Wound Healing Effects of Aloe muth-muth: In Vitro Investigations Using Immortalized Human Keratinocytes (HaCaT)
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Preparation of Aloe Muth-Muth Whole Leaf and Gel Materials
2.2. Characterization of Aloe Muth-Muth Whole Leaf and Gel Materials
2.3. Culturing of HaCaT Cells
2.4. Sub-Culturing of HaCaT Cells
2.5. Methyl Thiazolyl Tetrazolium (MTT) Cell Viability Assay
- ΔSample = absorbance of treated cells560 – absorbance of treated cells630;
- ΔBlank = mean absorbance of blank560 – mean absorbance of blank630;
- ΔControl = mean absorbance of untreated control560 – mean absorbance of untreated control630.
2.6. In Vitro Wound Healing Scratch Assay
2.7. In Vitro Cell Migration Assay
2.8. Statistical Analysis
3. Results and Discussion
3.1. Characterization of Aloe Muth-Muth Whole Leaf and Gel Materials
3.2. Cytotoxicity Testing of Aloe Muth-Muth Gel and Whole Leaf Material Using the MTT Assay
3.3. Measuring the Re-Epithelialization Potential of Aloe Muth-Muth Gel and Whole Leaf Material Using the Scratch Assay
3.4. Measuring the Migration Enhancement Activity of Aloe muth-muth Gel Using the In Vitro Cell Migration Assay
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hess, C.T. Clinical Guide to Skin and Wound Care, 7th ed.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2012; p. 624. [Google Scholar]
- Shah, A.; Amini-Nik, S. The role of phytochemicals in the inflammatory phase of wound healing. Int. J. Mol. Sci. 2017, 18, 1068. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shikalepo, R.; Mukakalisa, C.; Kandawa-Schulz, M.; Chingwaru, W.K.P. In Vitro anti-HIV and antioxidant potential of Bulbine frutescens (Asphodelaceae). J. Herb. Med. 2018, 12, 73–78. [Google Scholar] [CrossRef]
- Sharma, M.; Sahu, K.; Singh, S.P.; Jain, B. Wound healing activity of curcumin conjugated to hyaluronic acid: In Vitro and In Vivo evaluation. Artif. Cells Nanomed. Biotechnol. 2018, 46, 1009–1017. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- López, V.; Jäger, A.K.; Akerreta, S.; Cavero, R.Y.; Calvo, M.I. Pharmacological properties of Anagallis arvensis L. (“scarlet pimpernel”) and Anagallis foemina Mill. (“blue pimpernel”) traditionally used as wound healing remedies in Navarra (Spain). J. Ethnopharmacol. 2011, 134, 1014–1017. [Google Scholar] [CrossRef] [PubMed]
- Pather, N.; Viljoen, A.M.; Kramer, B. A biochemical comparison of the In Vivo effects of Bulbine frutescens and Bulbine natalensis on cutaneous wound healing. J. Ethnopharmacol. 2011, 133, 364–370. [Google Scholar] [CrossRef] [PubMed]
- Govaerts, R.; Newton, L. World Checklist of Asphodelaceae. Facilitated by the Royal Botanic Gardens, Kew. Available online: http://wcsp.science.kew.org/namedetail.do?name_id=298116 (accessed on 12 February 2018).
- Steenkamp, V.; Stewart, M.J. Medicinal applications and toxicological activities of Aloe products. Pharm. Biol. 2007, 32, 411–420. [Google Scholar] [CrossRef]
- Garcia-Orue, I.; Gainza, G.; Gutierrez, F.B.; Aguirre, J.J.; Evora, C.; Pedraz, J.L.; Hernandez, R.M.; Delgado, A.; Igartua, M. Novel nanofibrous dressings containing rhEGF and Aloe vera for wound healing applications. Int. J. Pharm. 2017, 523, 556–566. [Google Scholar] [CrossRef] [PubMed]
- Fox, L.T.; Mazumder, A.; Dwivedi, A.; Gerber, M.; du Plessis, J.; Hamman, J.H. In Vitro wound healing and cytotoxic activity of the gel and whole-leaf materials from selected aloe species. J. Ethnopharmacol. 2017, 200, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Moriyama, M.; Kubo, H.; Nakajima, Y.; Goto, A.; Akaki, J.; Yoshida, I.; Nakamura, Y.; Hayakawa, T.; Moriyama, H. Mechanism of Aloe vera gel on wound healing in human epidermis. J. Dermatol. Sci. 2016, 84, e150–e151. [Google Scholar] [CrossRef]
- Jiao, P.; Jia, Q.; Randel, G.; Diehl, B.; Weaver, S.; Milligan, G. Quantitative 1H-NMR spectrometry method for quality control of Aloe vera products. J. AOAC Int. 2010, 93, 842–848. [Google Scholar] [PubMed]
- Wentzel, J.F.; Lewies, A.; Bronkhorst, A.J.; Van Dyk, E.; Du Plessis, L.H.; Pretorius, P.J. Exposure to high levels of fumarate and succinate leads to apoptotic cytotoxicity and altered global DNA methylation profiles In Vitro. Biochimie 2017, 135, 28–34. [Google Scholar] [CrossRef] [PubMed]
- Liang, C.; Park, A.Y.; Guan, J. In Vitro scratch assay: A convenient and inexpensive method for analysis of cell migration In Vitro. Nat. Protoc. 2007, 2, 329–333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brandi, J.; Cheri, S.; Manfredi, M.; Di Carlo, C.; Vanella, V.V.; Federici, F.; Bombiero, E.; Bazaj, A.; Rizzi, E.; Manna, L.; et al. Exploring the wound healing, anti-inflammatory, anti-pathogenic and proteomic effects of lactic acid bacteria on keratinocytes. Sci. Rep. 2020, 10, 11572. [Google Scholar] [CrossRef] [PubMed]
- López-García, J.; Lehocký, M.; Humpolíček, P.; Sáha, P. HaCaT keratinocytes response on antimicrobial atelocollagen substrates: Extent of cytotoxicity, cell viability and proliferation. J. Funct. Biomater. 2014, 5, 43–57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Du Plessis, L.H.; Hamman, J.H. In Vitro evaluation of the cytotoxic and apoptogenic properties of aloe whole leaf and gel materials. Drug Chem. Toxicol. 2014, 37, 169–177. [Google Scholar] [CrossRef] [PubMed]
- Atik, N.; Nandika, A.; Dewi, P.I.C.; Avriyanti, E. Molecular mechanism of Aloe barbadensis Miller as a potential herbal medicine. Sys. Rev. Pharm. 2019, 10, 118–125. [Google Scholar]
- Sánchez, M.; González-Burgos, E.; Iglesias, I.; Gómez-Serranillos, M.P. Pharmacological update properties of Aloe vera and its major active constituents. Molecules 2020, 25, 1324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fox, L.T. Transdermal Penetration Enhancement and Clinical Efficacy of Aloe Marlothii and Aloe Ferox Compared to Aloe Vera. Ph.D. Thesis, North-West University, Potchefstroom, South Africa, 2014. [Google Scholar]
- Ying, T.H.; Chen, C.W.; Hsiao, Y.P.; Hung, S.J.; Chung, J.G.; Yang, J.H. Citric acid induces cell-cycle arrest and apoptosis of human immortalized keratinocyte cell line (HaCaT) via caspase and mitochondrial-dependent signaling pathways. Anticancer Res. 2013, 33, 4411–4420. [Google Scholar] [PubMed]
- Wahedi, H.M.; Jeong, M.; Chae, J.K.; Do, S.G.; Yoon, H.; Kim, S.Y. Aloesin from Aloe vera accelerates skin wound healing by modulating MAPK/Rho and Smad signaling pathways In Vitro and In Vivo. Phytomedicine 2017, 28, 19–26. [Google Scholar] [CrossRef] [PubMed]
Component | Aloe muth-muth Gel | Aloe muth-muth Whole Leaf | ||
---|---|---|---|---|
Content (%) | Content (mg/mL) | Content (%) | Content (mg/mL) | |
Aloverose (polysaccharide) | 11.3 | 793.8 | 8.1 | 568.3 |
Glucose | 11.7 | 821.1 | 6.8 | 477.2 |
Malic acid | 10.4 | 730.8 | 5.4 | 380.3 |
Lactic acid | 0.1 | 12.5 | Traces | ND |
Citric acid | ND | ND | 1.5 | 103.8 |
Iso-citric acid (whole leaf marker) | ND | ND | 5.1 | 355.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fouché, M.; Willers, C.; Hamman, S.; Malherbe, C.; Steenekamp, J. Wound Healing Effects of Aloe muth-muth: In Vitro Investigations Using Immortalized Human Keratinocytes (HaCaT). Biology 2020, 9, 350. https://doi.org/10.3390/biology9110350
Fouché M, Willers C, Hamman S, Malherbe C, Steenekamp J. Wound Healing Effects of Aloe muth-muth: In Vitro Investigations Using Immortalized Human Keratinocytes (HaCaT). Biology. 2020; 9(11):350. https://doi.org/10.3390/biology9110350
Chicago/Turabian StyleFouché, Morné, Clarissa Willers, Sias Hamman, Christiaan Malherbe, and Jan Steenekamp. 2020. "Wound Healing Effects of Aloe muth-muth: In Vitro Investigations Using Immortalized Human Keratinocytes (HaCaT)" Biology 9, no. 11: 350. https://doi.org/10.3390/biology9110350