The Role of Transforming Growth Factor-β (TGF-β) in Asthma and Chronic Obstructive Pulmonary Disease (COPD)
Abstract
:1. Introduction
1.1. Canonical (Smad) Pathway
1.2. Non-Canonical (Non-Smad) Pathway
1.3. Aims of the Study
2. The Role of TGF-β in Chronic Obstructive Pulmonary Disease (COPD)
2.1. The Levels of TGF-β in COPD
2.2. Genetic Background of TGF-β and COPD Association
2.3. TGF-β Takes Part in the Development of Emphysema in COPD
2.4. Protective Role of Club Cells
2.5. The Role of TGF-β in Airway Remodeling in COPD
3. The Role of TGF-β in Asthma Pathogenesis
3.1. The Levels of TGF-β in Asthma
3.2. Genetic Background of TGF-β and Asthma Association
3.3. The Role of TGF-β in Asthma
3.4. The Role of TGF-β in Airway Remodeling in Asthma
3.5. The Interactions of Corticosteroids on TGF-β Expression in Asthma
3.6. The Summary of TGF-β Role in Asthma
4. Putative Compounds Altering TGF-β Activity
4.1. Natural Compounds
4.1.1. Yu-Ping-Feng-San (YPFS)
4.1.2. Berberine
4.1.3. Betalains
4.1.4. Osthole
4.1.5. Nerolidol
4.1.6. Diosmetin
4.1.7. Amygdalin
4.1.8. Epigallocatechin Gallate (EGCG)
4.1.9. Aloin
4.1.10. Quercetin
4.1.11. Kaempferol
4.2. Synthetic Compounds
4.2.1. Nintedanib
4.2.2. Tranilast
4.2.3. Pan-PDE Inhibitors
5. Summary
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Rahimi, R.A.; Leof, E.B. TGF-Beta Signaling: A Tale of Two Responses. J. Cell Biochem. 2007, 102, 593–608. [Google Scholar] [CrossRef]
- Taylor, A.W. Review of the Activation of TGF-β in Immunity. J. Leukoc. Biol. 2009, 85, 29. [Google Scholar] [CrossRef]
- Finnson, K.W.; Almadani, Y.; Philip, A. Non-Canonical (Non-SMAD2/3) TGF-β Signaling in Fibrosis: Mechanisms and Targets. Semin. Cell Dev. Biol. 2020, 101, 115–122. [Google Scholar] [CrossRef]
- Deng, Z.; Fan, T.; Xiao, C.; Tian, H.; Zheng, Y.; Li, C.; He, J. TGF-β Signaling in Health, Disease, and Therapeutics. Signal Transduct. Target. Ther. 2024, 9, 61. [Google Scholar] [CrossRef]
- Vander Ark, A.; Cao, J.; Li, X. TGF-β Receptors: In and beyond TGF-β Signaling. Cell Signal 2018, 52, 112–120. [Google Scholar] [CrossRef]
- Huang, J.J.; Blobe, G.C. Dichotomous Roles of TGF-β in Human Cancer. Biochem. Soc. Trans. 2016, 44, 1441–1454. [Google Scholar] [CrossRef]
- Böttinger, E.P. TGF-Beta in Renal Injury and Disease. Semin. Nephrol. 2007, 27, 309–320. [Google Scholar] [CrossRef]
- Tota, M.; Baron, V.; Musial, K.; Derrough, B.; Konieczny, A.; Krajewska, M.; Turkmen, K.; Kusztal, M. Secondary IgA Nephropathy and IgA-Associated Nephropathy: A Systematic Review of Case Reports. J. Clin. Med. 2023, 12, 2726. [Google Scholar] [CrossRef]
- Tota, M.; Łacwik, J.; Laska, J.; Sędek, Ł.; Gomułka, K. The Role of Eosinophil-Derived Neurotoxin and Vascular Endothelial Growth Factor in the Pathogenesis of Eosinophilic Asthma. Cells 2023, 12, 1326. [Google Scholar] [CrossRef]
- Liu, R.M.; Gaston Pravia, K.A. Oxidative Stress and Glutathione in TGF-Beta-Mediated Fibrogenesis. Free Radic. Biol. Med. 2010, 48, 1–15. [Google Scholar] [CrossRef]
- Yu, X.Y.; Sun, Q.; Zhang, Y.M.; Zou, L.; Zhao, Y.Y. TGF-β/Smad Signaling Pathway in Tubulointerstitial Fibrosis. Front. Pharmacol. 2022, 13, 860588. [Google Scholar] [CrossRef]
- Meng, X.M.; Nikolic-Paterson, D.J.; Lan, H.Y. TGF-β: The Master Regulator of Fibrosis. Nat. Rev. Nephrol. 2016, 12, 325–338. [Google Scholar] [CrossRef]
- Clayton, S. Climate Change and Mental Health. Curr. Environ. Health Rep. 2021, 8, 1–6. [Google Scholar] [CrossRef]
- Dolivo, D.M.; Larson, S.A.; Dominko, T. Crosstalk between Mitogen-Activated Protein Kinase Inhibitors and Transforming Growth Factor-β Signaling Results in Variable Activation of Human Dermal Fibroblasts. Int. J. Mol. Med. 2019, 43, 325–335. [Google Scholar] [CrossRef]
- Blyszczuk, P.; Müller-Edenborn, B.; Valenta, T.; Osto, E.; Stellato, M.; Behnke, S.; Glatz, K.; Basler, K.; Lüscher, T.F.; Distler, O.; et al. Transforming Growth Factor-β-Dependent Wnt Secretion Controls Myofibroblast Formation and Myocardial Fibrosis Progression in Experimental Autoimmune Myocarditis. Eur. Heart J. 2017, 38, 1413–1425. [Google Scholar] [CrossRef]
- Aoyagi-Ikeda, K.; Maeno, T.; Matsui, H.; Ueno, M.; Hara, K.; Aoki, Y.; Aoki, F.; Shimizu, T.; Doi, H.; Kawai-Kowase, K.; et al. Notch Induces Myofibroblast Differentiation of Alveolar Epithelial Cells via Transforming Growth Factor-{beta}-Smad3 Pathway. Am. J. Respir. Cell Mol. Biol. 2011, 45, 136–144. [Google Scholar] [CrossRef]
- Hamidi, A.; Song, J.; Thakur, N.; Itoh, S.; Marcusson, A.; Bergh, A.; Heldin, C.H.; Landström, M. TGF-β Promotes PI3K-AKT Signaling and Prostate Cancer Cell Migration through the TRAF6-Mediated Ubiquitylation of P85α. Sci. Signal 2017, 10, eaal4186. [Google Scholar] [CrossRef]
- Pervan, C.L.; Lautz, J.D.; Blitzer, A.L.; Langert, K.A.; Stubbs, E.B. Rho GTPase Signaling Promotes Constitutive Expression and Release of TGF-Β2 by Human Trabecular Meshwork Cells. Exp. Eye Res. 2016, 146, 95. [Google Scholar] [CrossRef]
- Xu, S.; Mao, Y.; Wu, J.; Feng, J.; Li, J.; Wu, L.; Yu, Q.; Zhou, Y.; Zhang, J.; Chen, J.; et al. TGF-β/Smad and JAK/STAT Pathways Are Involved in the Anti-fibrotic Effects of Propylene Glycol Alginate Sodium Sulphate on Hepatic Fibrosis. J. Cell Mol. Med. 2020, 24, 5224. [Google Scholar] [CrossRef]
- Global Health Estimates: Leading Causes of Death. Available online: https://www.who.int/data/gho/data/themes/mortality-and-global-health-estimates/ghe-leading-causes-of-death (accessed on 12 July 2024).
- Königshoffa, M.; Kneidingerb, N.; Eickelberga, O. TGF-Beta Signaling in COPD: Deciphering Genetic and Cellular Susceptibilities for Future Therapeutic Regimen. Swiss Med. Wkly. 2009, 139, 554–563. [Google Scholar] [CrossRef]
- Mak, J.C.W.; Chan-Yeung, M.M.W.; Ho, S.P.; Chan, K.S.; Choo, K.; Yee, K.S.; Chau, C.H.; Cheung, A.H.K.; Ip, M.S.M. Elevated Plasma TGF-Β1 Levels in Patients with Chronic Obstructive Pulmonary Disease. Respir. Med. 2009, 103, 1083–1089. [Google Scholar] [CrossRef] [PubMed]
- Mahmood, M.Q.; Reid, D.; Ward, C.; Muller, H.K.; Knight, D.A.; Sohal, S.S.; Walters, E.H. Transforming Growth Factor (TGF) Β1 and Smad Signalling Pathways: A Likely Key to EMT-Associated COPD Pathogenesis. Respirology 2017, 22, 133–140. [Google Scholar] [CrossRef]
- De Boer, W.I.; Van Schadewijk, A.; Sont, J.K.; Sharma, H.S.; Stolk, J.; Hiemstra, P.S.; Van Krieken, J.H.J.M. Transforming Growth Factor Beta1 and Recruitment of Macrophages and Mast Cells in Airways in Chronic Obstructive Pulmonary Disease. Am. J. Respir. Crit. Care Med. 1998, 158, 1951–1957. [Google Scholar] [CrossRef]
- Profita, M.; Bonanno, A.; Montalbano, A.M.; Albano, G.D.; Riccobono, L.; Siena, L.; Ferraro, M.; Casarosa, P.; Pieper, M.P.; Gjomarkaj, M. Β2 Long-Acting and Anticholinergic Drugs Control TGF-Β1-Mediated Neutrophilic Inflammation in COPD. Biochim. Biophys. Acta (BBA)-Mol. Basis Dis. 2012, 1822, 1079–1089. [Google Scholar] [CrossRef]
- Godinas, L.; Corhay, J.L.; Henket, M.; Guiot, J.; Louis, R.; Moermans, C. Increased Production of TGF-Β1 from Sputum Cells of COPD: Relationship with Airway Obstruction. Cytokine 2017, 99, 1–8. [Google Scholar] [CrossRef]
- Soltani, A.; Sohal, S.S.; Reid, D.; Weston, S.; Wood-Baker, R.; Walters, E.H. Vessel-Associated Transforming Growth Factor-Beta1 (TGF-Β1) Is Increased in the Bronchial Reticular Basement Membrane in COPD and Normal Smokers. PLoS ONE 2012, 7, e39736. [Google Scholar] [CrossRef]
- Stoll, P.; Wuertemberger, U.; Bratke, K.; Zingler, C.; Virchow, J.C.; Lommatzsch, M. Stage-Dependent Association of BDNF and TGF-Β1 with Lung Function in Stable COPD. Respir. Res. 2012, 13, 116. [Google Scholar] [CrossRef]
- Schubert, C.L.; Yusuf, K. Serum Levels of TGF-Β1, Cytokines, Angiogenic, and Anti-Angiogenic Factors in Pregnant Women Who Smoke. J. Reprod. Immunol. 2021, 147, 103351. [Google Scholar] [CrossRef]
- Kokturk, N.; Tatlicioglu, T.; Memis, L.; Akyurek, N.; Akyol, G. Expression of Transforming Growth Factor Beta1 in Bronchial Biopsies in Asthma and COPD. J. Asthma 2003, 40, 887–893. [Google Scholar] [CrossRef]
- Liao, N.; Zhao, H.; Chen, M.L.; Xie, Z.F. Association between the TGF-Β1 Polymorphisms and Chronic Obstructive Pulmonary Disease: A Meta-Analysis. Biosci. Rep. 2017, 37, BSR20170747. [Google Scholar] [CrossRef]
- Kang, H.R.; Lee, J.Y.; Lee, C.G. TGF-Β1 as a Therapeutic Target for Pulmonary Fibrosis and COPD. Expert Rev. Clin. Pharmacol. 2008, 1, 547–558. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, J.; Meng, Y.; Adcock, I.M.; Yao, X. Role of Inflammatory Cells in Airway Remodeling in COPD. Int. J. COPD 2018, 13, 3341–3348. [Google Scholar] [CrossRef]
- Luo, B.L.; Niu, R.C.; Feng, J.T.; Hu, C.P.; Xie, X.Y.; Ma, L.J. Downregulation of Secretory Leukocyte Proteinase Inhibitor in Chronic Obstructive Lung Disease: The Role Of TGF-β/Smads Signaling Pathways. Arch. Med. Res. 2008, 39, 388–396. [Google Scholar] [CrossRef]
- Saito, A.; Horie, M.; Nagase, T. TGF-β Signaling in Lung Health and Disease. Int. J. Mol. Sci. 2018, 19, 2460. [Google Scholar] [CrossRef]
- Brake, S.J.; Lu, W.; Chia, C.; Haug, G.; Larby, J.; Hardikar, A.; Singhera, G.K.; Hackett, T.L.; Eapen, M.S.; Sohal, S.S. Transforming Growth Factor-Β1 and SMAD Signalling Pathway in the Small Airways of Smokers and Patients with COPD: Potential Role in Driving Fibrotic Type-2 Epithelial Mesenchymal Transition. Front. Immunol. 2023, 14, 1216506. [Google Scholar] [CrossRef]
- Tian, J.; Ouyang, H.; Wu, J.; Wen, L.; Li, X.; Yang, F.; Yuan, H. Inactivation of the TGF-Β1/ALK5 Axis Enhances Club Cell Function and Alleviates Lung Tissue Damage to Ameliorate COPD Progression through the MEK/ERK Signaling Pathway. Gen. Physiol. Biophys. 2024, 43, 37–48. [Google Scholar] [CrossRef]
- Blackburn, J.B.; Li, N.F.; Bartlett, N.W.; Richmond, B.W. An Update in Club Cell Biology and Its Potential Relevance to Chronic Obstructive Pulmonary Disease. Am. J. Physiol. Lung Cell Mol. Physiol. 2023, 324, L652–L665. [Google Scholar] [CrossRef]
- Barnes, P.J. Club Cells, Their Secretory Protein, and COPD. Chest 2015, 147, 1447–1448. [Google Scholar] [CrossRef]
- Gohy, S.T.; Hupin, C.; Fregimilicka, C.; Detry, B.R.; Bouzin, C.; Chevronay, H.G.; Lecocq, M.; Weynand, B.; Ladjemi, M.Z.; Pierreux, C.E.; et al. Imprinting of the COPD Airway Epithelium for Dedifferentiation and Mesenchymal Transition. Eur. Respir. J. 2015, 45, 1258–1272. [Google Scholar] [CrossRef]
- Aghasafari, P.; George, U.; Pidaparti, R. A Review of Inflammatory Mechanism in Airway Diseases. Inflamm. Res. 2019, 68, 59–74. [Google Scholar] [CrossRef]
- Parameswaran, K.; Willems-Widyastuti, A.; Alagappan, V.K.T.; Radford, K.; Kranenburg, A.R.; Sharma, H.S. Role of Extracellular Matrix and Its Regulators in Human Airway Smooth Muscle Biology. Cell Biochem. Biophys. 2006, 44, 139–146. [Google Scholar] [CrossRef]
- Baraldo, S.; Bazzan, E.; Turato, G.; Calabrese, F.; Beghé, B.; Papi, A.; Maestrelli, P.; Fabbri, L.M.; Zuin, R.; Saetta, M. Decreased Expression of TGF-Beta Type II Receptor in Bronchial Glands of Smokers with COPD. Thorax 2005, 60, 998–1002. [Google Scholar] [CrossRef]
- Alevy, Y.G.; Patel, A.C.; Romero, A.G.; Patel, D.A.; Tucker, J.; Roswit, W.T.; Miller, C.A.; Heier, R.F.; Byers, D.E.; Brett, T.J.; et al. IL-13-Induced Airway Mucus Production Is Attenuated by MAPK13 Inhibition. J. Clin. Investig. 2012, 122, 4555–4568. [Google Scholar] [CrossRef]
- Pons, A.R.; Sauleda, J.; Noguera, A.; Pons, J.; Barceló, B.; Fuster, A.; Agustí, A.G.N. Decreased Macrophage Release of TGF-Beta and TIMP-1 in Chronic Obstructive Pulmonary Disease. Eur. Respir. J. 2005, 26, 60–66. [Google Scholar] [CrossRef]
- Sun, S.W.; Chen, L.; Zhou, M.; Wu, J.H.; Meng, Z.J.; Han, H.L.; Miao, S.Y.; Zhu, C.C.; Xiong, X.Z. BAMBI Regulates Macrophages Inducing the Differentiation of Treg through the TGF-β Pathway in Chronic Obstructive Pulmonary Disease. Respir. Res. 2019, 20, 26. [Google Scholar] [CrossRef]
- Zhang, J.C.; Chen, G.; Chen, L.; Meng, Z.J.; Xiong, X.Z.; Liu, H.J.; Jin, Y.; Tao, X.N.; Wu, J.H.; Sun, S.W. TGF-β/BAMBI Pathway Dysfunction Contributes to Peripheral Th17/Treg Imbalance in Chronic Obstructive Pulmonary Disease. Sci. Rep. 2016, 6, 31911. [Google Scholar] [CrossRef]
- Di Stefano, A.; Sangiorgi, C.; Gnemmi, I.; Casolari, P.; Brun, P.; Ricciardolo, F.L.M.; Contoli, M.; Papi, A.; Maniscalco, P.; Ruggeri, P.; et al. TGF-β Signaling Pathways in Different Compartments of the Lower Airways of Patients with Stable COPD. Chest 2018, 153, 851–862. [Google Scholar] [CrossRef]
- Abbafati, C.; Abbas, K.M.; Abbasi-Kangevari, M.; Abd-Allah, F.; Abdelalim, A.; Abdollahi, M.; Abdollahpour, I.; Abegaz, K.H.; Abolhassani, H.; Aboyans, V.; et al. Global Burden of 369 Diseases and Injuries in 204 Countries and Territories, 1990-2019: A Systematic Analysis for the Global Burden of Disease Study 2019. Lancet 2020, 396, 1204–1222. [Google Scholar] [CrossRef]
- Duvernelle, C.; Freund, V.; Frossard, N. Transforming Growth Factor-β and Its Role in Asthma. Pulm. Pharmacol. Ther. 2003, 16, 181–196. [Google Scholar] [CrossRef]
- Makinde, T.; Murphy, R.F.; Agrawal, D.K. The Regulatory Role of TGF-Beta in Airway Remodeling in Asthma. Immunol. Cell Biol. 2007, 85, 348–356. [Google Scholar] [CrossRef]
- Manuyakorn, W.; Kamchaisatian, W.; Atamasirikul, K.; Sasisakulporn, C.; Direkwattanachai, C.; Benjaponpitak, S. Serum TGF-Β1 in Atopic Asthma. Asian Pac. J. Allergy Immunol. 2008, 26, 185–189. [Google Scholar]
- Prabha, A.; Lokesh, K.S.; Chaya, S.K.; Jayaraj, B.S.; Malamardi, S.; Subbarao, M.V.S.S.T.; Beck, S.C.; Krishna, M.T.; Mahesh, P.A. Pilot Study Investigating Diagnostic Utility of Serum MMP-1 and TGF-Β1 in Asthma in “real World” Clinical Practice in India. J. Clin. Pathol. 2022, 75, 222–225. [Google Scholar] [CrossRef]
- Brown, S.D.; Baxter, K.M.; Stephenson, S.T.; Esper, A.M.; Brown, L.A.S.; Fitzpatrick, A.M. Airway TGF-Β1 and Oxidant Stress in Children with Severe Asthma: Association with Airflow Limitation. J. Allergy Clin. Immunol. 2012, 129, 388–396.e8. [Google Scholar] [CrossRef]
- Gagliardo, R.; Chanez, P.; Gjomarkaj, M.; La Grutta, S.; Bonanno, A.; Montalbano, A.M.; Di Sano, C.; Albano, G.D.; Gras, D.; Anzalone, G.; et al. The Role of Transforming Growth Factor-Β1 in Airway Inflammation of Childhood Asthma. Int. J. Immunopathol. Pharmacol. 2013, 26, 725–738. [Google Scholar] [CrossRef]
- Keskin, O.; Ozkars, M.Y.; Gogebakan, B.; Kucukosmanoglu, E.; Keskin, M.; Bayram, H. Exhaled TGF-Β1 Levels before and after an Exercise Challenge in Asthmatic and Healthy Children, and during Exacerbation. J. Asthma 2021, 58, 316–325. [Google Scholar] [CrossRef]
- Balzar, S.; Chu, H.W.; Silkoff, P.; Cundall, M.; Trudeau, J.B.; Strand, M.; Wenzel, S. Increased TGF-Β2 in Severe Asthma with Eosinophilia. J. Allergy Clin. Immunol. 2005, 115, 110–117. [Google Scholar] [CrossRef]
- Barbato, A.; Turato, G.; Baraldo, S.; Bazzan, E.; Calabrese, F.; Tura, M.; Zuin, R.; Beghé, B.; Maestrelli, P.; Fabbri, L.M.; et al. Airway Inflammation in Childhood Asthma. Am. J. Respir. Crit. Care Med. 2003, 168, 798–803. [Google Scholar] [CrossRef]
- Yang, X.-X.; Li, F.-X.; Wu, Y.-S.; Wu, D.; Tan, J.-Y.; Li, M. Association of TGF-β 1, IL-4 and IL-13 Gene Polymerphisms with Asthma in a Chinese Population. Asian Pac. J. Allergy Immunol. 2011, 29, 273–280. [Google Scholar]
- Liu, Z.; Li, J.; Wang, K.; Tan, Q.; Tan, W.; Guo, G. Association between TGF-Β1 Polymorphisms and Asthma Susceptibility Among the Chinese: A Meta-Analysis. Genet. Test. Mol. Biomark. 2018, 22, 433–442. [Google Scholar] [CrossRef]
- Ueda, T.; Niimi, A.; Matsumoto, H.; Takemura, M.; Yamaguchi, M.; Matsuoka, H.; Jinnai, M.; Chin, K.; Minakuchi, M.; Cheng, L.; et al. TGFB1 Promoter Polymorphism C-509T and Pathophysiology of Asthma. J. Allergy Clin. Immunol. 2008, 121, 659–664. [Google Scholar] [CrossRef]
- LI, H.; LI, Y.; ZHANG, M.; XU, G.; FENG, X.; XI, J.; ZHAO, B. Associations of Genetic Variants in ADAM33 and TGF-Β1 Genes with Childhood Asthma Risk. Biomed. Rep. 2014, 2, 533–538. [Google Scholar] [CrossRef]
- Mak, J.C.W.; Leung, H.C.M.; Ho, S.P.; Law, B.K.W.; Ho, A.S.S.; Lam, W.K.; Ip, M.S.M.; Chan-Yeung, M.M.W. Analysis of TGF-Beta(1) Gene Polymorphisms in Hong Kong Chinese Patients with Asthma. J. Allergy Clin. Immunol. 2006, 117, 92–96. [Google Scholar] [CrossRef]
- Che, Z.; Zhu, X.; Yao, C.; Liu, Y.; Chen, Y.; Cao, J.; Liang, C.; Lu, Y. The Association between the C-509T and T869C Polymorphisms of TGF-Β1 Gene and the Risk of Asthma: A Meta-Analysis. Hum. Immunol. 2014, 75, 141–150. [Google Scholar] [CrossRef]
- Michał, P.; Konrad, S.; Piotr, K. TGF-β Gene Polimorphisms as Risk Factors for Asthma Control among Clinic Patients. J. Inflamm. 2021, 18, 28. [Google Scholar] [CrossRef]
- Panek, M.; Stawiski, K.; Kaszkowiak, M.; Kuna, P. Cytokine TGFβ Gene Polymorphism in Asthma: TGF-Related SNP Analysis Enhances the Prediction of Disease Diagnosis (A Case-Control Study with Multivariable Data-Mining Model Development). Front. Immunol. 2022, 13, 746360. [Google Scholar] [CrossRef]
- Al-Alawi, M.; Hassan, T.; Chotirmall, S.H. Transforming Growth Factor β and Severe Asthma: A Perfect Storm. Respir. Med. 2014, 108, 1409–1423. [Google Scholar] [CrossRef]
- Howell, J.; McAnulty, R. TGF-β: Its Role in Asthma and Therapeutic Potential. Curr. Drug Targets 2006, 7, 547–565. [Google Scholar] [CrossRef]
- Michaeloudes, C.; Chang, P.J.; Petrou, M.; Kian, F.C. Transforming Growth Factor-β and Nuclear Factor E2–Related Factor 2 Regulate Antioxidant Responses in Airway Smooth Muscle Cells: Role in Asthma. Am. J. Respir. Crit. Care Med. 2011, 184, 894–903. [Google Scholar] [CrossRef]
- Chu, H.W.; Balzar, S.; Seedorf, G.J.; Westcott, J.Y.; Trudeau, J.B.; Silkoff, P.; Menzel, S.E. Transforming Growth Factor-Β2 Induces Bronchial Epithelial Mucin Expression in Asthma. Am. J. Pathol. 2004, 165, 1097–1106. [Google Scholar] [CrossRef]
- Halwani, R.; Al-Muhsen, S.; Al-Jahdali, H.; Hamid, Q. Role of Transforming Growth Factor–β in Airway Remodeling in Asthma. Am. J. Respir. Cell Mol. Biol. 2012, 44, 127–133. [Google Scholar] [CrossRef]
- Doherty, T.; Broide, D. Cytokines and Growth Factors in Airway Remodeling in Asthma. Curr. Opin. Immunol. 2007, 19, 676–680. [Google Scholar] [CrossRef]
- Kay, A.B.; Phipps, S.; Robinson, D.S. A Role for Eosinophils in Airway Remodelling in Asthma. Trends Immunol. 2004, 25, 477–482. [Google Scholar] [CrossRef]
- Broide, D.H. Immunologic and Inflammatory Mechanisms That Drive Asthma Progression to Remodeling. J. Allergy Clin. Immunol. 2008, 121, 560–570. [Google Scholar] [CrossRef]
- Haj-Salem, I.; Plante, S.; Gounni, A.S.; Rouabhia, M.; Chakir, J. Fibroblast-Derived Exosomes Promote Epithelial Cell Proliferation through TGF-Β2 Signalling Pathway in Severe Asthma. Allergy 2018, 73, 178–186. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, H.; Su, X.; Cao, A.; Chen, F.; Chen, P.; Yan, F.; Hu, H. TGF-Β1/SMOC2/AKT and ERK Axis Regulates Proliferation, Migration, and Fibroblast to Myofibroblast Transformation in Lung Fibroblast, Contributing with the Asthma Progression. Hereditas 2021, 158, 47. [Google Scholar] [CrossRef]
- Yuan, J.; Zhang, W. Expression and Significance of TGF-Β1 in Infant Asthma Model. Cell. Mol. Biol. 2022, 68, 51–55. [Google Scholar] [CrossRef]
- Wnuk, D.; Paw, M.; Ryczek, K.; Bochenek, G.; Sładek, K.; Madeja, Z.; Michalik, M. Enhanced Asthma-Related Fibroblast to Myofibroblast Transition Is the Result of Profibrotic TGF-β/Smad2/3 Pathway Intensification and Antifibrotic TGF-β/Smad1/5/(8)9 Pathway Impairment. Sci. Rep. 2020, 10, 16492. [Google Scholar] [CrossRef]
- Hardy, C.L.; LeMasurier, J.S.; Olsson, F.; Dang, T.; Yao, J.; Yang, M.; Plebanski, M.; Phillips, D.J.; Mollard, R.; Rolland, J.M.; et al. Interleukin-13 Regulates Secretion of the Tumor Growth Factor-β Superfamily Cytokine Activin A in Allergic Airway Inflammation. Am. J. Respir. Cell Mol. Biol. 2010, 42, 667–675. [Google Scholar] [CrossRef]
- Harrop, C.A.; Gore, R.B.; Evans, C.M.; Thornton, D.J.; Herrick, S.E. TGF-Β₂ Decreases Baseline and IL-13-Stimulated Mucin Production by Primary Human Bronchial Epithelial Cells. Exp. Lung Res. 2013, 39, 39–47. [Google Scholar] [CrossRef]
- Akhurst, R.J.; Hata, A. Targeting the TGFβ Signalling Pathway in Disease. Nat. Rev. Drug Discov. 2012, 11, 790–811. [Google Scholar] [CrossRef]
- Györfi, A.H.; Matei, A.E.; Distler, J.H.W. Targeting TGF-β Signaling for the Treatment of Fibrosis. Matrix Biol. 2018, 68–69, 8–27. [Google Scholar] [CrossRef]
- Xue, L.; Li, C.; Ge, G.; Zhang, S.; Tian, L.; Wang, Y.; Zhang, H.; Ma, Z.; Lu, Z. Jia-Wei-Yu-Ping-Feng-San Attenuates Group 2 Innate Lymphoid Cell-Mediated Airway Inflammation in Allergic Asthma. Front. Pharmacol. 2021, 12, 703724. [Google Scholar] [CrossRef]
- Yang, Z.S.; Yan, J.Y.; Han, N.P.; Zhou, W.; Cheng, Y.; Zhang, X.M.; Li, N.; Yuan, J.L. Anti-Inflammatory Effect of Yu-Ping-Feng-San via TGF-Β1 Signaling Suppression in Rat Model of COPD. Iran. J. Basic Med. Sci. 2016, 19, 993. [Google Scholar] [CrossRef]
- Tian, S.; Liu, Y.; Zhang, X.; Yang, Z.; Peng, J.; Chen, J. The Inhibitory Effect of Yupingfengsan and Siwutang Compound Formula on Inflammation and Oxidative Stress in COPD Rats. Pak. J. Pharm. Sci. 2020, 33, 1493–1501. [Google Scholar] [CrossRef]
- Xu, D.; Wan, C.; Wang, T.; Tian, P.; Li, D.; Wu, Y.; Fan, S.; Chen, L.; Shen, Y.; Wen, F. Berberine Attenuates Cigarette Smoke-Induced Airway Inflammation and Mucus Hypersecretion in Mice. Int. J. Clin. Exp. Med. 2015, 8, 8641. [Google Scholar]
- Tew, X.N.; Xin Lau, N.J.; Chellappan, D.K.; Madheswaran, T.; Zeeshan, F.; Tambuwala, M.M.; Aljabali, A.A.; Balusamy, S.R.; Perumalsamy, H.; Gupta, G.; et al. Immunological Axis of Berberine in Managing Inflammation Underlying Chronic Respiratory Inflammatory Diseases. Chem. Biol. Interact. 2020, 317, 108947. [Google Scholar] [CrossRef]
- Wang, W.; Zha, G.; Zou, J.J.; Wang, X.; Li, C.N.; Wu, X.J. Berberine Attenuates Cigarette Smoke Extract-Induced Airway Inflammation in Mice: Involvement of TGF-Β1/Smads Signaling Pathway. Curr. Med. Sci. 2019, 39, 748–753. [Google Scholar] [CrossRef]
- De Rubis, G.; Paudel, K.R.; Liu, G.; Agarwal, V.; MacLoughlin, R.; de Jesus Andreoli Pinto, T.; Singh, S.K.; Adams, J.; Nammi, S.; Chellappan, D.K.; et al. Berberine-Loaded Engineered Nanoparticles Attenuate TGF-β-Induced Remodelling in Human Bronchial Epithelial Cells. Toxicol. Vitr. 2023, 92, 105660. [Google Scholar] [CrossRef]
- Kaur, G.; Thawkar, B.; Dubey, S.; Jadhav, P. Pharmacological Potentials of Betalains. J. Complement. Integr. Med. 2018, 15. [Google Scholar] [CrossRef]
- Dai, R.; Wang, Y.; Wang, N. Betalain Alleviates Airway Inflammation in an Ovalbumin-Induced-Asthma Mouse Model via the TGF-Β1/Smad Signaling Pathway. J. Environ. Pathol. Toxicol. Oncol. 2021, 40, 11–21. [Google Scholar] [CrossRef]
- Zhang, Z.R.; Leung, W.N.; Cheung, H.Y.; Chan, C.W. Osthole: A Review on Its Bioactivities, Pharmacological Properties, and Potential as Alternative Medicine. Evid. Based Complement. Altern. Med. 2015, 2015, 919616. [Google Scholar] [CrossRef]
- Yang, Q.; Kong, L.; Huang, W.; Mohammadtursun, N.; Li, X.; Wang, G.; Wang, L. Osthole Attenuates Ovalbumin-Induced Lung Inflammation via the Inhibition of IL-33/ST2 Signaling in Asthmatic Mice. Int. J. Mol. Med. 2020, 46, 1389. [Google Scholar] [CrossRef]
- Tang, J.; Liu, J.; Zhang, X. The Role of Osthole on TGF-β-Induced Lung Epithelium Apoptosis Injury and Epithelial-Mesenchymal Transition-Mediated Airway Remodeling in Pediatric Asthma. J. Healthc. Eng. 2022, 2022, 7099097. [Google Scholar] [CrossRef]
- Chan, W.K.; Tan, L.T.H.; Chan, K.G.; Lee, L.H.; Goh, B.H. Nerolidol: A Sesquiterpene Alcohol with Multi-Faceted Pharmacological and Biological Activities. Molecules 2016, 21, 529. [Google Scholar] [CrossRef]
- Wang, T.; Song, G.; Sun, M.; Zhang, Y.; Zhang, B.; Peng, M.; Li, M. Nerolidol Attenuates Airway Inflammation and Airway Remodeling and Alters Gut Microbes in Ovalbumin-Induced Asthmatic Mice. Cell Biochem. Funct. 2024, 42, e3899. [Google Scholar] [CrossRef]
- Ge, A.; Liu, Y.; Zeng, X.; Kong, H.; Ma, Y.; Zhang, J.; Bai, F.; Huang, M. Effect of Diosmetin on Airway Remodeling in a Murine Model of Chronic Asthma. Acta Biochim. Biophys. Sin. 2015, 47, 604–611. [Google Scholar] [CrossRef]
- Ge, A.; Ma, Y.; Liu, Y.N.; Li, Y.S.; Gu, H.; Zhang, J.X.; Wang, Q.X.; Zeng, X.N.; Huang, M. Diosmetin Prevents TGF-Β1-Induced Epithelial-Mesenchymal Transition via ROS/MAPK Signaling Pathways. Life Sci. 2016, 153, 1–8. [Google Scholar] [CrossRef]
- Xu, S.; Xu, X.; Yuan, S.; Liu, H.; Liu, M.; Zhang, Y.; Zhang, H.; Gao, Y.; Lin, R.; Li, X. Identification and Analysis of Amygdalin, Neoamygdalin and Amygdalin Amide in Different Processed Bitter Almonds by HPLC-ESI-MS/MS and HPLC-DAD. Mol. A J. Synth. Chem. Nat. Prod. Chem. 2017, 22, 1425. [Google Scholar] [CrossRef]
- Cui, W.; Zhou, H.; Liu, Y.Z.; Yang, Y.; Hu, Y.Z.; Han, Z.P.; Yu, J.E.; Xue, Z. Amygdalin Improves Allergic Asthma via the Thymic Stromal Lymphopoietin-Dendritic Cell-OX40 Ligand Axis in a Mouse Model. Iran. J. Allergy Asthma Immunol. 2023, 22, 430–439. [Google Scholar] [CrossRef] [PubMed]
- He, X.Y.; Wu, L.J.; Wang, W.X.; Xie, P.J.; Chen, Y.H.; Wang, F. Amygdalin—A Pharmacological and Toxicological Review. J. Ethnopharmacol. 2020, 254, 112717. [Google Scholar] [CrossRef] [PubMed]
- Lannagan, T.R.; Jackstadt, R.; Leedham, S.J.; Sansom, O.J. Advances in Colon Cancer Research: In Vitro and Animal Models. Curr. Opin. Genet. Dev. 2021, 66, 50–56. [Google Scholar] [CrossRef] [PubMed]
- Zhang, A.N.; Li, N.; Chen, Z.C.; Guo, Y.L.; Tian, C.J.; Cheng, D.J.; Tang, X.Y.; Zhang, X.Y. Amygdalin Alleviated TGF-β-Induced Epithelial-Mesenchymal Transition in Bronchial Epithelial Cells. Chem. Biol. Interact. 2023, 369, 110235. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Fang, K.; Wang, G.; Guan, X.; Pang, Z.; Guo, Y.; Yuan, Y.; Ran, N.; Liu, Y.; Wang, F. Protective Effect of Amygdalin on Epithelial-Mesenchymal Transformation in Experimental Chronic Obstructive Pulmonary Disease Mice. Phytother. Res. 2019, 33, 808–817. [Google Scholar] [CrossRef] [PubMed]
- Wen, J.J.; Li, M.Z.; Chen, C.H.; Hong, T.; Yang, J.R.; Huang, X.J.; Geng, F.; Hu, J.L.; Nie, S.P. Tea Polyphenol and Epigallocatechin Gallate Ameliorate Hyperlipidemia via Regulating Liver Metabolism and Remodeling Gut Microbiota. Food Chem. 2023, 404, 134591. [Google Scholar] [CrossRef] [PubMed]
- Shan, L.; Kang, X.; Liu, F.; Cai, X.; Han, X.; Shang, Y. Epigallocatechin Gallate Improves Airway Inflammation through TGF-Β1 Signaling Pathway in Asthmatic Mice. Mol. Med. Rep. 2018, 18, 2088. [Google Scholar] [CrossRef] [PubMed]
- Yang, N.; Zhang, H.; Cai, X.; Shang, Y. Epigallocatechin-3-Gallate Inhibits Inflammation and Epithelial-mesenchymal Transition through the PI3K/AKT Pathway via Upregulation of PTEN in Asthma. Int. J. Mol. Med. 2018, 41, 818–828. [Google Scholar] [CrossRef]
- Lewis, D.S.M.; Ho, J.; Wills, S.; Kawall, A.; Sharma, A.; Chavada, K.; Ebert, M.C.C.J.C.; Evoli, S.; Singh, A.; Rayalam, S.; et al. Aloin Isoforms (A and B) Selectively Inhibits Proteolytic and Deubiquitinating Activity of Papain like Protease (PLpro) of SARS-CoV-2 in Vitro. Sci. Rep. 2022, 12, 2145. [Google Scholar] [CrossRef]
- Huang, C.T.; Hung, C.Y.; Hseih, Y.C.; Chang, C.S.; Velu, A.B.; He, Y.C.; Huang, Y.L.; Chen, T.A.; Chen, T.C.; Lin, C.Y.; et al. Effect of Aloin on Viral Neuraminidase and Hemagglutinin-Specific T Cell Immunity in Acute Influenza. Phytomedicine 2019, 64, 152904. [Google Scholar] [CrossRef] [PubMed]
- Syed, A.M.; Kundu, S.; Ram, C.; Kulhari, U.; Kumar, A.; Mugale, M.N.; Murty, U.S.; Sahu, B.D. Aloin Alleviates Pathological Cardiac Hypertrophy via Modulation of the Oxidative and Fibrotic Response. Life Sci. 2022, 288, 120159. [Google Scholar] [CrossRef] [PubMed]
- Bai, J.; Qian, B.; Cai, T.; Chen, Y.; Li, T.; Cheng, Y.; Wu, Z.; Liu, C.; Ye, M.; Du, Y.; et al. Aloin Attenuates Oxidative Stress, Inflammation, and CCl4-Induced Liver Fibrosis in Mice: Possible Role of TGF-β/Smad Signaling. J. Agric. Food Chem. 2023, 71, 19475–19487. [Google Scholar] [CrossRef]
- Wu, S.; Xia, Y.; Yang, C.; Li, M. Protective Effects of Aloin on Asthmatic Mice by Activating Nrf2/HO-1 Pathway and Inhibiting TGF-β/ Smad2/3 Pathway. Allergol. Immunopathol. 2023, 51, 10–18. [Google Scholar] [CrossRef]
- Feng, Y.; Qiao, H.; Liu, H.; Wang, J.; Tang, H. Exploration of the Mechanism of Aloin Ameliorates of Combined Allergic Rhinitis and Asthma Syndrome Based on Network Pharmacology and Experimental Validation. Front. Pharmacol. 2023, 14, 1218030. [Google Scholar] [CrossRef]
- Wu, L.; Zhang, Q.; Mo, W.; Feng, J.; Li, S.; Li, J.; Liu, T.; Xu, S.; Wang, W.; Lu, X.; et al. Quercetin Prevents Hepatic Fibrosis by Inhibiting Hepatic Stellate Cell Activation and Reducing Autophagy via the TGF-Β1/Smads and PI3K/Akt Pathways. Sci. Rep. 2017, 7, 9289. [Google Scholar] [CrossRef]
- Xiao, Y.; Zhou, L.; Zhang, T.; Qin, C.; Wei, P.; Luo, L.; Luo, L.; Huang, G.; Chen, A.; Liu, G. Anti-Fibrosis Activity of Quercetin Attenuates Rabbit Tracheal Stenosis via the TGF-β/AKT/MTOR Signaling Pathway. Life Sci. 2020, 250, 117552. [Google Scholar] [CrossRef]
- Zhang, H.; Yang, L.; Han, Q.; Xu, W. Antifibrotic Effects of Quercetin on TGF-Β1-Induced Vocal Fold Fibroblasts. Am. J. Transl. Res. 2022, 14, 8552. [Google Scholar]
- Fang, Y.; Jin, W.; Guo, Z.; Hao, J. Quercetin Alleviates Asthma-Induced Airway Inflammation and Remodeling through Downregulating Periostin via Blocking TGF-Β1/Smad Pathway. Pharmacology 2023, 108, 432–443. [Google Scholar] [CrossRef]
- Jafarinia, M.; Sadat Hosseini, M.; Kasiri, N.; Fazel, N.; Fathi, F.; Ganjalikhani Hakemi, M.; Eskandari, N. Quercetin with the Potential Effect on Allergic Diseases. Allergy Asthma Clin. Immunol. 2020, 16, 36. [Google Scholar] [CrossRef]
- Rajizadeh, M.A.; Bejeshk, M.A.; Doustimotlagh, A.H.; Najafipour, H.; Eftekhari, M.; Mahmoodi, M.; Azizi, M.; Rostamabadi, F.; Pourghadamyari, H. The Alleviating Impacts of Quercetin on Inflammation and Oxidant-Antioxidant Imbalance in Rats with Allergic Asthma. Iran. J. Allergy Asthma Immunol. 2023, 22, 138–149. [Google Scholar] [CrossRef]
- McCluskey, E.S.; Liu, N.; Pandey, A.; Marchetti, N.; Kelsen, S.G.; Sajjan, U.S. Quercetin Improves Epithelial Regeneration from Airway Basal Cells of COPD Patients. Respir. Res. 2024, 25, 529. [Google Scholar] [CrossRef] [PubMed]
- Xuan, A.; Yang, M.; Xia, Q.; Sun, Q. Downregulation of NOX4 Improves Airway Remodeling and Inflammation by the TGF-Β1-Smad2/3 Pathway in Asthma. Cell. Mol. Biol. 2023, 69, 201–206. [Google Scholar] [CrossRef] [PubMed]
- Sturrock, A.; Huecksteadt, T.P.; Norman, K.; Sanders, K.; Murphy, T.M.; Chitano, P.; Wilson, K.; Hoidal, J.R.; Kennedy, T.P. Nox4 Mediates TGF-Beta1-Induced Retinoblastoma Protein Phosphorylation, Proliferation, and Hypertrophy in Human Airway Smooth Muscle Cells. Am. J. Physiol. Lung Cell Mol. Physiol. 2007, 292, L1543–L1555. [Google Scholar] [CrossRef]
- Holland, T.M.; Agarwal, P.; Wang, Y.; Leurgans, S.E.; Bennett, D.A.; Booth, S.L.; Morris, M.C. Dietary Flavonols and Risk of Alzheimer Dementia. Neurology 2020, 94, e1749. [Google Scholar] [CrossRef]
- Kowalski, S.; Karska, J.; Tota, M.; Skinderowicz, K.; Kulbacka, J.; Drąg-Zalesińska, M. Natural Compounds in Non-Melanoma Skin Cancer: Prevention and Treatment. Molecules 2024, 29, 728. [Google Scholar] [CrossRef]
- Xu, J.; Yu, Z.; Li, W. Kaempferol Inhibits Airway Inflammation Induced by Allergic Asthma through NOX4-Mediated Autophagy. Hum. Exp. Toxicol. 2023, 42, 9603271231154227. [Google Scholar] [CrossRef]
- Rangarajan, S.; Kurundkar, A.; Kurundkar, D.; Bernard, K.; Sanders, Y.Y.; Ding, Q.; Antony, V.B.; Zhang, J.; Zmijewski, J.; Thannickal, V.J. Novel Mechanisms for the Antifibrotic Action of Nintedanib. Am. J. Respir. Cell Mol. Biol. 2016, 54, 51–59. [Google Scholar] [CrossRef]
- Lee, H.Y.; Hur, J.; Kim, I.K.; Kang, J.Y.; Yoon, H.K.; Lee, S.Y.; Kwon, S.S.; Kim, Y.K.; Rhee, C.K. Effect of Nintedanib on Airway Inflammation and Remodeling in a Murine Chronic Asthma Model. Exp. Lung Res. 2017, 43, 187–196. [Google Scholar] [CrossRef]
- Choi, H.E.; Kim, D.Y.; Choi, M.J.; Kim, J.I.; Kim, O.H.; Lee, J.; Seo, E.; Cheon, H.G. Tranilast Protects Pancreatic β-Cells from Palmitic Acid-Induced Lipotoxicity via FoxO-1 Inhibition. Sci. Rep. 2023, 13, 101. [Google Scholar] [CrossRef]
- Darakhshan, S.; Pour, A.B. Tranilast: A Review of Its Therapeutic Applications. Pharmacol. Res. 2015, 91, 15–28. [Google Scholar] [CrossRef]
- Zhuo, Y.; Zhuo, J. Tranilast Treatment Attenuates Cerebral Ischemia-Reperfusion Injury in Rats Through the Inhibition of Inflammatory Responses Mediated by NF-κB and PPARs. Clin. Transl. Sci. 2019, 12, 196. [Google Scholar] [CrossRef] [PubMed]
- Nader, M.A.; Gameil, N.; Abdelaziz, R.R.; Zalata, K.R.; Osman, A.; Zedan, M.M.; Abo-Elkheir, N.; Elsiddig, A.A.; Zedan, M. Effect of Tranilast in Comparison with Beclomethasone in Chronic Murine Model of Asthma. Exp. Lung Res. 2016, 42, 296–306. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhao, X.J.; Zheng, X.S.; Zheng, H.; Liu, L.; Meng, L.B.; Li, Q.; Liu, Y. Tranilast Inhibits TGF-β-Induced Collagen Gel Contraction Mediated by Human Corneal Fibroblasts. Int. J. Ophthalmol. 2018, 11, 1247. [Google Scholar] [CrossRef]
- Takahashi, K.; Menju, T.; Nishikawa, S.; Miyata, R.; Tanaka, S.; Yutaka, Y.; Yamada, Y.; Nakajima, D.; Hamaji, M.; Ohsumi, A.; et al. Tranilast Inhibits TGF-Β1–Induced Epithelial-Mesenchymal Transition and Invasion/Metastasis via the Suppression of Smad4 in Human Lung Cancer Cell Lines. Anticancer Res. 2020, 40, 3287–3296. [Google Scholar] [CrossRef]
- Holmes, D.R.; Savage, M.; LaBlanche, J.M.; Grip, L.; Serruys, P.W.; Fitzgerald, P.; Fischman, D.; Goldberg, S.; Brinker, J.A.; Zeiher, A.M.; et al. Results of Prevention of REStenosis with Tranilast and Its Outcomes (PRESTO) Trial. Circulation 2002, 106, 1243–1250. [Google Scholar] [CrossRef]
- Chuang, T.D.; Munoz, L.; Quintanilla, D.; Boos, D.; Khorram, O. Therapeutic Effects of Long-Term Administration of Tranilast in an Animal Model for the Treatment of Fibroids. Int. J. Mol. Sci. 2023, 24, 10465. [Google Scholar] [CrossRef]
- Shiozaki, A.; Kudou, M.; Fujiwara, H.; Konishi, H.; Shimizu, H.; Arita, T.; Kosuga, T.; Yamamoto, Y.; Morimura, R.; Ikoma, H.; et al. Clinical Safety and Efficacy of Neoadjuvant Combination Chemotherapy of Tranilast in Advanced Esophageal Squamous Cell Carcinoma: Phase I/II Study (TNAC). Medicine 2020, 99, E23633. [Google Scholar] [CrossRef]
- Cui, P.; Tang, Z.; Zhan, Q.; Deng, C.; Lai, Y.; Zhu, F.; Xin, H.; Li, R.; Chen, A.; Tong, Y. In Vitro and Vivo Study of Tranilast Protects from Acute Respiratory Distress Syndrome and Early Pulmonary Fibrosis Induced by Smoke Inhalation. Burns 2022, 48, 880–895. [Google Scholar] [CrossRef]
- Webster Marketon, J.I.; Corry, J.; Teng, M.N. The Respiratory Syncytial Virus (RSV) Nonstructural Proteins Mediate RSV Suppression of Glucocorticoid Receptor Transactivation. Virology 2014, 449, 62–69. [Google Scholar] [CrossRef]
- Xia, Y.C.; Radwan, A.; Keenan, C.R.; Langenbach, S.Y.; Li, M.; Radojicic, D.; Londrigan, S.L.; Gualano, R.C.; Stewart, A.G. Glucocorticoid Insensitivity in Virally Infected Airway Epithelial Cells Is Dependent on Transforming Growth Factor-β Activity. PLoS Pathog. 2017, 13, 1006138. [Google Scholar] [CrossRef]
- Ntontsi, P.; Detta, A.; Bakakos, P.; Loukides, S.; Hillas, G. Experimental and Investigational Phosphodiesterase Inhibitors in Development for Asthma. Expert. Opin. Investig. Drugs 2019, 28, 261–266. [Google Scholar] [CrossRef]
- Wójcik-Pszczoła, K.; Chłoń-Rzepa, G.; Jankowska, A.; Ferreira, B.; Koczurkiewicz-Adamczyk, P.; Pękala, E.; Wyska, E.; Pociecha, K.; Gosens, R. Pan-Phosphodiesterase Inhibitors Attenuate TGF-β-Induced Pro-Fibrotic Phenotype in Alveolar Epithelial Type II Cells by Downregulating Smad-2 Phosphorylation. Pharmaceuticals 2022, 15, 423. [Google Scholar] [CrossRef]
- Wójcik-Pszczoła, K.; Chłoń-Rzepa, G.; Jankowska, A.; Ślusarczyk, M.; Ferdek, P.E.; Kusiak, A.A.; Świerczek, A.; Pociecha, K.; Koczurkiewicz-Adamczyk, P.; Wyska, E.; et al. A Novel, Pan-PDE Inhibitor Exerts Anti-Fibrotic Effects in Human Lung Fibroblasts via Inhibition of TGF-β Signaling and Activation of CAMP/PKA Signaling. Int. J. Mol. Sci. 2020, 21, 4008. [Google Scholar] [CrossRef]
- Wójcik-Pszczoła, K.; Pociecha, K.; Chłoń-Rzepa, G.; Zadrożna, M.; Nowak, B.; Plutecka, H.; Koczurkiewicz-Adamczyk, P.; Przejczowska-Pomierny, K.; Pękala, E.; Gosens, R.; et al. Inhaled Pan-Phosphodiesterase Inhibitors Ameliorate Ovalbumin-Induced Airway Inflammation and Remodeling in Murine Model of Allergic Asthma. Int. Immunopharmacol. 2023, 119, 110264. [Google Scholar] [CrossRef]
- Wójcik-Pszczoła, K.; Chłoń-Rzepa, G.; Jankowska, A.; Ellen, E.; Świerczek, A.; Pociecha, K.; Koczurkiewicz, P.; Piska, K.; Gawędzka, A.; Wyska, E.; et al. Novel Phosphodiesterases Inhibitors from the Group of Purine-2,6-Dione Derivatives as Potent Modulators of Airway Smooth Muscle Cell Remodelling. Eur. J. Pharmacol. 2019, 865, 172779. [Google Scholar] [CrossRef]
- Koćwin, M.; Jonakowski, M.; Majos, A.; Szemraj, J.; Kuna, P.; Panek, M. Evaluation of Serum Levels of All the Transforming Growth Factor β (TGF-β 1-3) Isoforms in Asthmatic Patients. Alergol. Pol.-Pol. J. Allergol. 2024, 11, 134–141. [Google Scholar] [CrossRef]
Drug | Disease | Mechanism of Action on TGF-β | Dose | Response to Treatment | Ref. |
---|---|---|---|---|---|
Yu-Ping-Feng-San (YPFS) | COPD | suppression of the TGF-β1/Smad2 signaling pathway | 0.5 g/kg/day | anti-inflammatory effect—reduction in TGF-β1 expression, suppressed release of pro-inflammatory cytokines, and collagen deposition | [84,85] |
Berberine | COPD, asthma | TGF-β1/Smads signaling might be involved | 25 mg/kg | attenuation of CSE-induced airway inflammation, reduction in TGF-β1, Smad2, and Smad3 | [88] |
Nintedanib | asthma | need more research | 0.2 mL of PBS containing nintedanib (50 or 100 mg/kg) | reduction in TGF-β levels, suppression of DGFRß,VEGFR2, and FGFR3; reduction in eosinophilic airway inflammation and the remodeling process | [127] |
Betalains | asthma | inhibiting the TGF-β1/Smad signaling pathway | 25 mg/kg or 50 mg/kg | reduction in TGF-β gene expression and its downstream signaling protein Smad; anti-inflammatory effect; reduction in oxidative stress, production of IgE, eotaxin, cytokines, lower nitric oxide levels, and improvement in lung mechanics | [91] |
Osthole | asthma | inhibition of TGF-β1-induced activation of the Smad2/3 pathway and MAPKs | 50 mg/kg | inhibits TGF-β1-induced apoptosis of human bronchial epithelial cells, amelioration of epithelial damage and subepithelial fibrosis | [94] |
Nerolidol | asthma | inhibitory effect on the TFG-β/Smad signaling pathway | ND | reduction in TGF-β levels, reduction in inflammatory cell infiltration, cup cell number, lung collagen deposition, and OVA-specific IgE levels | [96] |
Tranilast | asthma/COPD | inhibiting TGF-β-induced protein kinase phosphorylation | 300 mg/day | suppressed bronchial hypersensitivity in asthmatics, decreased eosinophil counts and specific IgE, reduced the expression and activity of TGF-β, restored GC sensitivity | [129,134,136,139] |
Diosmetin | asthma | inhibiting TGF-β1-induced phosphorylation of PI3K/Akt and MAPK | 0.5 mg/kg | reduction in the counts of total cells, eosinophils, and neutrophils | [9,98] |
Pan-PDE inhibitors | asthma | activation of the cAMP/protein kinase A/cAMP response element-binding protein pathway, leading to the inhibition of TGF-β | ND | decreased airway inflammatory cell infiltration, eosinophil recruitment, IgE, and Th2 cytokine levels | [142,143] |
Amygdalin | COPD | inhibitory effect on the TFG-β/Smad signaling pathway | 20 mg/kg/d | decreased levels of TGF-β1, α-SMA, vimentin, and fibronectin increase FEV | [102,104] |
Epigallocatechin gallate (EGCG) | asthma | decrease the expression of TGF-β1 and phosphorylated (p)-Smad2/3 | 20 mg/kg | alleviated asthmatic symptoms, reduced lung inflammatory cell infiltration, decreased the levels of IL-2, IL-6, TNF-α, and Th17 cells, and increased the percentage of Treg cells | [106,107] |
Aloin | asthma/CARAS | inhibitory effect on the TFG-β/Smad signaling pathway | 20, 40 mg/kg | decrease neutrophils, eosinophils, macrophages, and interleukins (IL)-4, IL-5, and IL-13 | [107,109] |
Quercetin | asthma/COPD | suppresses TGF-β-induced responses; it inhibits the Akt/mTOR, reduces collagen I, collagen III, and IL-6 | 50 mg/kg and dexamethasone (2.5 mg/kg) intraperitoneally for a week | reduced the expression of Gata-3, TNF-α, TGF-β1, IL-1β, and α-SMA genes, decreased IL-6 and TNF-α levels while increasing IL-10 levels | [115,116,119] |
Kaempferol | asthma | reducing NOX4 expression results in the inactivation of the TGF-β1-Smad2/3 pathway | ND | reduce airway inflammation and remodeling | [111,114] |
Role of TGF-β in COPD | Role of TGF-β in Asthma | |
---|---|---|
TGF concentration | ↑ | ↑ |
Airways remodeling | ↑ | ↑ |
Production of extracellular matrix | ↑ | ↑ |
Fibrotic changes | ↑ | ↑ |
Thickening of basal membrane | ↑ | ↑ |
Vascular changes | ↑ | ↑ |
Production of MMPs | ↑ | ↑/↓ |
Pro- (↑) and anti- (↓) inflammatory function | ↑/↓↓↓ | ↑/↓ |
Development of emphysema | ↑ | ↓ |
Mucus secretion | ↓ | ↑/↓ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kraik, K.; Tota, M.; Laska, J.; Łacwik, J.; Paździerz, Ł.; Sędek, Ł.; Gomułka, K. The Role of Transforming Growth Factor-β (TGF-β) in Asthma and Chronic Obstructive Pulmonary Disease (COPD). Cells 2024, 13, 1271. https://doi.org/10.3390/cells13151271
Kraik K, Tota M, Laska J, Łacwik J, Paździerz Ł, Sędek Ł, Gomułka K. The Role of Transforming Growth Factor-β (TGF-β) in Asthma and Chronic Obstructive Pulmonary Disease (COPD). Cells. 2024; 13(15):1271. https://doi.org/10.3390/cells13151271
Chicago/Turabian StyleKraik, Krzysztof, Maciej Tota, Julia Laska, Julia Łacwik, Łukasz Paździerz, Łukasz Sędek, and Krzysztof Gomułka. 2024. "The Role of Transforming Growth Factor-β (TGF-β) in Asthma and Chronic Obstructive Pulmonary Disease (COPD)" Cells 13, no. 15: 1271. https://doi.org/10.3390/cells13151271