Oral Immunization with Attenuated Salmonella Choleraesuis Expressing the FedF Antigens Protects Mice against the Shiga-Toxin-Producing Escherichia coli Challenge
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals and Ethics Statement
2.2. Plasmids and Bacterial Strains
2.3. Protein Expression, Protein Purification, and Antibody Preparation
2.4. Indirect ELISA
2.5. Construction of Vaccine Strains and Detection of Proteins Expression
2.6. Bacterial Growth Curves
2.7. Immunization in Mice
2.8. Challenge in Mice
2.9. Statistical Analysis
3. Results
3.1. Expression Recombinant FedF and rStx2eA Proteins and Production Polyclonal Antibody Sera
3.2. Construction and Characterization of rSC0016(pS-FedF) and rSC0016(pS-rStx2eA)
3.3. S. Choleraesuis Vaccine Vector Strains rSC0016(pS-FedF) and rSC0016(pS-rStx2eA) Elicited Elevated Serum IgG and Mucosal IgA Responses to FedF and rStx2eA
3.4. S. Choleraesuis Vaccine Vector Strains rSC0016(pS-FedF) and rSC0016(pS-rStx2eA) Induced Higher Levels of IFN-γ and IL-4 in Mice
3.5. S. rSC0016(pS-FedF) and rSC0016(pS-rStx2eA) Vaccine Strains Protects Mice against STEC Infection
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Casanova, N.A.; Redondo, L.M.; Dailoff, G.C.; Arenas, D.; Fernandez Miyakawa, M.E. Overview of the role of Shiga toxins in porcine edema disease pathogenesis. Toxicon 2018, 148, 149–154. [Google Scholar] [CrossRef] [PubMed]
- Alexa, P.; Hamrik, J.; Stouracova, K.; Konstantinova, L.; Salajka, E. Passive immunoprophylaxis of edema disease in weaned piglets. Vet. Med. Czech 2004, 49, 447–452. [Google Scholar] [CrossRef]
- Vernozy-Rozand, C.; Montet, M.P.; Bertin, Y.; Trably, F.; Girardeau, J.P.; Martin, C.; Livrelli, V.; Beutin, L. Serotyping, stx2 subtyping, and characterization of the locus of enterocyte effacement island of shiga toxin-producing Escherichia coli and E. coli O157:H7 strains isolated from the environment in France. Appl. Environ. Microbiol. 2004, 70, 2556–2559. [Google Scholar] [CrossRef] [PubMed]
- Moriel, D.G.; Tan, L.; Goh, K.G.; Phan, M.D.; Ipe, D.S.; Lo, A.W.; Peters, K.M.; Ulett, G.C.; Beatson, S.A.; Schembri, M.A. A Novel Protective Vaccine Antigen from the Core Escherichia coli Genome. mSphere 2016, 1, e00326-16. [Google Scholar] [CrossRef] [PubMed]
- Alghamdi, S. The role of vaccines in combating antimicrobial resistance (AMR) bacteria. Saudi J. Biol. Sci. 2021, 28, 7505–7510. [Google Scholar] [CrossRef] [PubMed]
- Antonelli, G.; Cappelli, L.; Cinelli, P.; Cuffaro, R.; Manca, B.; Nicchi, S.; Tondi, S.; Vezzani, G.; Viviani, V.; Delany, I.; et al. Strategies to Tackle Antimicrobial Resistance: The Example of Escherichia coli and Pseudomonas aeruginosa. Int. J. Mol. Sci. 2021, 22, 4943. [Google Scholar] [CrossRef] [PubMed]
- Coburn, B.; Grassl, G.A.; Finlay, B.B. Salmonella, the host and disease: A brief review. Immunol. Cell Biol. 2007, 85, 112–118. [Google Scholar] [CrossRef]
- McGovern, V.J.; Slavutin, L.J. Pathology of salmonella colitis. Am. J. Surg. Pathol. 1979, 3, 483–490. [Google Scholar] [CrossRef]
- Pavez-Munoz, E.; Fernandez-Sanhueza, B.; Urzua-Encina, C.; Galarce, N.; Alegria-Moran, R. Risk Factors for Positivity to Shiga Toxin-Producing Escherichia coli and Salmonella enterica in Backyard Production Systems Animals from Metropolitana Region, Chile: A Threat to Public Health? Int. J. Environ. Res. Public Health 2021, 18, 10730. [Google Scholar] [CrossRef]
- Clark-Curtiss, J.E.; Curtiss, R., 3rd. Salmonella Vaccines: Conduits for Protective Antigens. J. Immunol. 2018, 200, 39–48. [Google Scholar] [CrossRef]
- Su, H.; Liu, Q.; Bian, X.; Wang, S.; Curtiss, R., 3rd; Kong, Q. Synthesis and delivery of Streptococcus pneumoniae capsular polysaccharides by recombinant attenuated Salmonella vaccines. Proc. Natl. Acad. Sci. USA 2021, 118, e2013350118. [Google Scholar] [CrossRef] [PubMed]
- Ashraf, S.; Kong, W.; Wang, S.; Yang, J.; Curtiss, R., 3rd. Protective cellular responses elicited by vaccination with influenza nucleoprotein delivered by a live recombinant attenuated Salmonella vaccine. Vaccine 2011, 29, 3990–4002. [Google Scholar] [CrossRef] [PubMed]
- Hassan, A.S.; Perera, D.J.; Ward, B.J.; Ndao, M. Therapeutic activity of a Salmonella-vectored Schistosoma mansoni vaccine in a mouse model of chronic infection. Vaccine 2021, 39, 5580–5588. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Lv, Y.; Li, Y.A.; Du, Y.; Guo, W.; Chu, D.; Wang, X.; Wang, S.; Shi, H. Live attenuated Salmonella enterica serovar Choleraesuis vector delivering a conserved surface protein enolase induces high and broad protection against Streptococcus suis serotypes 2, 7, and 9 in mice. Vaccine 2020, 38, 6904–6913. [Google Scholar] [CrossRef]
- Attridge, S.; Hackett, J.; Morona, R.; Whyte, P. Towards a live oral vaccine against enterotoxigenic Escherichia coli of swine. Vaccine 1988, 6, 387–389. [Google Scholar] [CrossRef] [PubMed]
- Morona, R.; Morona, J.K.; Considine, A.; Hackett, J.A.; van den Bosch, L.; Beyer, L.; Attridge, S.R. Construction of K88- and K99-expressing clones of Salmonella typhimurium G30: Immunogenicity following oral administration to pigs. Vaccine 1994, 12, 513–517. [Google Scholar] [CrossRef]
- Gu, J.; Ning, Y.; Wang, H.; Xiao, D.; Tang, B.; Luo, P.; Cheng, Y.; Jiang, M.; Li, N.; Zou, Q.; et al. Vaccination of attenuated EIS-producing Salmonella induces protective immunity against enterohemorrhagic Escherichia coli in mice. Vaccine 2011, 29, 7395–7403. [Google Scholar] [CrossRef]
- Hur, J.; Lee, J.H. Immune responses to new vaccine candidates constructed by a live attenuated Salmonella typhimurium delivery system expressing Escherichia coli F4, F5, F6, F41 and intimin adhesin antigens in a murine model. J. Vet. Med. Sci. 2011, 73, 1265–1273. [Google Scholar] [CrossRef]
- Hur, J.; Lee, J.H. Comparative evaluation of a vaccine candidate expressing enterotoxigenic Escherichia coli (ETEC) adhesins for colibacillosis with a commercial vaccine using a pig model. Vaccine 2012, 30, 3829–3833. [Google Scholar] [CrossRef]
- Hur, J.; Lee, J.H. Development of a novel live vaccine delivering enterotoxigenic Escherichia coli fimbrial antigens to prevent post-weaning diarrhea in piglets. Vet. Immunol. Immunopathol. 2012, 146, 283–288. [Google Scholar] [CrossRef]
- Hur, J.; Stein, B.D.; Lee, J.H. A vaccine candidate for post-weaning diarrhea in swine constructed with a live attenuated Salmonella delivering Escherichia coli K88ab, K88ac, FedA, and FedF fimbrial antigens and its immune responses in a murine model. Can. J. Vet. Res 2012, 76, 186–194. [Google Scholar] [PubMed]
- Hur, J.; Lee, J.H. Protection against neonatal Escherichia coli diarrhea by vaccination of sows with a novel multivalent vaccine candidate expressing E. coli adhesins associated with neonatal pig colibacillosis. Res. Vet. Sci. 2013, 94, 198–204. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.E.; Kim, S.Y.; Jeong, B.C.; Kim, Y.R.; Bae, S.J.; Ahn, O.S.; Lee, J.J.; Song, H.C.; Kim, J.M.; Choy, H.E.; et al. A bacterial flagellin, Vibrio vulnificus FlaB, has a strong mucosal adjuvant activity to induce protective immunity. Infect. Immun. 2006, 74, 694–702. [Google Scholar] [CrossRef] [PubMed]
- Mata-Haro, V.; Cekic, C.; Martin, M.; Chilton, P.M.; Casella, C.R.; Mitchell, T.C. The vaccine adjuvant monophosphoryl lipid A as a TRIF-biased agonist of TLR4. Science 2007, 316, 1628–1632. [Google Scholar] [CrossRef] [PubMed]
- Yoshino, S.; Sasatomi, E.; Ohsawa, M. Bacterial lipopolysaccharide acts as an adjuvant to induce autoimmune arthritis in mice. Immunology 2000, 99, 607–614. [Google Scholar] [CrossRef]
- Galan, J.E.; Collmer, A. Type III secretion machines: Bacterial devices for protein delivery into host cells. Science 1999, 284, 1322–1328. [Google Scholar] [CrossRef]
- Galan, J.E. Salmonella interactions with host cells: Type III secretion at work. Annu. Rev. Cell Dev. Biol. 2001, 17, 53–86. [Google Scholar] [CrossRef]
- Russmann, H.; Shams, H.; Poblete, F.; Fu, Y.; Galan, J.E.; Donis, R.O. Delivery of epitopes by the Salmonella type III secretion system for vaccine development. Science 1998, 281, 565–568. [Google Scholar] [CrossRef]
- Han, Y.; Luo, P.; Chen, Y.; Xu, J.; Sun, J.; Guan, C.; Wang, P.; Chen, M.; Zhang, X.; Zhu, Y.; et al. Regulated delayed attenuation improves vaccine efficacy in preventing infection from avian pathogenic Escherichia coli O(78) and Salmonella typhimurium. Vet. Microbiol. 2021, 254, 109012. [Google Scholar] [CrossRef]
- Redweik, G.A.J.; Stromberg, Z.R.; Van Goor, A.; Mellata, M. Protection against avian pathogenic Escherichia coli and Salmonella Kentucky exhibited in chickens given both probiotics and live Salmonella vaccine. Poult. Sci. 2020, 99, 752–762. [Google Scholar] [CrossRef]
- Liu, Q.; Li, P.; Luo, H.; Curtiss, R., 3rd; Kong, Q. Attenuated Salmonella Typhimurium expressing Salmonella Paratyphoid A O-antigen induces protective immune responses against two Salmonella strains. Virulence 2019, 10, 82–96. [Google Scholar] [CrossRef]
- Bertschinger, H.U.; Nief, V.; Tschape, H. Active oral immunization of suckling piglets to prevent colonization after weaning by enterotoxigenic Escherichia coli with fimbriae F18. Vet. Microbiol. 2000, 71, 255–267. [Google Scholar] [CrossRef]
- Moxley, R.A. Edema disease. Vet. Clin. N. Am. Food Anim. Pract. 2000, 16, 175–185. [Google Scholar] [CrossRef] [PubMed]
- Smeds, A.; Hemmann, K.; Jakava-Viljanen, M.; Pelkonen, S.; Imberechts, H.; Palva, A. Characterization of the adhesin of Escherichia coli F18 fimbriae. Infect. Immun. 2001, 69, 7941–7945. [Google Scholar] [CrossRef] [PubMed]
- Tiels, P.; Verdonck, F.; Smet, A.; Goddeeris, B.; Cox, E. The F18 fimbrial adhesin FedF is highly conserved among F18+Escherichia coli isolates. Vet. Microbiol. 2005, 110, 277–283. [Google Scholar] [CrossRef] [PubMed]
- Imberechts, H.; Wild, P.; Charlier, G.; de Greve, H.; Lintermans, P.; Pohl, P. Characterization of F18 fimbrial genes fedE and fedF involved in adhesion and length of enterotoxemic Escherichia coli strain 107/86. Microb. Pathog. 1996, 21, 183–192. [Google Scholar] [CrossRef] [PubMed]
- Fraser, M.E.; Fujinaga, M.; Cherney, M.M.; Melton-Celsa, A.R.; Twiddy, E.M.; O’Brien, A.D.; James, M.N.G. Structure of Shiga Toxin Type 2 (Stx2) from Escherichia coli O157:H7. J. Biol. Chem. 2004, 279, 27511–27517. [Google Scholar] [CrossRef] [PubMed]
- Johannes, L.; Decaudin, D. Protein toxins: Intracellular trafficking for targeted therapy. Gene Ther. 2005, 12, 1360–1368. [Google Scholar] [CrossRef] [PubMed]
- Sandvig, K.; van Deurs, B. Delivery into cells: Lessons learned from plant and bacterial toxins. Gene Ther. 2005, 12, 865–872. [Google Scholar] [CrossRef] [PubMed]
- Gordon, V.M.; Whipp, S.C.; Moon, H.W.; O’Brien, A.D.; Samuel, J.E. An enzymatic mutant of Shiga-like toxin II variant is a vaccine candidate for edema disease of swine. Infect. Immun. 1992, 60, 485–490. [Google Scholar] [CrossRef]
- Li, Y.A.; Ji, Z.; Wang, X.; Wang, S.; Shi, H. Salmonella enterica serovar Choleraesuis vector delivering SaoA antigen confers protection against Streptococcus suis serotypes 2 and 7 in mice and pigs. Vet. Res. 2017, 48, 89. [Google Scholar] [CrossRef] [PubMed]
- Lianlian, J.; Guoxiong, D.; Jiansheng, X.; Hui, D.; Bing, H. Coexpression of a subunit of fimbriae F18ab and a subunit of shiga-like toxin type Ⅱ variant (Stx 2eA). Dongwu Yixue Jinzhan 2005, 26, 80–84. [Google Scholar]
- Su, H.; Liu, Q.; Wang, S.; Curtiss, R., 3rd; Kong, Q. Regulated Delayed Shigella flexneri 2a O-antigen Synthesis in Live Recombinant Salmonella enterica Serovar Typhimurium Induces Comparable Levels of Protective Immune Responses with Constitutive Antigen Synthesis System. Theranostics 2019, 9, 3565–3579. [Google Scholar] [CrossRef] [PubMed]
- Kusumoto, M.; Hikoda, Y.; Fujii, Y.; Murata, M.; Miyoshi, H.; Ogura, Y.; Gotoh, Y.; Iwata, T.; Hayashi, T.; Akiba, M. Emergence of a Multidrug-Resistant Shiga Toxin-Producing Enterotoxigenic Escherichia coli Lineage in Diseased Swine in Japan. J. Clin. Microbiol. 2016, 54, 1074–1081. [Google Scholar] [CrossRef] [PubMed]
- Kannan, R.; Madden, K.; Andrews, S. Primer on immuno-oncology and immune response. Clin. J. Oncol. Nurs. 2014, 18, 311–326. [Google Scholar] [CrossRef] [PubMed]
- Ji, Z.; Shang, J.; Li, Y.; Wang, S.; Shi, H. Live attenuated Salmonella enterica serovar Choleraesuis vaccine vector displaying regulated delayed attenuation and regulated delayed antigen synthesis to confer protection against Streptococcus suis in mice. Vaccine 2015, 33, 4858–4867. [Google Scholar] [CrossRef] [PubMed]
- Zhou, P.; Zhou, Z.; Huayu, M.; Wang, L.; Feng, L.; Xiao, Y.; Dai, Y.; Xin, M.; Tang, F.; Li, R. A multi-epitope vaccine GILE against Echinococcus Multilocularis infection in mice. Front. Immunol. 2022, 13, 1091004. [Google Scholar] [CrossRef]
- Curtiss, R., 3rd; Wanda, S.Y.; Gunn, B.M.; Zhang, X.; Tinge, S.A.; Ananthnarayan, V.; Mo, H.; Wang, S.; Kong, W. Salmonella enterica serovar typhimurium strains with regulated delayed attenuation in vivo. Infect. Immun. 2009, 77, 1071–1082. [Google Scholar] [CrossRef]
- Oanh, T.K.; Nguyen, V.K.; De Greve, H.; Goddeeris, B.M. Protection of piglets against Edema disease by maternal immunization with Stx2e toxoid. Infect. Immun. 2012, 80, 469–473. [Google Scholar] [CrossRef]
- McSorley, S.J. The Role of Non-Cognate T Cell Stimulation during Intracellular Bacterial Infection. Front. Immunol. 2014, 5, 319. [Google Scholar] [CrossRef]
- O’Donnell, H.; McSorley, S.J. Salmonella as a model for non-cognate Th1 cell stimulation. Front. Immunol. 2014, 5, 621. [Google Scholar] [CrossRef] [PubMed]
- Nakayama, T.; Hirahara, K.; Onodera, A.; Endo, Y.; Hosokawa, H.; Shinoda, K.; Tumes, D.J.; Okamoto, Y. Th2 Cells in Health and Disease. Annu. Rev. Immunol. 2017, 35, 53–84. [Google Scholar] [CrossRef] [PubMed]
- Ren, W.; Yu, R.; Liu, G.; Li, N.; Peng, Y.; Wu, M.; Yin, Y.; Li, Y.; Fatufe, A.A.; Li, T. DNA vaccine encoding the major virulence factors of Shiga toxin type 2e (Stx2e)-expressing Escherichia coli induces protection in mice. Vaccine 2013, 31, 367–372. [Google Scholar] [CrossRef] [PubMed]
- Sato, T.; Matsui, T.; Takita, E.; Kadoyama, Y.; Makino, S.; Kato, K.; Sawada, K.; Hamabata, T. Evaluation of recombinant forms of the shiga toxin variant Stx2eB subunit and non-toxic mutant Stx2e as vaccine candidates against porcine edema disease. J. Vet. Med. Sci. 2013, 75, 1309–1315. [Google Scholar] [CrossRef]
Strains and Plasmid | Characteristics | Sources, References, or Function |
---|---|---|
E. coli strains | ||
DH5α | For amplification of the recombinant plasmid | |
BL21 | For expression of the recombinant plasmids | Invitrogen |
χ7213 | thi-1, thr-1, leuB6, fhuA21, lacY1, glnV44, asdA4, recA1, RP4 2-Tc::Mu pir; Kmr | Provided by Dr. Roy Curtiss III |
S. Choleraesuis | ||
C78-3 | Wild-type, virulent, CVCC79103 | China Institute of Veterinary Drugs Control |
rSC0016 | ΔPcrp527::TT araC PBADcrpΔpmi-2426ΔrelA199::araC PBADlacI TTΔsopB1686 ΔasdA33 | [41] |
Shiga-toxin-producing Escherichia coli STEC20 | Wild-type, virulent | [42] |
Plasmids | ||
pYA3493 | Plasmid Asd+; pBR ori, β-lactamase signal sequence-based periplasmic secretion plasmid | Provided by Dr. Roy Curtiss III |
pET28a | Expression vector, Kanr | Novagen |
pMD19-T | Cloning vector; Ampr | TaKaRa |
pET28a-FedF | A recombinant expression vector containing FedF; Kanr | This study |
pET28a-rStx2eA | A recombinant expression vector containing rStx2eA; Kanr | This study |
pS-FedF | pYA3493 with FedF | This study |
pS-rStx2eA | pYA3493 with rStx2eA | This study |
Primer Name | Sequences (5′-3′) | References |
---|---|---|
fedF-28a-F | CCGGAATTCACTCTACAAGTAGACAAGTCTGTT | This study |
fedF-28a-R | CCCAAGCTTTTACTGTATCTCGAAAACAAT | |
stx2eA-28a-1 | CCGGAATTCCAGGAGTTTACGATAGACT | This study |
stx2eA-28a-2 | TATTTGCCTGAACTTTAAGGCTTGTGCTGTGACAGTGACAAAACG | |
stx2eA-28a-3 | CGTTTTGTCACTGTCACAGCACAAGCCTTAAAGTTCAGGCAAATA | |
stx2eA-28a-4 | CCCAAGCTTTTATTCACCAGTTGTATATAAAGG | |
pYA3493-F | AACGCTGGTGAAAGTAAAAGATG | This study |
pYA3493-R | CAGACCGCTTCTGCGTTCT | |
pET-28a-F | TAATACGACTCACTATAGGG | This study |
pET-28a-R | GCTAGTTATTGCTCAGCGG | |
fedF-3493-F | CCGGAATTCACTCTACAAGTAGACAAGTCTGTT | This study |
fedF-3493-R | CCCAAGCTTCTGTATCTCGAAAACAAT | |
stx2eA-3493-F | CCGGAATTCCAGGAGTTTACGATAGACT | This study |
stx2eA-3493-R | CCCAAGCTTTTCACCAGTTGTATATAAAGG |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, G.; Fu, Y.; Li, Y.; Li, Q.; Wang, S.; Shi, H. Oral Immunization with Attenuated Salmonella Choleraesuis Expressing the FedF Antigens Protects Mice against the Shiga-Toxin-Producing Escherichia coli Challenge. Biomolecules 2023, 13, 1726. https://doi.org/10.3390/biom13121726
Zhang G, Fu Y, Li Y, Li Q, Wang S, Shi H. Oral Immunization with Attenuated Salmonella Choleraesuis Expressing the FedF Antigens Protects Mice against the Shiga-Toxin-Producing Escherichia coli Challenge. Biomolecules. 2023; 13(12):1726. https://doi.org/10.3390/biom13121726
Chicago/Turabian StyleZhang, Guihua, Yang Fu, Yu’an Li, Quan Li, Shifeng Wang, and Huoying Shi. 2023. "Oral Immunization with Attenuated Salmonella Choleraesuis Expressing the FedF Antigens Protects Mice against the Shiga-Toxin-Producing Escherichia coli Challenge" Biomolecules 13, no. 12: 1726. https://doi.org/10.3390/biom13121726