Isorhamnetin: A Nematocidal Flavonoid from Prosopis laevigata Leaves Against Haemonchus contortus Eggs and Larvae
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Prosopis laevigata Hydroalcoholic Extract Obtaining and Chemical Fractioning
2.3. Isolation, Purification and Identification of Isorhamnetin from the P. laevigata Active Fraction (EtAc-F)
2.4. Chemical Group Identification in P. laevigata Hydroalcoholic Extract (HA-E) and Fractions
2.5. Analysis of Extracts, Fractions and Compounds 1–3 by HPLC
2.6. MS Analysis of Compounds 1–3
2.7. Haemonchus contortus Eggs and Larvae Obtaining
2.8. Assessment of Larval Mortality by A Bio-Guided Assay
2.9. Assessing the Egg Hatch Test Using P. laevigata Compounds
2.10. Examination of H. contortus Eggs and Larvae Using Environmental Scanning Electron Microscopy (ESEM) and Confocal Laser Scanning Microscopy (CLSM)
2.11. Statistical Analysis
3. Results
3.1. HA-E and Fraction Yields
3.2. Preliminary Phytochemical Screening of HA-E, Aq-F and EtAc-F
3.3. Assessment of the Larvicidal Activity of Aq-F and EtAc-F
3.4. Larvicidal Activity of Sub-Fractions and Compounds
3.5. Ovicidal Activity of the Purified Compounds
3.6. Prosopis laevigata Chemical Analysis Through High Performance Liquid Chromatography (HPLC)
3.7. Chemical Structures of Identified Compounds
3.8. Examination of H. contortus Eggs and Larvae ESEM and CLSM
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Besier, R.B.; Kahn, L.P.; Sargison, N.D.; Van Wyk, J.A. The pathophysiology, ecology and epidemiology of Haemonchus contortus infection in small ruminants. Adv. Parasitol. 2016, 93, 95–143. [Google Scholar] [PubMed]
- Cooper, L.; Cerutti, J.; Mohn, C.; Torrents, J.; Suarez-Archilla, G.; Anziani, O.S. Eficacia del monepantel para el control de aislamientos de Haemonchus contortus y Trichostrongylus spp. con resistencia múltiple (ivermectina y febendazole) en caprinos. Sección Cienc. Vet. 2016, 15, 5–8. [Google Scholar] [CrossRef]
- Coles, G.C.; Jackson, F.; Pomroy, W.E.; Prichard, R.K.; Samson-Himmelstjerna, G.V.; Silvestre, A.; Taylor, M.A.; Vercruysse, J. The detection of anthelmintic resistance in nematodes of veterinary importance. Vet. Parasitol. 2006, 136, 167–185. [Google Scholar] [CrossRef] [PubMed]
- Masiá, A.; Suarez-Varela, M.M.; Llopis-Gonzalez, A.; Picó, Y. Determination of pesticides and veterinary drug residues in food by liquid chromatography-mass spectrometry: A review. Anal. Chim. Acta 2016, 936, 40–61. [Google Scholar] [CrossRef]
- Novaes, S.F.; Schreiner, L.L.; Pereira e Silva, I.; Franco, R.M. Residues of veterinary drugs in milk in Brazil. Cienc. Rural 2017, 47, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Aparicio-Medina, J.M.; Paredes-Vanegas, V.; González-López, O.; Navarro-Reyes, O. Effect of ivermectin on the environment. La Calera 2011, 11, 64–66. [Google Scholar] [CrossRef]
- Gallegos-Zurita, M. Las plantas medicinales: Principal alternativa para el cuidado de la salud, en la población rural de Babahoyo, Ecuador. An. Fac. Med. 2016, 77, 327–332. [Google Scholar] [CrossRef]
- Rzedowski, J. Vegetación de México; 1ra Edición Digital; Comisión Nacional para el Conocimiento y Uso de la Biodiversidad: México, México, 2006; p. 504.
- Ahmad, A.; Khan, K.A.; Ahmad, V.U.; Qazi, S. Antibacterial activity of Juliflorine isolated from Prosopis juliflora. Planta Med. 1985, 52, 285–288. [Google Scholar] [CrossRef]
- Othman, A.M.; Awadh-Ali, N.A.; Saif, A.A.; Al-Fadhli, E.A. Topical herbal antimicrobial formulation containing Prosopis juliflora methanol extract. World J. Pharm. Res. 2016, 5, 151–163. [Google Scholar]
- Solanki, D.S.; Kumar, S.; Parihar, K.; Tak, A.; Gehlot, P.; Pathak, R.; Singh, S.K. Characterization of a novel seed protein of Prosopis cineraria showing antifungal activity. Int. J. Biol. Macromol. 2018, 116, 16–22. [Google Scholar] [CrossRef]
- Martínez-Flórez, S.; González-Gallego, J.; Culebras, J.M.; Tuñón, J. Los flavonoides: Propiedades y acciones antioxidantes. Nutr. Hosp. 2002, 17, 271–278. [Google Scholar] [PubMed]
- Sivakumar, T.; Srinivasan, K.; Rajavel, R.; Vasudevan, M.; Ganesh, M.; Kamalakannan, K. Isolation of chemical constituents from Prosopis juliflora bark and anti-inflammatory activity of its methanolic extracts. J. Pharm Res. 2009, 2, 551–556. [Google Scholar]
- Henciya, S.; Seturaman, P.; James, A.R.; Tsai, Y.H.; Nikam, R.; Wu, Y.C.; Dahms, H.U.; Chang, F.R. Biopharmaceutical potentials of Prosopis spp. (Mimosaceae, Leguminosa). J. Food Drug Anal. 2017, 25, 187–196. [Google Scholar] [CrossRef]
- Taisma, M.A. Medicinal uses of Prosopis juliflora (Sw.) DC. In rural communitties from Paraguaná peninsula, Venezuela. Rev. Peru Biol. 2017, 24, 79–86. [Google Scholar] [CrossRef] [Green Version]
- López-Aroche, U.; Salinas-Sánchez, D.O.; Mendoza-de-Gives, P.; López-Arellano, M.E.; Liébano-Hernández, E.; Valladares-Cisneros, G.; Arias-Ataide, D.M.; Hernández-Velázquez, V. In vitro nematicidal effects of medicinal plants from the Sierra de Huautla, Biosphere Reserve, Morelos, México against Haemonchus contortus infective larvae. J. Helminth 2008, 82, 25–31. [Google Scholar] [CrossRef] [PubMed]
- De Jesús Gabino, A.F.; Mendoza-de-Gives, P.; Salinas-Sánchez, D.O.; López-Arellano, M.E.; Liébano-Hernández, E.; Hernández-Velázquez, V.M.; Valladares-Cisneros, G. Anthelmintic effects of Prosopis laevigata n-hexanic extract against Haemonchus contortus in artificially infected gerbils (Meriones unguiculatus). J. Helminth 2010, 84, 71–75. [Google Scholar]
- Olmedo-Juárez, A.; Rojo-Rubio, R.; Zamilpa, A.; Mendoza-de-Gives, P.; Arece-García, J.; López-Arellano, M.E.; Von Son-de Fernex, E. In vitro larvicidal effect of a hydroalcoholic extract from Acacia cochliacantha leaf against ruminant parasitic nematodes. Vet. Res. Commun. 2017, 41, 227–232. [Google Scholar] [CrossRef] [Green Version]
- Von Son-de Fernex, E.; Alonso-Díaz, M.A.; Mendoza-de-Gives, P.; Valles-de la Mora, B.; González-Cortazar, M.; Zamilpa, A.; Castillo-Gallegos, E. Elucidation of Leucaena leucocephala anthelmintic-like phytochemicals and the ultrastructural damage generated to eggs of Cooperia spp. Vet. Parasitol. 2015, 214, 89–95. [Google Scholar] [CrossRef]
- Mesquita, J.R.; Mega, C.; Coelho, C.; Cruz, R.; Vala, H.; Esteves, F.; Santos, C.; Vasconcelos-Nóbrega, C. ABC series on diagnostic parasitology part 3: The Baermann technique. Vet. Nurse 2017, 8, 558–562. [Google Scholar] [CrossRef]
- Zarza-Albarrán, M.A.; Olmedo-Juárez, A.; Rojo-Rubio, R.; Mendoza-de-Gives, P.; González-Cortazar, M.; Tapia-Maruri, D.; Mondragón-Ancelmo, J.; García-Hernández, C.; Blé-González, E.V.; Zamilpa, A. Galloyl flavonoids from Acacia farnesiana pods possess potent anthelmintic activity againts Haemonchus contortus eggs and infective larvae. J. Ethopharmacol. 2020, 249, 112402. [Google Scholar] [CrossRef]
- García-Hernández, C.; Rojo-Rubio, R.; Olmedo-Juárez, A.; Zamilpa, A.; Mendoza-de-Gives, P.; Antonio-Romo, I.A.; González-Cortazar, M. Galloyl derivatives from Caesalpinia coriaria exhibit in vitro ovicidal activity against cattle gastrointestinal parasitic nematodes. Exp. Parasitol. 2019, 200, 16–23. [Google Scholar] [CrossRef] [PubMed]
- Coles, G.C.; Bauer, C.; Borgsteede, F.; Geerts, S.; Klei, T.R.; Taylor, M.A.; Waller, P.J. World association for advancement in veterinary parasitology (WAAVP) methods for the detection of anthelmintic resistance in nematodes of veterinary importance. Vet. Parasitol. 1992, 44, 35–43. [Google Scholar] [CrossRef]
- SAS. Statistic Analysis System, User’s Guide Statistics; Version 9.0.; SAS Institute Inc.: Cary, NC, USA, 2006; p. 956. [Google Scholar]
- Manivannan, R.; Shopna, R. Isolation of quercetin and isorhamnetin derivatives and evaluation of anti-microbial and anti-inflammatory activities of Persicaria glabra. Nat. Prod. Sci. 2015, 21, 170–175. [Google Scholar]
- Rahate, K.P.; Rajasekaran, A. Isolation and identification of flavone aglycones in roots of Desmostachya bipinnata. Indian J. Pharm. Sci. 2018, 80, 551–556. [Google Scholar] [CrossRef]
- Dueñas, M.; González-Manzano, S.; González-Paramás, A.; Santos-Buelga, C. Antioxidant evaluation of O-methylated metabolites of catechin, epicatechin and quercetin. J. Pharm. Biomed. 2010, 51, 443–449. [Google Scholar] [CrossRef]
- Zhao, C.; Qiao, X.; Cao, Y.; Shao, Q. Application of hydrogen peroxide presoaking prior to ammonia fiber expansion pretreatment of energy crops. Fuel 2017, 205, 184–191. [Google Scholar] [CrossRef]
- Zhao, C.; Qiao, X.; Shao, Q.; Hassan, M.; Ma, Z.; Yao, L. Synergistic effect of hydrogen peroxide and ammonia on lignin. Ind. Crop. Prod. 2020, 146, 112177. [Google Scholar] [CrossRef]
- De Jesús-Martínez, X.; Olmedo-Juárez, A.; Olivares-Pérez, J.; Zamilpa, A.; Mendoza-de-Gives, P.; López-Arellano, M.E.; Rojas-Hernández, S.; Villa-Mancera, A.; Camacho-Díaz, L.M.; Cipriano-Salazar, M. In vitro anthelmintic activity of methanolic extract from Caesalpinia coriaria J. Willd fruits against Haemonchus contortus eggs and infective larvae. BioMed Res. Int. 2018, 2018, 7375693. [Google Scholar] [CrossRef] [Green Version]
- González-Cortazar, M.; Zamilpa, A.; López-Arellano, M.E.; Aguilar-Marcelino, L.; Reyes-Guerrero, D.E.; Olazarán-Jenkins, S.; Ramírez-Vargas, G.; Olmedo-Juárez, A.; Mendoza-de-Gives, P. Lysiloma acapulcensis leaves contain anthelmintic metabolites that reduce the gastrointestinal nematode egg population in sheep faeces. Comp. Clin. Pathol. 2018, 27, 189–197. [Google Scholar] [CrossRef]
- Abdullah, T.W.; Elsayed, W.M.; Abdelshafeek, K.A.; Nazif, N.M.; Nada, S.; Singab, A.N.B. The Flavonoids and biological activity of Cleome africana growing in Egypt. RJPBCS 2016, 7, 1094–1104. [Google Scholar]
- Jaramillo, S.; Lopez, S.; Varela, L.M.; Rodriguez-Arcos, R.; Jimenez, A.; Abia, R.; Muriana, F.J. The Flavonol isorhamnetin exhibits cytotoxic effects on human colon cancer cells. J. Agric. Food Chem. 2010, 58, 10869–10875. [Google Scholar] [CrossRef] [PubMed]
- Jnawali, H.N.; Jeon, D.; Jeong, M.-C.; Lee, E.; Jin, B.; Ryoo, S.; Kim, Y. Antituberculosis activity of a naturally occurring flavonoid, isorhamnetin. J. Nat. Prod. 2016, 79, 961–969. [Google Scholar] [CrossRef] [PubMed]
- Dayem, A.A.; Choi, H.Y.; Kim, Y.B.; Cho, S.-G. Antiviral effect of methylated flavonol isorhamnetin against influenza. PLoS ONE 2015, 10, e0121610. [Google Scholar] [CrossRef] [Green Version]
- Pengfei, L.; Tiansheng, D.; Xianglin, H.; Jianguo, W. Antioxidant properties of isolated isorhamnetin from the sea buckthorn marc. Plant Food Hum. Nutr. 2009, 64, 141–145. [Google Scholar] [CrossRef]
- Zuo, A.; Yu, Y.; Jing, L.; Xu, B.; Yu, X.; Qiu, Y.; Cao, S. Study on the relation of structure and antioxidant activity of isorhamnetin, quercetin, phloretin, silybin and phloretin isonicotinyl hydrazone. Free Radic. Antioxid. 2011, 1, 39–47. [Google Scholar] [CrossRef] [Green Version]
- Igarashi, K.; Ohmuma, M. Effects of isorhamnetin, rhamnetin, and quercetin on the concentrations of cholesterol and lipoperoxide in the serum and liver and on the blood and liver antioxidative enzyme activities of rats. Biosci. Biotechnol. Biochem. 1995, 59, 595–601. [Google Scholar] [CrossRef] [Green Version]
- Katan, M.B. Flavonoids and heart disease. Am. J. Clin. Nutr. 1997, 65, 1542–1543. [Google Scholar] [CrossRef] [Green Version]
- Watanabe, C.M.H.; Wolffram, S.; Ader, P.; Rimbach, G.; Packer, L.; Maguire, J.J.; Gohil, K. The in vivo neuromodulatory effects of the herbal medicine Ginkgo biloba. Proc. Natl. Acad. Sci. USA 2001, 98, 6577–6580. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Yang, X.; Chen, C.; Cai, S.; Hu, J. Isorhamnetin suppresses colon cancer cell growth through the PI3K-Akt-mTOR pathway. Mol. Med. Rep. 2014, 9, 935–940. [Google Scholar] [CrossRef]
- Kim, T.H.; Ku, S.-K.; Bae, J.-S. Anti-inflammatory activities of isorhamnetin-3-O-galactoside against HMGB1-induced inflammatory responses in both HUVECs and CLP-induced septic mice. J. Cell. Biochem. 2012, 114, 336–345. [Google Scholar] [CrossRef]
- Seo, K.; Yang, J.H.; Kim, S.C.; Ku, S.K.; Ki, S.H.; Shin, S.M. The antioxidant effects of isorhamnetin contribute to inhibit COX-2 expression in response to inflammation: A potential role of HO-1. Inflammation 2013, 37, 712–722. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.S.; Lee, S.; Lee, H.S.; Kim, B.-K.; Ohuchi, K.; Shin, K.H. Inhibitory effects of Isorhamnetin-3-O-β-D-glucoside from Salicornia herbacea on rat lens aldose reductase and sorbitol accumulation in streptozotocin-induced diabetic rat tissues. Biol. Pharm. Bull. 2005, 28, 916–918. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hendrich, A.B. Flavonoid-membrane interactions: Possible consequences for biological effects of some polyphenolic compounds. Acta Pharmacol. Sin. 2006, 27, 27–40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, J. Flavonoid transport mechanisms: How to go, and with whom. Trends Plant Sci. 2015, 20, 576–585. [Google Scholar] [CrossRef]
- Molan, A.L.; Faraj, A.M. The effects of condensed tannins extracted from different plant species on egg hatching and larval development of Teladorsagia circumcincta (Nematoda: Trichostrongylidae). Folia Parasitol. 2010, 57, 62–68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mansfield, L.S.; Gamble, H.R.; Fetterer, R.H. Characterization of the eggshell of Haemonchus contortus—I. Structural components. Comp. Biochem. Physiol. 1992, 103, 681–686. [Google Scholar] [CrossRef]
- Thompson, D.P.; Geary, T.G. The structure and function of helminth surfaces. Biochem. Mol. Biol. Parasites 1995, 203–232. [Google Scholar]
- Sommerville, R.I.; Rogers, W.P. The nature and action of host signals. Adv. Parasitol. 1987, 26, 239–293. [Google Scholar]
- Rogers, W.P.; Brooks, F. The mechanism of hatching of eggs of Haemonchus contortus. Int. J. Parasitol. 1977, 7, 61–65. [Google Scholar] [CrossRef]
- Vargas-Magaña, J.J.; Torres-Acosta, J.F.J.; Aguilar-Caballero, A.J.; Sandoval-Castro, C.A.; Hoste, H.; Chan-Pérez, J.I. Anthelmintic activity of acetone–water extracts against Haemonchus contortus eggs: Interactions between tannins and other plant secondary compounds. Vet. Parasitol. 2014, 206, 322–327. [Google Scholar] [CrossRef]
- Molan, A.L.; Meagher, L.P.; SpenCer, P.A.; Si vakumaran, S. Effect of flavan-3-ols on in vitro egg hatching, larval development and viability of infective larvae of Trichostrongylus colubriformis. Int. J. Parasitol. 2003, 33, 1691–1698. [Google Scholar] [CrossRef]
- Lakshmi, V.; Joseph, S.K.; Srivastava, S.; Verma, S.K.; Sahoo, M.K.; Dube, V.; Murthy, P.K. Antifilarial activity in vitro and in vivo of some flavonoids tested against Brugia malayi. Acta Trop. 2010, 116, 127–133. [Google Scholar] [PubMed]
- Barrau, E.; Fabre, N.; Fouraste, I.; Hoste, H. Effect of bioactive compounds from Sainfoin (Onobrychis viciifolia Scop.) on the in vitro larval migration of Haemonchus contortus: Role of tannins and flavonol glycosides. Parasitology 2005, 131, 531–538. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klongsiriwet, C.; Quijada, J.; Williams, A.R.; Mueller-Harvey, I.; Williamson, E.M.; Hoste, H. Synergistic inhibition of Haemonchus contortus exsheathment by flavonoid monomers and condensed tannins. Int. J. Parasitol. Drugs 2015, 5, 127–134. [Google Scholar] [CrossRef] [PubMed]
- Castelli, F.; Uccella, N.; Trombetta, D.; Saija, A. Differences between coumaric and cinnamic acids in membrane permeation as evidenced by time-dependent calorimetry. J. Agric. Food Chem. 1999, 47, 991–995. [Google Scholar] [CrossRef]
- Van Dijk, C.; Driessen, A.J.; Recourt, K. The uncoupling efficiency and affinity of flavonoids for vesicles. Biochem. Pharmacol. 2000, 60, 1593–1600. [Google Scholar] [CrossRef] [Green Version]
- Oteiza, P.I.; Erlejman, A.G.; Verstraeten, S.V.; Keen, C.L.; Fraga, C.G. Flavonoid-membrane interactions: A protective role of flavonoids at the membrane surface? Clin. Dev. Immunol. 2005, 12, 19–25. [Google Scholar] [CrossRef] [Green Version]
- Engström, M.T.; Karonen, M.; Ahern, J.R.; Baert, N.; Payré, B.; Hoste, H.; Salminen, J.-P. Chemical structures of plant hydrolyzable tannins reveal their in vitro activity against egg hatching and motility of Haemonchus contortus Nematodes. J. Agric. Food Chem. 2016, 64, 840–851. [Google Scholar] [CrossRef]
Metabolite Group | Reagent | Colorimetric Reaction | AH-E | Aq-F | EtAc-F |
---|---|---|---|---|---|
Alkaloids | Dragendorff | +++ | +++ | + | |
Mayer | Turbidity or precipitate | +++ | +++ | + | |
Wagner | (red to orange, white to cream and brown) | +++ | +++ | + | |
Coumarins | Bornträger | Yellow fluorescence (UV) | - | - | - |
Flavonoids | Mg2+ and HCL | Red, orange and violet | ++ | - | +++ |
Tannins | Ferric chloride | Hydrolysable tannins (blue) | - | - | - |
Condensed tannins (green) | +++ | + | +++ | ||
Confirmation | |||||
Solution of gelatine | Precipitate white | + | + | + | |
Gelatine and saline solution | Precipitate white | + | + | + | |
Saline solution | Precipitate white | - | - | - | |
Triterpenes/sterols | Liebermann-Burchard Salkowski Salkowski (modified) | Green, blue-red (sterols) Yellow, red to purple (triterpenes) Yellow to red (triterpenoidal/steroidal saponins) | - - + | - - + | + + + |
Saponins | Water | Foam formation | + | ++ | - |
Treatment | Mean of Recovered Larvae Dead Larvae/Total | % Mortality (±SD) |
---|---|---|
First step (Fractioning for larvicidal activity) | ||
Aqueous fraction (Aq-F) (mg/mL) | ||
50 | 0.75/105.62 | 0.72 ± 0.67 g |
40 | 0.62/104.4 | 0.60 ± 49 g |
30 | 0/104.25 | 0 g |
20 | 0/104.62 | 0 g |
10 | 0/103.87 | 0 g |
Ethyl acetate fraction (EtAc-F) (mg/mL) | ||
50 | 72.5/75.3 | 96.01 ± 0.75 b |
40 | 93.5/101.25 | 92.32 ± 0.87 c |
30 | 81.8/101.55 | 80.45 ± 0.83 d |
20 | 82.5/109.87 | 75.13 ± 0.81 e |
10 | 34.3/110.55 | 31.12 ± 0.76 f |
Distilled water | 0.7/86.7 | 0.9 g |
MeOH (4%) | 1.5/69.4 | 2.98 ± 0.26 f |
Ivermectin (0.5 mg/mL) | 81/81 | 100 a |
Variation coefficient | 1.17 | |
R2 | 0.99 |
Sub-Fractions and Compound (Step 2) | Mean of Recovered Larvae Dead Larvae/Total | % Mortality ±SD | Lethal Concentrations 95% (CI Limits Lower-Upper) | |
---|---|---|---|---|
C1F1 (mg/mL) | LC50 (mg/mL) | LC90 (mg/mL) | ||
15 | 67.5/84.75 | 79.47 b | ||
7.5 | 18.15/76.75 | 24.12 d | ||
3.7 | 8/77.2 | 10.47 d | ||
C1F2 (mg/mL) | ||||
15 | 11.2/70 | 24.45 ± 2.44 d | ||
C1F3 (mg/mL) | ||||
15 | 4.5/66.25 | 6.82 ± 0.72 e | ||
C1F4 (mg/mL) | ||||
15 | 3/78.5 | 5.75 ± 2.56 e | ||
C2F1 (mg/mL) | ||||
15 | 127.5/0 | 100 a | 2.82 (2.72–2.92) | 3.82 (3.69–3.96) |
7.5 | 126.5/0 | 100 a | ||
3.75 | 107.5/122.5 | 87.8 ± 3.46 b | ||
1.87 | 2/120 | 2.27 ± 0.45 e | ||
C2F2 (mg/mL) | ||||
15 | 120.0/0 | 100 a | 2.68 (2.45–2.86) | 3.84 (3.67–4.02) |
7.5 | 121/0 | 100 a | ||
3.7 | 101.5/115 | 88.2 ± 0.47 b | ||
1.8 | 10.75/107.5 | 10.0 ± 0.77 d | ||
C2F3 (mg/mL) | ||||
15 | 117/0 | 100 a | 3.04 (2.89–3.19) | 5.66 (5.32–6.07) |
7.5 | 109.7/116.5 | 94.22 ± 1.63 b | ||
3.7 | 77.7/115.2 | 67.47 ± 1.29 c | ||
1.8 | 2.5/115.2 | 2.15 ± 0.51 e | ||
Isorhamentin (mg/mL) (1) | ||||
15 | 126/0 | 100 a | 2.07 (1.98–2.16) | 3.79 (3.60–4.02) |
7.5 | 127/0 | 100 a | ||
3.7 | 101.5/115 | 88.25 ± 0.47 b | ||
2.5 | 73.25/107.5 | 68.15 ± 4.46 c | ||
1.2 | 14.5/106.75 | 13.6 ± 3.19 d | ||
0.6 | 2.25/105.75 | 2.15 ± 0.50 e | ||
Isorhanmetin and luteolin (2.5 mg/mL) (1,2) | 0/103.82 | 0 f | ||
Luteolin (2.5 mg/mL) (2) | 0.5/107.2 | 0.47 ± 0.95 f | ||
4′-O-methylcatechin (2.5 mg/mL) (3) | 0/104.2 | 0 f | ||
Distilled water | 0/71.25 | 0 f | ||
MeOH (4%) | 0/69.87 | 0 f | ||
Ivermectin (0.5 mg/mL) | 73.5/73.5 | 100 a | ||
Variation coefficient | 3.56 | |||
R2 | 0.99 |
Treatments | %EHT ± SD | Lethal Concentrations 95% (CI limits Lower-Upper) | |
---|---|---|---|
LC50 (mg/mL) | LC90 (mg/mL) | ||
Isorhamnetin (mg/mL) (1) | |||
0.3 | 100 a | ||
0.15 | 100 a | ||
0.07 | 100 a | ||
Mixture isorhamnetin and luteolin (mg/mL) (1,2) | |||
0.3 | 100 a | ||
0.15 | 96.03 ± 1.36 b | 0.10 | 0.13 |
0.07 | 4.18 ± 1.23 c | (0.09–0.10) | (0.13–0.14) |
Luteolin (mg/mL) (2) | |||
0.3 | 0 c | ||
0.15 | 0 c | ||
0.07 | 0 c | ||
4′-O-methylcatechin (mg/mL) (3) | |||
0.3 | 0 c | ||
0.15 | 0 c | ||
0.07 | 0 c | ||
MeOH 2% | 1.50 ± 0.6 c | ||
Ivermectin (0.5 mg/mL) | 100 a | ||
Variation coefficient | 2.92 | ||
R2 | 0.99 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Delgado-Núñez, E.J.; Zamilpa, A.; González-Cortazar, M.; Olmedo-Juárez, A.; Cardoso-Taketa, A.; Sánchez-Mendoza, E.; Tapia-Maruri, D.; Salinas-Sánchez, D.O.; Mendoza-de Gives, P. Isorhamnetin: A Nematocidal Flavonoid from Prosopis laevigata Leaves Against Haemonchus contortus Eggs and Larvae. Biomolecules 2020, 10, 773. https://doi.org/10.3390/biom10050773
Delgado-Núñez EJ, Zamilpa A, González-Cortazar M, Olmedo-Juárez A, Cardoso-Taketa A, Sánchez-Mendoza E, Tapia-Maruri D, Salinas-Sánchez DO, Mendoza-de Gives P. Isorhamnetin: A Nematocidal Flavonoid from Prosopis laevigata Leaves Against Haemonchus contortus Eggs and Larvae. Biomolecules. 2020; 10(5):773. https://doi.org/10.3390/biom10050773
Chicago/Turabian StyleDelgado-Núñez, Edgar Jesús, Alejandro Zamilpa, Manasés González-Cortazar, Agustín Olmedo-Juárez, Alexandre Cardoso-Taketa, Ernesto Sánchez-Mendoza, Daniel Tapia-Maruri, David Osvaldo Salinas-Sánchez, and Pedro Mendoza-de Gives. 2020. "Isorhamnetin: A Nematocidal Flavonoid from Prosopis laevigata Leaves Against Haemonchus contortus Eggs and Larvae" Biomolecules 10, no. 5: 773. https://doi.org/10.3390/biom10050773