Easily Applicable Predictive Score for Differential Diagnosis of Prefibrotic Primary Myelofibrosis from Essential Thrombocythemia
Abstract
:Simple Summary
Abstract
1. Introduction
2. Methods
- Study population
- Predictive model development
- Internal validation model
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Arber, D.A.; Orazi, A.; Hasserjian, R.; Thiele, J.; Borowitz, M.J.; Le Beau, M.M.; Bloomfield, C.D.; Cazzola, M.; Vardiman, J.W. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood 2016, 127, 2391–2405. [Google Scholar] [CrossRef] [PubMed]
- Tefferi, A.; Guglielmelli, P.; Larson, D.R.; Finke, C.; Wassie, E.A.; Pieri, L.; Gangat, N.; Fjerza, R.; Belachew, A.A.; Lasho, T.L.; et al. Long-term survival and blast transformation in molecularly annotated essential thrombocythemia, polycythemia vera, and myelofibrosis. Blood 2014, 124, 2507–2513. [Google Scholar] [CrossRef]
- Guglielmelli, P.; Pacilli, A.; Rotunno, G.; Rumi, E.; Rosti, V.; Delaini, F.; Maffioli, M.; Fanelli, T.; Pancrazzi, A.; Pietra, D.; et al. Presentation and outcome of patients with 2016 WHO diagnosis of prefibrotic and overt primary myelofibrosis. Blood 2017, 129, 3227–3236. [Google Scholar] [CrossRef]
- Brousseau, M.; Parot-Schinkel, E.; Moles, M.P.; Boyer, F.; Hunault, M.; Rousselet, M.C. Practical application and clinical impact of the WHO histopathological criteria on bone marrow biopsy for the diagnosis of essential thrombocythemia versus prefibrotic primary myelofibrosis. Histopathology 2010, 56, 758–767. [Google Scholar] [CrossRef]
- Alvarez-Larrán, A.; Ancochea, A.; García, M.; Climent, F.; García-Pallarols, F.; Angona, A.; Senín, A.; Barranco, C.; Martínez-Avilés, L.; Serrano, S.; et al. WHO-histological criteria for myeloproliferative neoplasms: Reproducibility, diagnostic accuracy and correlation with gene mutations and clinical outcomes. Br. J. Haematol. 2014, 166, 911–919. [Google Scholar] [CrossRef] [PubMed]
- Wilkins, B.S.; Erber, W.N.; Bareford, D.; Buck, G.; Wheatley, K.; East, C.L.; Paul, B.; Harrison, C.N.; Green, A.R.; Campbell, P.J. Bone marrow pathology in essential thrombocythemia: Interobserver reliability and utility for identifying disease subtypes. Blood 2008, 111, 60–70. [Google Scholar] [CrossRef] [PubMed]
- Buhr, T.; Hebeda, K.; Kaloutsi, V.; Porwit, A.; Vander Walt, J.; Kreipe, H. European BoneMarrow Working Group trial on reproducibility of World Health Organization criteria to dis-criminate essential thrombocythemia from pre-fibrotic primary myelofibrosis. Haematologica 2012, 97, 360–365. [Google Scholar] [CrossRef]
- Barbui, T.; Thiele, J.; Passamonti, F.; Rumi, E.; Boveri, E.; Ruggeri, M.; Rodeghiero, F.; d’Amore, E.S.; Randi, M.L.; Bertozzi, I.; et al. Survival and disease progression in essential thrombocythemia are significantly influenced by accurate morphologic diagnosis: An international study. J. Clin. Oncol. 2011, 29, 3179–3184. [Google Scholar] [CrossRef]
- Rumi, E.; Boveri, E.; Bellini, M.; Pietra, D.; Ferretti, V.V.; Sant’Antonio, E.; Cavalloni, C.; Casetti, I.C.; Roncoroni, E.; Ciboddo, M.; et al. Clinical course and outcome of essential thrombocythemia and prefibrotic myelofibrosis according to the revised WHO 2016 diagnostic criteria. Oncotarget 2017, 8, 101735–101744. [Google Scholar] [CrossRef]
- Jeryczynski, G.; Thiele, J.; Gisslinger, B.; Wölfler, A.; Schalling, M.; Gleiß, A.; Burgstaller, S.; Buxhofer-Ausch, V.; Sliwa, T.; Schlögl, E.; et al. Pre-fibrotic/early primary myelofibrosis vs.WHO-defined essential thrombocythemia: The impact of minor clinical diagnostic criteria on the outcome of the disease. Am. J. Hematol. 2017, 92, 885–891. [Google Scholar] [CrossRef]
- Laud, P.J.; Dane, A. Confidence intervals for the difference between independent binomial proportions: Comparison using a graphical approach and moving averages. Pharm. Stat. 2014, 13, 294–308. [Google Scholar] [CrossRef] [PubMed]
- Wilson, E.B. Probable Inference, the Law of Succession, and Statistical Inference. J. Am. Stat. Assoc. 1927, 22, 209–212. [Google Scholar] [CrossRef]
- Heus, P.; Reitsma, J.B.; Collins, G.S.; Damen, J.A.A.G.; Scholten, R.J.P.M.; Altman, D.G.; Moons, K.G.M.; Hooft, L. Transparent Reporting of Multivariable Prediction Models in Journal and Conference Abstracts: TRIPOD for Abstracts. Ann. Intern. Med. 2020, 173, 42–47. [Google Scholar] [CrossRef]
- Schalling, M.; Gleiss, A.; Gisslinger, B.; Wölfler, A.; Buxhofer-Ausch, V.; Jeryczynski, G.; Krauth, M.T.; Simonitsch-Klupp, I.; Beham-Schmid, C.; Thiele, J.; et al. Essential thrombocythemia vs. pre-fibrotic/ early primary myelofibrosis: Discrimination by laboratory and clinical data. Blood Cancer J. 2017, 7, 643. [Google Scholar] [CrossRef] [PubMed]
- Finazzi, G.; Vannucchi, A.M.; Barbui, T. Prefibrotic myelofibrosis: Treatment algorithm 2018. Blood Cancer J. 2018, 8, 104. [Google Scholar] [CrossRef]
- Masarova, L.; Bose, P.; Pemmaraju, N.; Kantarjian, H.; Estrov, Z.; Verstovsek, S. MPN-355 Patients with Prefibrotic Myelofibrosis and Inferior Outcome, a Single-Center Analysis. Clin. Lymphoma Myeloma Leuk. 2022, 22 (Suppl. 2), S334–S335. [Google Scholar] [CrossRef]
- Rampotas, A.; Hargreaves, R.; McLornan, D.P. Challenges of diagnosing and managing pre-fibrotic myelofibrosis: A case-based and practical approach. Best Pract. Res. Clin. Haematol. 2022, 35, 101378. [Google Scholar] [CrossRef]
- Kamiunten, A.; Shide, K.; Kameda, T.; Ito, M.; Sekine, M.; Kubuki, Y.; Hidaka, T.; Akizuki, K.; Tahira, Y.; Toyama, T.; et al. Early/prefibrotic primary myelofibrosis in patients who were initially diagnosed with essential thrombocythemia. Int. J. Hematol. 2018, 108, 411–415. [Google Scholar] [CrossRef]
- Barosi, G. Essential thrombocythemia vs. early/prefibrotic myelofibrosis: Why does it matter. Best Pract. Res. Clin. Haematol. 2014, 27, 129–140. [Google Scholar] [CrossRef]
- Gisslinger, H.; Jeryczynski, G.; Gisslinger, B.; Wölfler, A.; Burgstaller, S.; Buxhofer-Ausch, V.; Schalling, M.; Krauth, M.T.; Schiefer, A.I.; Kornauth, C.; et al. Clinical impact of bone marrow morphology for the diagnosis of essential thrombocythemia: Comparison between the BCSH and the WHO criteria. Leukemia 2016, 30, 1126–1132. [Google Scholar] [CrossRef]
- Vardiman, J.W.; Thiele, J.; Arber, D.A.; Brunning, R.D.; Borowitz, M.J.; Porwit, A.; Harris, N.L.; Le Beau, M.M.; Hellström-Lindberg, E.; Tefferi, A.; et al. The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: Rationale and important changes. Blood 2009, 114, 937–951. [Google Scholar] [CrossRef] [PubMed]
- Koopmans, S.M.; Bot, F.J.; Lam, K.H.; van Marion, A.M.; de Raeve, H.; Hebeda, K.M. Reproducibility of histologic classification innonfibrotic myeloproliferative neoplasia. Am. J. Clin. Pathol. 2011, 136, 618–624. [Google Scholar] [CrossRef] [PubMed]
- Madelung, A.B.; Bondo, H.; Stamp, I.; Loevgreen, P.; Nielsen, S.L.; Falensteen, A.; Knudsen, H.; Ehinger, M.; Dahl-Sørensen, R.; Mortensen, N.B.; et al. World Health Organization-defined classification of myeloproliferative neoplasms: Morphological reproducibility and clinical correlations–the Danish experience. Am. J. Hematol. 2013, 88, 1012–1016. [Google Scholar] [CrossRef] [PubMed]
- Gianelli, U.; Bossi, A.; Cortinovis, I.; Sabattini, E.; Tripodo, C.; Boveri, E.; Moro, A.; Valli, R.; Ponzoni, M.; Florena, A.M.; et al. Reproducibility of the WHO histological criteria for the diagnosis of Philadelphia chromosome-negative myeloproliferative neoplasms. Modern Pathol. 2014, 27, 814–822. [Google Scholar] [CrossRef]
- Thiele, J.; Kvasnicka, H.M.; Mü, L.; Buxhofer-Ausch, V.; Gisslinger, B.; Gisslinger, H. Essential thrombocythemia versus early primary myelofibrosis: A multicenter study to validate the WHO classification. Blood 2011, 117, 5710–5718. [Google Scholar] [CrossRef] [PubMed]
- Gianelli, U.; Vener, C.; Bossi, A.; Cortinovis, I.; Iurlo, A.; Fracchiolla, N.; Savi, F.; Moro, A.; Grifoni, F.; De Philippis, C.; et al. The European Consensus on grading of bone marrow fibrosis allows a better prognostication of patients with primary myelofibrosis. Mod. Pathol. 2012, 25, 1193–1202. [Google Scholar] [CrossRef]
- Vener, C.; Fracchiolla, N.S.; Gianelli, U.; Calori, R.; Radaelli, F.; Iurlo, A.; Caberlon, S.; Gerli, G.; Boiocchi, L.; Deliliers, G.L. Prognostic implications of the European consensus for grading of bone marrow fibrosis in chronic idiopathic myelofibrosis. Blood 2008, 111, 1862–1865. [Google Scholar] [CrossRef]
- Lekovic, D.; Gotic, M.; Perunicic-Jovanovic, M.; Vidovic, A.; Bogdanovic, A.; Jankovic, G.; Cokic, V.; Milic, N. Contribution of comorbidities and grade of bone marrow fibrosis to the prognosis of survival in patients with primary myelofibrosis. Med. Oncol. 2014, 31, 869. [Google Scholar] [CrossRef]
- Thiele, J.; Kvasnicka, H.M. Hematopathologic findings in chronic idiopathic myelofibrosis. Semin. Oncol. 2005, 32, 380–394. [Google Scholar] [CrossRef]
- Song, M.K.; Park, B.B.; Uhm, J.E. Understanding Splenomegaly in Myelofibrosis: Association with Molecular Pathogenesis. Int. J. Mol. Sci. 2018, 19, 898. [Google Scholar] [CrossRef]
- Carobbio, A.; Finazzi, G.; Thiele, J.; Kvasnicka, H.M.; Passamonti, F.; Rumi, E.; Ruggeri, M.; Rodeghiero, F.; Luigia Randi, M.; Bertozzi, I.; et al. Blood tests may predict early primary myelofibrosis in patients presenting with essential thrombocythemia. Am. J. Hematol. 2012, 87, 203–204. [Google Scholar] [CrossRef] [PubMed]
Patient Characteristics | Training Cohort (n = 229) | Internal Validation Cohort (n = 235) | Difference | 95%Cl for Difference |
---|---|---|---|---|
Age (y), | 57.5 ± 15.6 | 58.6 ± 14.14 | −1.153 | −3.872 to 1.565 |
mean (sd) | ||||
Age ≥ 60 (y) | 118 (51.5) | 122 (51.9) | −0.004 | −0.095 to 0.088 |
N (%) | ||||
Male sex | 89 (38.9) | 75 (31.9) | 0.069 | −0.018 to 0.157 |
N (%) | ||||
Liver size (mm), | 130.1 ± 13.5 | 128.1 ± 17 | 2.029 | −0.781 to 4.839 |
mean (sd) | ||||
Spleen size (mm), | 110.5 ± 24 | 109.4 ± 23 | 1.034 | −3.233 to 5.300 |
mean (sd) | ||||
Hemoglobin level (g/L), | 138 ± 15 | 138 ± 14.5 | 0.385 | −2.299 to 3.069 |
mean (sd) | ||||
Leukocyte count (/L), | 10.3 ± 4.6 | 11 ± 9.4 | −0.7344 | −2.0899 to 0.6212 |
mean (sd) | ||||
Platelet count (/L), | 963 ± 391 | 952 ± 289 | 10.294 | −52.402 to 72.990 |
mean (sd) | ||||
LDH level, | 470 ± 197 | 474 ± 194 | −4.231 | −39.898 to 31.437 |
mean (sd) | ||||
ET | 143 (62.4) | 146 (62.1) | ||
N (%) | ||||
PMF | 86 (37.6) | 89 (37.9) | −0.003 | −0.092 to 0.085 |
N (%) |
Patient Characteristics | ET (n = 143) | PMF Cohort (n = 86) | p |
---|---|---|---|
Age ≥ 60 (y) | 64 (44.8) | 54 (62.8) | 0.008 |
N (%) | |||
Male sex | 49 (34.3) | 40 (46.5) | 0.066 |
N (%) | |||
Hepatomegaly (size > 15 cm) | 3 (2.1) | 11 (12.8) | 0.001 |
N (%) | |||
Splenomegaly (size > 12 cm) | 9 (6.3) | 48 (55.8) | <0.001 |
N (%) | |||
Splenomegaly (size > 14 cm) | 2 (1.4) | 33 (38.4) | <0.001 |
N (%) | |||
Hemoglobin level (g/L) (Male < 140 g/L, Female < 120 g/L) | 19 (13.3) | 26 (30.2) | 0.002 |
N (%) | |||
Leukocytosis (≥11 × /L) | 38 (26.6) | 37 (43.0) | 0.001 |
N (%) | |||
Thrombocytosis (≥ /L) | 143 (100) | 85 (98.8) | 0.437 |
N (%) | |||
Increased LDH level * | 33 (23.1) | 56 (65.1) | <0.001 |
N (%) |
Risk Factor | Univariate | Multivariate | ||||
---|---|---|---|---|---|---|
p | RR | 95%CI | p | RR | 95%CI | |
Age ≥ 60 (y) | p = 0.009 | 2.083 | 1.205–3.602 | p = 0.026 | 2.181 | 1.096–4.339 |
Male gender | p = 0.067 | 1.668 | 0.966–2.882 | |||
Hepatomegaly | p = 0.004 | 6.844 | 1.852–25.292 | |||
Splenomegaly | p < 0.001 | 18.807 | 8.468–41.767 | p < 0.001 | 13.255 | 5.635–31.178 |
Hemoglobin (<140 g/L male, <120 g/L female) | p = 0.002 | 2.828 | 1.451–5.510 | |||
Leukocytosis (≥11 × /L) | p = 0.016 | 1.949 | 1.130–3.360 | |||
Increased LDH * value | p < 0.001 | 6.222 | 3.450–11.224 | p = 0.003 | 2.858 | 1.430–5.713 |
Parameter | Assigned Score |
---|---|
Age ≥ 60 (y) | 1 |
Splenomegaly | 2 |
Increased LDH value | 1 |
Training Cohort | Internal Validation Cohort | |||||||
---|---|---|---|---|---|---|---|---|
Sn | Sp | PPV | NPV | Sn | Sp | PPV | NPV | |
Score +2 | 0.698 | 0.818 | 0.698 | 0.818 | 0.685 | 0.747 | 0.622 | 0.796 |
Score +3 | 0.523 | 0.958 | 0.882 | 0.77 | 0.404 | 0.952 | 0.837 | 0.724 |
Regression model * >0.438 | 0.965 | 0.322 | 0.461 | 0.939 | 0.933 | 0.342 | 0.464 | 0.893 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lekovic, D.; Bogdanovic, A.; Sobas, M.; Arsenovic, I.; Smiljanic, M.; Ivanovic, J.; Bodrozic, J.; Cokic, V.; Milic, N. Easily Applicable Predictive Score for Differential Diagnosis of Prefibrotic Primary Myelofibrosis from Essential Thrombocythemia. Cancers 2023, 15, 4180. https://doi.org/10.3390/cancers15164180
Lekovic D, Bogdanovic A, Sobas M, Arsenovic I, Smiljanic M, Ivanovic J, Bodrozic J, Cokic V, Milic N. Easily Applicable Predictive Score for Differential Diagnosis of Prefibrotic Primary Myelofibrosis from Essential Thrombocythemia. Cancers. 2023; 15(16):4180. https://doi.org/10.3390/cancers15164180
Chicago/Turabian StyleLekovic, Danijela, Andrija Bogdanovic, Marta Sobas, Isidora Arsenovic, Mihailo Smiljanic, Jelena Ivanovic, Jelena Bodrozic, Vladan Cokic, and Natasa Milic. 2023. "Easily Applicable Predictive Score for Differential Diagnosis of Prefibrotic Primary Myelofibrosis from Essential Thrombocythemia" Cancers 15, no. 16: 4180. https://doi.org/10.3390/cancers15164180