Field Measurements of Building Air-Conditioning Heat Rejection and the Thermal Environment in Urban Areas
Abstract
:1. Introduction
2. Methods
2.1. Details of the Studied Area
2.2. Air-Conditioning Heat Exhaust Measurements
2.2.1. Measurements Area
2.2.2. Measurement Parameters and Methods
2.3. Mobile Measurement
2.3.1. Mobile Route
2.3.2. Mobile Testing Scheme
2.3.3. Correlation Analysis
2.3.4. Temporal Corrections for Mobile Data
2.3.5. ArcGIS Spatial Visualization
3. Results
3.1. Heat Rejection from Air-Conditioning Systems
3.2. Correlation Analysis Between Air-Conditioning Heat Rejection and the Neighborhood Environment
3.3. Temperature and Humidity Data with Spatiotemporal Correction
3.4. Temperature and Humidity Distribution Along the Mobility Routes
3.5. Spatial Distribution of Temperature and Humidity
4. Discussion
4.1. The Impact of Air-Conditioning Heat Rejection and the Underlying Surfaces
4.2. Improving the Urban Thermal Environment
4.3. Limitations and Prospects
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sharmin, T.; Chappell, A.; Lannon, S. Spatio-temporal analysis of LST, NDVI and SUHI in a coastal temperate city using local climate zone. Energy Built Environ. 2024. [Google Scholar] [CrossRef]
- Kou, Y.; Xian, D.; Liu, Y.; Chen, J.; Wang, C.; Cheng, B.; Guo, W.; Li, Y.; Tang, L. Factors affecting urban climate at different times of the day in China: A case study in Yibin, a riverside mountain city. Nat.-Based Solut. 2022, 2, 100043. [Google Scholar] [CrossRef]
- Yuan, C.; Adelia, A.S.; Mei, S.; He, W.; Li, X.-X.; Norford, L. Mitigating intensity of urban heat island by better understanding on urban morphology and anthropogenic heat dispersion. Build. Environ. 2020, 176, 106876. [Google Scholar] [CrossRef]
- He, W.; Li, X.-X.; Zhang, X.; Yin, T.; Norford, L.K.; Yuan, C. Estimation of anthropogenic heat from buildings based on various data sources in Singapore. Urban Clim. 2023, 49, 101434. [Google Scholar] [CrossRef]
- Chen, W.; Zhou, Y.; Xie, Y.; Chen, G.; Ding, K.J.; Li, D. Estimating spatial and temporal patterns of urban building anthropogenic heat using a bottom-up city building heat emission model. Resour. Conserv. Recycl. 2022, 177, 105996. [Google Scholar] [CrossRef]
- Lu, S.; Qi, Y.; Cai, Z.; Li, Y. Optimization model analysis of centralized groundwater source heat pump system in heating season. Front. Energy 2015, 9, 343–361. [Google Scholar] [CrossRef]
- Cui, J.; Xie, L.; Zheng, X. Climate change, air conditioning, and urbanization—Evidence from daily household electricity consumption data in China. Clim. Chang. 2023, 176, 106. [Google Scholar] [CrossRef]
- Chen, Q.; Yang, X.; Ouyang, Z.; Zhao, N.; Jiang, Q.; Ye, T.; Qi, J.; Yue, W. Estimation of anthropogenic heat emissions in China using Cubist with points-of-interest and multisource remote sensing data. Environ. Pollut. 2020, 266, 115183. [Google Scholar] [CrossRef]
- Hsieh, C.-M.; Aramaki, T.; Hanaki, K. The feedback of heat rejection to air conditioning load during the nighttime in subtropical climate. Energy Build. 2007, 39, 1175–1182. [Google Scholar] [CrossRef]
- Sun, Y.; Augenbroe, G. Urban heat island effect on energy application studies of office buildings. Energy Build. 2014, 77, 171–179. [Google Scholar] [CrossRef]
- Liu, K.; Du, Y.; Chen, W.; Wu, X. Simulation of interaction between high-temperature process and heat emission from electricity system in summer. Glob. Energy Interconnect. 2022, 5, 692–702. [Google Scholar] [CrossRef]
- Yang, L.; Qian, F.; Song, D.-X.; Zheng, K.-J. Research on urban heat-island effect. Procedia Eng. 2016, 169, 11–18. [Google Scholar] [CrossRef]
- Toparlar, Y.; Blocken, B.; Maiheu, B.; van Heijst, G.J.F. A review on the CFD analysis of urban microclimate. Renew. Sustain. Energy Rev. 2017, 80, 1613–1640. [Google Scholar] [CrossRef]
- Wetherley, E.B.; Roberts, D.A.; Tague, C.L.; Jones, C.; Quattrochi, D.A.; McFadden, J.P. Remote sensing and energy balance modeling of urban climate variability across a semi-arid megacity. Urban Clim. 2021, 35, 100757. [Google Scholar] [CrossRef]
- Meng, F.; Ren, G.; Zhang, R. Impacts of UHI on Heating and Cooling Loads in Residential Buildings in Cities of Different Sizes in Beijing–Tianjin–Hebei Region in China. Atmosphere 2023, 14, 1193. [Google Scholar] [CrossRef]
- Tariku, F.; Gharib Mombeni, A. ANN-Based Method for Urban Canopy Temperature Prediction and Building Energy Simulation with Urban Heat Island Effect in Consideration. Energies 2023, 16, 5335. [Google Scholar] [CrossRef]
- Zhong, X.; Cai, M.; Wang, Z.; Zhang, Z.; Zhang, R. Influences of Heat Rejection from Split A/C Conditioners on Mixed-Mode Buildings: Energy Use and Indoor Air Pollution Exposure Analysis. Buildings 2024, 14, 318. [Google Scholar] [CrossRef]
- Kousis, I.; Pigliautile, I.; Pisello, A.L. Intra-urban microclimate investigation in urban heat island through a novel mobile monitoring system. Sci. Rep. 2021, 11, 9732. [Google Scholar] [CrossRef]
- Senthilnathan, S. Usefulness of Correlation Analysis. 2019. Available online: https://ssrn.com/abstract=3416918 (accessed on 12 January 2025).
- Liu, L.; Pan, X.; Jin, L.; Liu, L.; Liu, J. Association analysis on spatiotemporal characteristics of block-scale urban thermal environments based on a field mobile survey in Guangzhou, China. Urban Clim. 2022, 42, 101131. [Google Scholar] [CrossRef]
- Getis, A.; Ord, J.K. The analysis of spatial association by use of distance statistics. Geogr. Anal. 1992, 24, 189–206. [Google Scholar] [CrossRef]
- Dobesch, H.; Dumolard, P.; Dyras, I. Spatial Interpolation for Climate Data: The Use of GIS in Climatology and Meteorology; John Wiley & Sons: Hoboken, NJ, USA, 2013. [Google Scholar]
- Ohashi, Y.; Genchi, Y.; Kondo, H.; Kikegawa, Y.; Yoshikado, H.; Hirano, Y. Influence of air-conditioning waste heat on air temperature in Tokyo during summer: Numerical experiments using an urban canopy model coupled with a building energy model. J. Appl. Meteorol. Climatol. 2007, 46, 66–81. [Google Scholar] [CrossRef]
- Salamanca, F.; Georgescu, M.; Mahalov, A.; Moustaoui, M.; Wang, M. Anthropogenic heating of the urban environment due to air conditioning. J. Geophys. Res. Atmos. 2014, 119, 5949–5965. [Google Scholar] [CrossRef]
- Jin, L.; Schubert, S.; Hefny Salim, M.; Schneider, C. Impact of air conditioning systems on the outdoor thermal environment during summer in Berlin, Germany. Int. J. Environ. Res. Public Health 2020, 17, 4645. [Google Scholar] [CrossRef] [PubMed]
- Mishra, B.; Srivastava, A.; Yadav, L. Performance analysis of cooling tower using desiccant. Heat Mass Transf. 2020, 56, 1153–1169. [Google Scholar] [CrossRef]
- Han, M.; Chen, H. Effect of external air-conditioner units’ heat release modes and positions on energy consumption in large public buildings. Build. Environ. 2017, 111, 47–60. [Google Scholar] [CrossRef]
- Mori, H.; Kubota, T.; Antaryama, I.G.N.; Ekasiwi, S.N.N. Analysis of window-opening patterns and air conditioning usage of urban residences in tropical southeast Asia. Sustainability 2020, 12, 10650. [Google Scholar] [CrossRef]
- Liu, M.; Zhai, Y.; Qiu, X.; Xie, X.; Liu, Z.; Zhu, L.; Lei, Y.; Li, Z. Air-conditioning usage behaviour of the elderly in caring home during the extremely hot summer period: An evidence in Chongqing. Build. Environ. 2023, 244, 110828. [Google Scholar] [CrossRef]
- Lai, S.; Zhao, Y.; Fan, Y.; Ge, J. Characteristics of daytime land surface temperature in wind corridor: A case study of a hot summer and warm winter city. J. Build. Eng. 2021, 44, 103370. [Google Scholar] [CrossRef]
- Jian, L.; Xia, X.; Wang, Y.; Liu, X.; Zhang, Y.; Yang, Q. Spatiotemporal dynamic relationships and simulation of urban spatial form changes and land surface temperature: A case study in Chengdu, China. Front. Public Health 2024, 12, 1357624. [Google Scholar] [CrossRef]
- Zhang, J.; Zhu, G.; Yin, J.; Ma, J.; Kong, X. Analysis of summer high temperature observations based on different sub surfaces. Earth Sci. Inform. 2024, 17, 5095–5105. [Google Scholar] [CrossRef]
- Wang, Y.; Ouyang, W.; Zhan, Q.; Zhang, L. The cooling effect of an urban river and its interaction with the littoral built environment in mitigating heat stress: A mobile measurement study. Sustainability 2022, 14, 11700. [Google Scholar] [CrossRef]
- Schulze, C.; Raabe, B.; Herrmann, C.; Thiede, S. Environmental impacts of cooling tower operations–The influence of regional conditions on energy and water demands. Procedia CIRP 2018, 69, 277–282. [Google Scholar] [CrossRef]
- Wang, Y.; Li, Y.; Sabatino, S.D.; Martilli, A.; Chan, P. Effects of anthropogenic heat due to air-conditioning systems on an extreme high temperature event in Hong Kong. Environ. Res. Lett. 2018, 13, 034015. [Google Scholar] [CrossRef]
- Aram, F.; García, E.H.; Solgi, E.; Mansournia, S. Urban green space cooling effect in cities. Heliyon 2019, 5, e01339. [Google Scholar] [CrossRef] [PubMed]
- Xie, Q.; Ren, L.; Yang, C. Regulation of water bodies to urban thermal environment: Evidence from Wuhan, China. Front. Ecol. Evol. 2023, 11, 983567. [Google Scholar] [CrossRef]
- Xu, H.; Sheng, K.; Gao, J. Mitigation of heat island effect by green stormwater infrastructure: A comparative study between two diverse green spaces in Nanjing. Front. Ecol. Evol. 2023, 11, 1307756. [Google Scholar] [CrossRef]
- Zhou, W.; Wu, T.; Tao, X. Exploring the spatial and seasonal heterogeneity of cooling effect of an urban river on a landscape scale. Sci. Rep. 2024, 14, 8327. [Google Scholar] [CrossRef]
- Österreicher, D.; Sattler, S. Maintaining comfortable summertime indoor temperatures by means of passive design measures to mitigate the urban heat island effect—A sensitivity analysis for residential buildings in the City of Vienna. Urban Sci. 2018, 2, 66. [Google Scholar] [CrossRef]
- Wang, S.; Wang, Z.; Zhang, Y.; Fan, Y. Characteristics of urban heat island in China and its influences on building energy consumption. Appl. Sci. 2022, 12, 7678. [Google Scholar] [CrossRef]
- Kolokotsa, D.; Lilli, K.; Gobakis, K.; Mavrigiannaki, A.; Haddad, S.; Garshasbi, S.; Mohajer, H.R.H.; Paolini, R.; Vasilakopoulou, K.; Bartesaghi, C. Analyzing the impact of urban planning and building typologies in urban heat island mitigation. Buildings 2022, 12, 537. [Google Scholar] [CrossRef]
- Li, Y.; Schubert, S.; Kropp, J.P.; Rybski, D. On the influence of density and morphology on the Urban Heat Island intensity. Nat. Commun. 2020, 11, 2647. [Google Scholar] [CrossRef] [PubMed]
- Lamrani, B.; El Marbet, S.; Rehman, T.-u.; Kousksou, T. Comprehensive analysis of waste heat recovery and thermal energy storage integration in air conditioning systems. Energy Convers. Manag. X 2024, 24, 100708. [Google Scholar] [CrossRef]
- Zheng, Z.; Cao, J. Thermodynamic and feasibility analysis of air conditioning waste heat recovery via power generation cycles. Energy Rep. 2020, 6, 3472–3490. [Google Scholar] [CrossRef]
Region | 10:00 | 14:00 | 17:00 | 20:00 | Average |
---|---|---|---|---|---|
Zone 1 | 1.6 | 1.9 | 1.9 | 1.9 | 1.8 |
Zone 2 | 1.9 | 2.21 | 1.9 | 2.3 | 2.0 |
Zone 3 | 2.2 | 2.3 | 2.2 | 2.5 | 2.3 |
Zone 4 | 1.7 | 1.8 | 1.8 | 1.8 | 1.8 |
Zone 5 | 2.2 | 2.4 | 2.2 | 2.6 | 2.4 |
Zone 6 | 2.2 | 2.5 | 2.2 | 2.6 | 2.4 |
Zone 7 | 1.9 | 2.2 | 1.9 | 2.4 | 2.1 |
Zone 8 | 2.0 | 2.2 | 1.9 | 2.4 | 2.1 |
Zone 9 | 1.0 | 1.1 | 1.1 | 1.1 | 1.1 |
Zone 10 | −0.6 | −1.0 | −0.9 | −0.5 | −0.8 |
Average | 1.6 | 1.8 | 1.6 | 1.9 |
Region | 10:00 | 14:00 | 17:00 | 20:00 | Average |
---|---|---|---|---|---|
Zone 1 | −3.2 | −3.9 | −3.2 | −4.2 | −3.6 |
Zone 2 | −3.7 | −4.0 | −3.8 | −4.5 | −4.0 |
Zone 3 | −4.5 | −4.7 | −4.4 | −5.0 | −4.7 |
Zone 4 | −3.6 | −3.6 | −3.7 | −4.1 | −3.8 |
Zone 5 | −4.5 | −4.8 | −4.4 | −5.6 | −4.8 |
Zone 6 | −4.4 | −5.1 | −4.3 | −5.3 | −4.8 |
Zone 7 | −3.9 | −4.0 | −3.8 | −5.2 | −4.2 |
Zone 8 | −3.9 | −4.4 | −3.8 | −5.2 | −4.3 |
Zone 9 | −1.9 | −1.6 | −1.8 | −1.9 | −1.8 |
Zone 10 | 4.6 | 5.2 | 5.0 | 4.3 | 4.8 |
Average | −2.9 | −3.1 | −2.8 | −3.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mu, K.; Suo, Q.; Ding, F.; Jiang, C.; Zhang, X.; Ye, J. Field Measurements of Building Air-Conditioning Heat Rejection and the Thermal Environment in Urban Areas. Atmosphere 2025, 16, 100. https://doi.org/10.3390/atmos16010100
Mu K, Suo Q, Ding F, Jiang C, Zhang X, Ye J. Field Measurements of Building Air-Conditioning Heat Rejection and the Thermal Environment in Urban Areas. Atmosphere. 2025; 16(1):100. https://doi.org/10.3390/atmos16010100
Chicago/Turabian StyleMu, Kang, Qiong Suo, Fangliang Ding, Changwei Jiang, Xiaofeng Zhang, and Jing Ye. 2025. "Field Measurements of Building Air-Conditioning Heat Rejection and the Thermal Environment in Urban Areas" Atmosphere 16, no. 1: 100. https://doi.org/10.3390/atmos16010100
APA StyleMu, K., Suo, Q., Ding, F., Jiang, C., Zhang, X., & Ye, J. (2025). Field Measurements of Building Air-Conditioning Heat Rejection and the Thermal Environment in Urban Areas. Atmosphere, 16(1), 100. https://doi.org/10.3390/atmos16010100