.H.; de Steenhuijsen Piters, W.A.; Bogaert, D. The microbiota of the respiratory tract: Gatekeeper to respiratory health. Nat. Rev. Microbiol. 2017, 15, 259–270. [Google Scholar] [CrossRef]
- Sun, Y.; Wen, M.; Liu, Y.; Wang, Y.; Jing, P.; Gu, Z.; Jiang, T.; Wang, W. The human microbiome: A promising target for lung cancer treatment. Front. Immunol. 2023, 14, 1091165. [Google Scholar] [CrossRef]
- Allam-Ndoul, B.; Castonguay-Paradis, S.; Veilleux, A. Gut Microbiota and Intestinal Trans-Epithelial Permeability. Int. J. Mol. Sci. 2020, 21, 6402. [Google Scholar] [CrossRef] [PubMed]
- Stiemsma, L.T.; Turvey, S.E. Asthma and the microbiome: Defining the critical window in early life. Allergy Asthma Clin. Immunol. 2017, 13, 3. [Google Scholar] [CrossRef]
- Lin, L.; Zhang, J. Role of intestinal microbiota and metabolites on gut homeostasis and human diseases. BMC Immunol. 2017, 18, 2. [Google Scholar] [CrossRef]
- Thursby, E.; Juge, N. Introduction to the human gut microbiota. Biochem. J. 2017, 474, 1823–1836. [Google Scholar] [CrossRef]
- Frank, D.N.; St Amand, A.L.; Feldman, R.A.; Boedeker, E.C.; Harpaz, N.; Pace, N.R. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc. Natl. Acad. Sci. USA 2007, 104, 13780–13785. [Google Scholar] [CrossRef]
- Sokol, H.; Seksik, P.; Furet, J.P.; Firmesse, O.; Nion-Larmurier, I.; Beaugerie, L.; Cosnes, J.; Corthier, G.; Marteau, P.; Doré, J. Low counts of Faecalibacterium prausnitzii in colitis microbiota. Inflamm. Bowel Dis. 2009, 15, 1183–1189. [Google Scholar] [CrossRef]
- Yu, A.I.; Zhao, L.; Eaton, K.A.; Ho, S.; Chen, J.; Poe, S.; Becker, J.; Gonzalez, A.; McKinstry, D.; Hasso, M.; et al. Gut Microbiota Modulate CD8 T Cell Responses to Influence Colitis-Associated Tumorigenesis. Cell Rep. 2020, 31, 107471. [Google Scholar] [CrossRef] [PubMed]
- Ganal, S.C.; Sanos, S.L.; Kallfass, C.; Oberle, K.; Johner, C.; Kirschning, C.; Lienenklaus, S.; Weiss, S.; Staeheli, P.; Aichele, P.; et al. Priming of natural killer cells by nonmucosal mononuclear phagocytes requires instructive signals from commensal microbiota. Immunity 2012, 37, 171–186. [Google Scholar] [CrossRef] [PubMed]
- Ojha, U.C.; Singh, D.P.; Choudhari, O.K.; Gothi, D.; Singh, S. Correlation of Severity of Functional Gastrointestinal Disease Symptoms with that of Asthma and Chronic Obstructive Pulmonary Disease: A Multicenter Study. Int. J. Appl. Basic Med. Res. 2018, 8, 83–88. [Google Scholar] [CrossRef]
- Frati, F.; Salvatori, C.; Incorvaia, C.; Bellucci, A.; Di Cara, G.; Marcucci, F.; Esposito, S. The Role of the Microbiome in Asthma: The Gut–Lung Axis. Int. J. Mol. Sci. 2018, 20, 123. [Google Scholar] [CrossRef] [PubMed]
- Budden, K.F.; Gellatly, S.L.; Wood, D.L.; Cooper, M.A.; Morrison, M.; Hugenholtz, P.; Hansbro, P.M. Emerging pathogenic links between microbiota and the gut-lung axis. Nat. Rev. Microbiol. 2017, 15, 55–63. [Google Scholar] [CrossRef]
- Noverr, M.C.; Falkowski, N.R.; McDonald, R.A.; McKenzie, A.N.; Huffnagle, G.B. Development of allergic airway disease in mice following antibiotic therapy and fungal microbiota increase: Role of host genetics, antigen, and interleukin-13. Infect. Immun. 2005, 73, 30–38. [Google Scholar] [CrossRef]
- Buffie, C.G.; Pamer, E.G. Microbiota-mediated colonization resistance against intestinal pathogens. Nat. Rev. Immunol. 2013, 13, 790–801. [Google Scholar] [CrossRef]
- Zhernakova, A.; Kurilshikov, A.; Bonder, M.J.; Tigchelaar, E.F.; Schirmer, M.; Vatanen, T.; Mujagic, Z.; Vila, A.V.; Falony, G.; Vieira-Silva, S.; et al. Population-based metagenomics analysis reveals markers for gut microbiome composition and diversity. Science 2016, 352, 565–569. [Google Scholar] [CrossRef]
- Bernasconi, E.; Pattaroni, C.; Koutsokera, A.; Pison, C.; Kessler, R.; Benden, C.; Soccal, P.M.; Magnan, A.; Aubert, J.D.; Marsland, B.J.; et al. SysCLAD Consortium. Airway Microbiota Determines Innate Cell Inflammatory or Tissue Remodeling Profiles in Lung Transplantation. Am. J. Respir. Crit. Care Med. 2016, 194, 1252–1263. [Google Scholar] [CrossRef]
- Atarashi, K.; Tanoue, T.; Oshima, K.; Suda, W.; Nagano, Y.; Nishikawa, H.; Fukuda, S.; Saito, T.; Narushima, S.; Hase, K.; et al. Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota. Nature 2013, 500, 232–236. [Google Scholar] [CrossRef] [PubMed]
- Ratner, A.J.; Lysenko, E.S.; Paul, M.N.; Weiser, J.N. Synergistic proinflammatory responses induced by polymicrobial colonization of epithelial surfaces. Proc. Natl. Acad. Sci. USA 2005, 102, 3429–3434. [Google Scholar] [CrossRef] [PubMed]
- Thorburn, A.N.; Foster, P.S.; Gibson, P.G.; Hansbro, P.M. Components of Streptococcus pneumoniae suppress allergic airways disease and NKT cells by inducing regulatory T cells. J. Immunol. 2012, 188, 4611–4620. [Google Scholar] [CrossRef] [PubMed]
- Preston, J.A.; Essilfie, A.T.; Horvat, J.C.; Wade, M.A.; Beagley, K.W.; Gibson, P.G.; Foster, P.S.; Hansbro, P.M. Inhibition of allergic airways disease by immunomodulatory therapy with whole killed Streptococcus pneumoniae. Vaccine 2007, 25, 8154–8162. [Google Scholar] [CrossRef]
- Marsland, B.J.; Trompette, A.; Gollwitzer, E.S. The Gut-Lung Axis in Respiratory Disease. Ann. Am. Thorac. Soc. 2015, 12 (Suppl. 2), S150–S156. [Google Scholar] [CrossRef]
- Trompette, A.; Gollwitzer, E.S.; Yadava, K.; Sichelstiel, A.K.; Sprenger, N.; Ngom-Bru, C.; Blanchard, C.; Junt, T.; Nicod, L.P.; Harris, N.L.; et al. Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis. Nat. Med. 2014, 20, 159–166. [Google Scholar] [CrossRef]
- Samuelson, D.R.; Welsh, D.A.; Shellito, J.E. Regulation of lung immunity and host defense by the intestinal microbiota. Front. Microbiol. 2015, 6, 1085. [Google Scholar] [CrossRef]
- Strachan, D.P. Hay fever, hygiene, and household size. BMJ 1989, 299, 1259–1260. [Google Scholar] [CrossRef]
- Rook, G.A.W. The old friends hypothesis: Evolution, immunoregulation and essential microbial inputs. Front. Allergy 2023, 4, 1220481. [Google Scholar] [CrossRef]
- Frew, J.W. The Hygiene Hypothesis, Old Friends, and New Genes. Front. Immunol. 2019, 10, 388. [Google Scholar] [CrossRef]
- Drago, L.; Cioffi, L.; Giuliano, M.; Pane, M.; Ciprandi, G.; PROPAM Study Group. A post hoc analysis on the effects of a probiotic mixture on asthma exacerbation frequency in schoolchildren. ERJ Open Res. 2022, 8, 00020–02022. [Google Scholar] [CrossRef] [PubMed]
- Gibson, G.R.; Hutkins, R.; Sanders, M.E.; Prescott, S.L.; Reimer, R.A.; Salminen, S.J.; Scott, K.; Stanton, C.; Swanson, K.S.; Cani, P.D.; et al. Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat. Rev. Gastroenterol. Hepatol. 2017, 14, 491–502. [Google Scholar] [CrossRef] [PubMed]
- Roberfroid, M. Prebiotics: The concept revisited. J. Nutr. 2007, 137 (Suppl. 2), S830–S837. [Google Scholar] [CrossRef] [PubMed]
- Kyvsgaard, J.N.; Ralfkiaer, U.; Følsgaard, N.; Jensen, T.M.; Hesselberg, L.M.; Schoos, A.M.; Bønnelykke, K.; Bisgaard, H.; Stokholm, J.; Chawes, B. Azithromycin and high-dose vitamin D for treatment and prevention of asthma-like episodes in hospitalised preschool children: Study protocol for a combined double-blind randomised controlled trial. BMJ Open 2022, 12, e054762. [Google Scholar] [CrossRef]
- Ciprandi, G.; Schiavetti, I.; Cioffi, L.; Pane, M.; Drago, L. Probiotics in Pediatric Asthma Management (PROPAM) study: A Post Hoc analysis in allergic children. Ann. Allergy Asthma Immunol. 2022, 129, 111–113. [Google Scholar] [CrossRef]
- Riedler, J.; Braun-Fahrländer, C.; Eder, W.; Schreuer, M.; Waser, M.; Maisch, S.; Carr, D.; Schierl, R.; Nowak, D.; von Mutius, E.; et al. Exposure to farming in early life and development of asthma and allergy: A cross-sectional survey. Lancet 2001, 358, 1129–1133. [Google Scholar] [CrossRef]
- Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature 2012, 486, 207–214. [Google Scholar] [CrossRef]
- Wang, J.; Li, F.; Tian, Z. Role of microbiota on lung homeostasis and diseases. Sci. China Life Sci. 2017, 60, 1407–1415. [Google Scholar] [CrossRef]
- Abdel-Aziz, M.I.; Thorsen, J.; Hashimoto, S.; Vijverberg, S.J.H.; Neerincx, A.H.; Brinkman, P.; van Aalderen, W.; Stokholm, J.; Rasmussen, M.A.; Roggenbuck-Wedemeyer, M.; et al. Oropharyngeal Microbiota Clusters in Children with Asthma or Wheeze Associate with Allergy, Blood Transcriptomic Immune Pathways, and Exacerbation Risk. Am. J. Respir. Crit. Care Med. 2023, 208, 142–154. [Google Scholar] [CrossRef]
- Ghedin, E.; Huang, Y.J. Oral Microbiota and Pediatric Asthma Phenotype: A New Window for Biomarkers? Am. J. Respir. Crit. Care Med. 2023, 208, 119–121. [Google Scholar] [CrossRef]
- Rigauts, C.; Aizawa, J.; Taylor, S.L.; Rogers, G.B.; Govaerts, M.; Cos, P.; Ostyn, L.; Sims, S.; Vandeplassche, E.; Sze, M.; et al. Rothia mucilaginosa is an anti-inflammatory bacterium in the respiratory tract of patients with chronic lung disease. Eur. Respir. J. 2022, 59, 2101293. [Google Scholar] [CrossRef] [PubMed]
- Claassen-Weitz, S.; Lim, K.Y.L.; Mullally, C.; Zar, H.J.; Nicol, M.P. The association between bacteria colonizing the upper respiratory tract and lower respiratory tract infection in young children: A systematic review and meta-analysis. Clin. Microbiol. Infect 2021, 27, 1262–1270. [Google Scholar] [CrossRef] [PubMed]
- Yuan, H.; Liu, Z.; Dong, J.; Bacharier, L.B.; Jackson, D.; Mauger, D.; Boushey, H.; Castro, M.; Durack, J.; Huang, Y.J.; et al. The Fungal Microbiome of the Upper Airway Is Associated With Future Loss of Asthma Control and Exacerbation among Children With Asthma. Chest 2023, 164, 302–313. [Google Scholar] [CrossRef] [PubMed]
- Cazzola, M.; Matera, M.G.; Rossi, F. Bronchial hyperresponsiveness and bacterial respiratory infections. Clin. Ther. 1991, 13, 157–171. [Google Scholar] [PubMed]
- Chung, K.F. Potential Role of the Lung Microbiome in Shaping Asthma Phenotypes. Ann. Am. Thorac. Soc. 2017, 14 (Suppl. 5), S326–S331. [Google Scholar] [CrossRef]
- Huang, Y.J.; Nariya, S.; Harris, J.M.; Lynch, S.V.; Choy, D.F.; Arron, J.R.; Boushey, H. The airway microbiome in patients with severe asthma: Associations with disease features and severity. J. Allergy Clin. Immunol. 2015, 136, 874–884. [Google Scholar] [CrossRef]
- Zhang, Q.; Cox, M.; Liang, Z.; Brinkmann, F.; Cardenas, P.A.; Duff, R.; Bhavsar, P.; Cookson, W.; Moffatt, M.; Chung, K.F. Airway Microbiota in Severe Asthma and Relationship to Asthma Severity and Phenotypes. PLoS ONE 2016, 11, e0152724. [Google Scholar] [CrossRef]
- Simpson, J.L.; Daly, J.; Baines, K.J.; Yang, I.A.; Upham, J.W.; Reynolds, P.N.; Hodge, S.; James, A.L.; Hugenholtz, P.; Willner, D.; et al. Airway dysbiosis: Haemophilus influenzae and Tropheryma in poorly controlled asthma. Eur. Respir. J. 2016, 47, 792–800. [Google Scholar] [CrossRef]
- Green, B.J.; Wiriyachaiporn, S.; Grainge, C.; Rogers, G.B.; Kehagia, V.; Lau, L.; Carroll, M.P.; Bruce, K.D.; Howarth, P.H. Potentially pathogenic airway bacteria and neutrophilic inflammation in treatment resistant severe asthma. PLoS ONE 2014, 9, e100645. [Google Scholar] [CrossRef]
- Teo, S.M.; Mok, D.; Pham, K.; Kusel, M.; Serralha, M.; Troy, N.; Holt, B.J.; Hales, B.J.; Walker, M.L.; Hollams, E.; et al. The infant nasopharyngeal microbiome impacts severity of lower respiratory infection and risk of asthma development. Cell Host Microbe 2015, 17, 704–715. [Google Scholar] [CrossRef]
- Molyneaux, P.L.; Mallia, P.; Cox, M.J.; Footitt, J.; Willis-Owen, S.A.; Homola, D.; Trujillo-Torralbo, M.B.; Elkin, S.; Kon, O.M.; Cookson, W.O.; et al. Outgrowth of the bacterial airway microbiome after rhinovirus exacerbation of chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 2013, 188, 1224–1231. [Google Scholar] [CrossRef]
- Fujimura, K.E.; Sitarik, A.R.; Havstad, S.; Lin, D.L.; Levan, S.; Fadrosh, D.; Panzer, A.R.; LaMere, B.; Rackaityte, E.; Lukacs, N.W.; et al. Neonatal gut microbiota associates with childhood multisensitized atopy and T cell differentiation. Nat. Med. 2016, 22, 1187–1191. [Google Scholar] [CrossRef] [PubMed]
- Hufnagl, K.; Pali-Schöll, I.; Roth-Walter, F.; Jensen-Jarolim, E. Dysbiosis of the gut and lung microbiome has a role in asthma. Semin. Immunopathol. 2020, 42, 75–93. [Google Scholar] [CrossRef] [PubMed]
- Bellinghausen, C.; Rohde, G.G.U.; Savelkoul, P.H.M.; Wouters, E.F.M.; Stassen, F.R.M. Viral-bacterial interactions in the respiratory tract. J. Gen. Virol. 2016, 97, 3089–3102. [Google Scholar] [CrossRef]
- Thorsen, J.; Stokholm, J.; Rasmussen, M.A.; Mortensen, M.S.; Brejnrod, A.D.; Hjelmsø, M.; Shah, S.; Chawes, B.; Bønnelykke, K.; Sørensen, S.J.; et al. The Airway Microbiota Modulates Effect of Azithromycin Treatment for Episodes of Recurrent Asthma-like Symptoms in Preschool Children: A Randomized Clinical Trial. Am. J. Respir. Crit. Care Med. 2021, 204, 149–158. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhou, N.; Zhi, Y. Association between exposure to greenness and atopic march in children and adults-A systematic review and meta-analysis. Front. Public Health 2023, 10, 1097486. [Google Scholar] [CrossRef]
- Erbas, B.; Lowe, A.J.; Lodge, C.J.; Matheson, M.C.; Hosking, C.S.; Hill, D.J.; Vicendese, D.; Allen, K.J.; Abramson, M.J.; Dharmage, S.C. Persistent pollen exposure during infancy is associated with increased risk of subsequent childhood asthma and hayfever. Clin. Exp. Allergy 2013, 43, 337–343. [Google Scholar] [CrossRef]
- Stanescu, C.; Talarico, R.; Weichenthal, S.; Villeneuve, P.J.; Smargiassi, A.; Stieb, D.M.; To, T.; Hebbern, C.; Crighton, E.; Lavigne, É. Early life exposure to pollens and increased risks of childhood asthma: A prospective cohort study in Ontario children. Eur. Respir. J. 2024, 63, 2301568. [Google Scholar] [CrossRef]
Term | Definition |
---|---|
Alpha Diversity | different types of sequences in a sample. |
Amplicon | an amplified fragment of DNA deriving from a marker gene generated by PCR |
Beta Diversity | different types of sequences commonly shared in samples |
Dysbiosis | when the normal structure of Microbiome is disturbed by external cause such as diseases or use of antibiotics. |
Metabolomics | assessment of the metabolites in a given sample that leads to the metabolically active microrganisms. |
Metagenomics | the study of the whole genome of a group of miscrorganisms assessing the potentiality of their functions. |
Microbiome | The totality of microbes with their genes that are harbored by the Microbiota and the milieu in which they interact” |
Microbiota | All the microbes that are found in a particular region or habitat |
Otu (Operational Taxonomic Unit) | specific sequences based on sequence similarity to reference genes |
Resistome | antibiotic resistance genes in a community. |
Richness | number of taxa in a single population |
Sequencing | technique allowing also millions of DNA sequences obtained from a single sample |
Taxon | a group of phylogenetically connected microbes belonging to the same taxonomic group i.e., order, family, genus |
Taxonomy | the science devoted to identify different species and classify them |
Virome | all the Viruses present in an environment. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Casali, L.; Stella, G.M. The Microbiota in Children and Adolescents with Asthma. Children 2024, 11, 1175. https://doi.org/10.3390/children11101175
Casali L, Stella GM. The Microbiota in Children and Adolescents with Asthma. Children. 2024; 11(10):1175. https://doi.org/10.3390/children11101175
Chicago/Turabian StyleCasali, Lucio, and Giulia Maria Stella. 2024. "The Microbiota in Children and Adolescents with Asthma" Children 11, no. 10: 1175. https://doi.org/10.3390/children11101175