Air Quality Assessment in Six Major Greek Cities with an Emphasis on the Athens Metropolitan Region
Abstract
:1. Introduction
2. Data and Methodology
2.1. Air Pollution Data
2.2. Methodology
2.2.1. Calculation of Daily Air Quality Index for Common Pollutants
2.2.2. Estimation of Inhalation Cancer Risk (ICR) for Benzene
2.2.3. Pollution Roses and the Conditional Probability Function (CPF)
2.2.4. Potential Source Contribution Function (PSCF)
3. Results and Discussion
3.1. Air Quality Assessment in the Six Studied Greek Cities
3.1.1. Concentrations of Regulated Air Pollutants
3.1.2. The AQI for Common Pollutants
3.1.3. ICR for Benzene
3.2. The Effect of Wind Patterns and Air Mass Origin on PM Concentrations in Athens
3.2.1. Pollution Roses and CPF
3.2.2. PSCF Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lelieveld, J.; Berresheim, H.; Borrmann, S.; Crutzen, P.J.; Dentener, F.J.; Fischer, H.; Feichter, J.; Flatau, P.J.; Heland, J.; Holzinger, R.; et al. Global Air Pollution Crossroads over the Mediterranean. Science 2002, 298, 794–799. [Google Scholar] [CrossRef]
- Papadimas, C.D.; Hatzianastassiou, N.; Mihalopoulos, N.; Kanakidou, M.; Katsoulis, B.D.; Vardavas, I. Assessment of the MODIS Collections C005 and C004 aerosol optical depth products over the Mediterranean basin. Atmos. Chem. Phys. 2009, 9, 2987–2999. [Google Scholar] [CrossRef]
- Kouvarakis, G.; Vrekoussis, M.; Mihalopoulos, Ν.; Kourtidis, K.; Rappengluck, B.; Gerasopoulos, E.; Zerefos, C. Spatial and temporal variability of tropospheric ozone (O3) in the boundary layer above the Aegean Sea (Eastern Mediterranean). J. Geophys. Res. 2002, 107, 8137. [Google Scholar] [CrossRef]
- Kleanthous, S.; Vrekoussis, M.; Mihalopoulos, N.; Kalabokas, P.; Lelieveld, J. On the temporal and spatial variation of ozone in Cyprus. Sci. Total Environ. 2014, 476–477, 677–687. [Google Scholar] [CrossRef]
- Psistaki, K.; Achilleos, S.; Middleton, N.; Paschalidou, A.K. Exploring the impact of particulate matter on mortality in coastal Mediterranean environments. Sci. Total Environ. 2023, 865, 161147. [Google Scholar] [CrossRef]
- Neophytou, A.M.; Yiallouros, P.; Coull, B.A.; Kleanthous, S.; Pavlou, P.; Pashiardis, S.; Dockery, D.W.; Koutrakis, P.; Laden, F. Particulate matter concentrations during desert dust outbreaks and daily mortality in Nicosia, Cyprus. J. Expo. Sci. Environ. Epidemiol. 2013, 23, 275–280. [Google Scholar] [CrossRef]
- Çapraz, Ö.; Deniz, A. Assessment of hospitalizations from asthma, chronic obstructive pulmonary disease and acute bronchitis in relation to air pollution in İstanbul, Turkey. Sustain. Cities Soc. 2021, 72, 103040. [Google Scholar] [CrossRef]
- Viana, M.; Rizza, V.; Tobías, A.; Carr, E.; Corbett, J.; Sofiev, M.; Karanasiou, A.; Buonanno, G.; Fann, N. Estimated health impacts from maritime transport in the Mediterranean region and benefits from the use of cleaner fuels. Environ. Int. 2020, 138, 105670. [Google Scholar] [CrossRef]
- Tzima, K.; Analitis, A.; Katsouyanni, K.; Samoli, E. Has the risk of mortality related to short-term exposure to particles changed over the past years in Athens, Greece? Environ. Int. 2018, 113, 306–312. [Google Scholar] [CrossRef]
- Dimakopoulou, K.; Gryparis, A.; Katsouyanni, K. Using spatio-temporal land use regression models to address spatial variation in air pollution concentrations in time series studies. Air Qual. Atmos. Health 2017, 10, 1139–1149. [Google Scholar] [CrossRef]
- Rodopoulou, S.; Katsouyanni, K.; Lagiou, P.; Samoli, E. Assessing the cumulative health effect following short term exposure to multiple pollutants: An evaluation of methodological approaches using simulations and real data. Environ. Res. 2018, 165, 228–234. [Google Scholar] [CrossRef]
- Parliari, D.; Giannaros, C.; Papadogiannaki, S.; Melas, D. Short-Term Effects of Air Pollution on Mortality in the Urban Area of Thessaloniki, Greece. Sustainability 2023, 15, 5305. [Google Scholar] [CrossRef]
- Directive 2008/50/EC of the European Parliament and of the Council of 21 May 2008 on Ambient Air Quality and Cleaner Air for Europe. Available online: https://eur-lex.europa.eu/eli/dir/2008/50/oj (accessed on 20 March 2024).
- Moustris, K.P.; Proias, G.T.; Larissi, I.K.; Nastos, P.T.; Koukouletsos, K.V.; Paliatsos, A.G. Health impacts due to particulate air pollution in Volos City, Greece. J. Environ. Sci. Health Part A 2016, 51, 15–20. [Google Scholar] [CrossRef] [PubMed]
- Kasdagli, M.-I.; Katsouyanni, K.; de Hoogh, K.; Lagiou, P.; Samoli, E. Associations of air pollution and greenness with mortality in Greece: An ecological study. Environ. Res. 2021, 196, 110348. [Google Scholar] [CrossRef]
- Kasdagli, M.-I.; Katsouyanni, K.; de Hoogh, K.; Lagiou, P.; Samoli, E. Investigating the association between long-term exposure to air pollution and greenness with mortality from neurological, cardio-metabolic and chronic obstructive pulmonary diseases in Greece. Environ. Pollut. 2022, 292, 118372. [Google Scholar] [CrossRef] [PubMed]
- Ntourou, K.; Fameli, K.-M.; Moustris, K.; Manousakis, N.; Tsitsis, C. Trends of the Global Burden of Disease Linked to Ground-Level Ozone Pollution: A 30-Year Analysis for the Greater Athens Area, Greece. Atmosphere 2024, 15, 380. [Google Scholar] [CrossRef]
- Murena, F. Measuring air quality over large urban areas: Development and application of an air pollution index at the urban area of Naples. Atmos. Environ. 2004, 38, 6195–6202. [Google Scholar] [CrossRef]
- Mayer, H.; Makra, L.; Kalberlah, F.; Ahrens, D.; Reuter, U. Air stress and air quality indices. Meteorol. Z. 2004, 13, 395–403. [Google Scholar] [CrossRef]
- Shen, F.; Ge, X.; Hu, J.; Nie, D.; Tian, L.; Chen, M. Air pollution characteristics and health risks in Henan Province, China. Environ. Res. 2017, 156, 625–634. [Google Scholar] [CrossRef]
- Kassomenos, P.A.; Flocas, H.A.; Lykoudis, S.; Skouloudis, A. Spatial and temporal characteristics of the relationship between air quality status and mesoscale circulation over an urban Mediterranean basin. Sci. Total Environ. 1998, 217, 37–57. [Google Scholar] [CrossRef]
- Stergiopoulou, A.; Katavoutas, G.; Samoli, E.; Dimakopoulou, K.; Papageorgiou, I.; Karagianni, P.; Flocas, H.; Katsouyanni, K. Assessing the associations of daily respiratory symptoms and lung function in schoolchildren using an Air Quality Index for ozone: Results from the RESPOZE panel study in Athens, Greece. Sci. Total Environ. 2018, 633, 492–499. [Google Scholar] [CrossRef] [PubMed]
- Dimitriou, K.; Liakakou, E.; Lianou, M.; Psiloglou, B.; Kassomenos, P.; Mihalopoulos, N.; Gerasopoulos, E. Implementation of an aggregate index to elucidate the influence of atmospheric synoptic conditions on air quality in Athens, Greece. Air Qual. Atmos. Health 2020, 13, 447–458. [Google Scholar] [CrossRef]
- Pateraki, S.; Fameli, K.-M.; Assimakopoulos, V.; Bairachtari, K.; Zagkos, A.; Stavraka, T.; Bougiatioti, A.; Maggos, T.; Mihalopoulos, N. Differentiation of the Athens fine PM profile during economic recession (March of 2008 versus March of 2013): Impact of changes in anthropogenic emissions and the associated health effect. Atmosphere 2020, 11, 1121. [Google Scholar] [CrossRef]
- Kassomenos, P.A.; Kelessis, A.; Petrakakis, M.; Zoumakis, N.; Christidis, T.; Paschalidou, A.K. Air quality assessment in a heavily polluted urban Mediterranean environment through air quality indices. Ecol. Indic. 2012, 18, 259–268. [Google Scholar] [CrossRef]
- Mavrakis, A.; Spanou, A.; Pantavou, K.; Katavoutas, G.; Theoharatos, G.; Christides, A.; Verouti, E. Biometeorological and air quality assessment in an industrialized area of eastern Mediterranean: The Thriassion Plain, Greece. Int. J. Biometeorol. 2012, 56, 737–747. [Google Scholar] [CrossRef]
- Poupkou, A.; Nastos, P.; Melas, D.; Zerefos, C. Climatology of Discomfort Index and Air Quality Index in a Large Urban Mediterranean Agglomeration. Water Air Soil Pollut. 2011, 222, 163–183. [Google Scholar] [CrossRef]
- Papanastasiou, D.K.; Melas, D.; Kambezidis, H.D. Air quality and thermal comfort levels under extreme hot weather. Atmos. Res. 2015, 152, 4–13. [Google Scholar] [CrossRef]
- Papanikolaou, C.-A.; Papayannis, A.; Mylonaki, M.; Foskinis, R.; Kokkalis, P.; Liakakou, E.; Stavroulas, I.; Soupiona, O.; Hatzianastassiou, N.; Gavrouzou, M.; et al. Vertical Profiling of Fresh Biomass Burning Aerosol Optical Properties over the Greek Urban City of Ioannina, during the PANACEA Winter Campaign. Atmosphere 2022, 13, 94. [Google Scholar] [CrossRef]
- Dimitriou, K.; Stavroulas, I.; Grivas, G.; Chatzidiakos, C.; Kosmopoulos, G.; Kazantzidis, A.; Kourtidis, K.; Karagioras, A.; Hatzianastassiou, N.; Pandis, S.Ν.; et al. Intra- and inter-city variability of PM2.5 concentrations in Greece as determined with a low-cost sensor network. Atmos. Environ. 2023, 301, 119713. [Google Scholar] [CrossRef]
- Evagelopoulos, V.; Begou, P.; Zoras, S. In-Depth Study of PM2.5 and PM10 Concentrations over a 12-Year Period and Their Elemental Composition in the Lignite Center of Western Macedonia, Greece. Atmosphere 2022, 13, 1900. [Google Scholar] [CrossRef]
- Pavloudakis, F.; Sachanidis, C.; Roumpos, C. The Effects of Surface Lignite Mines Closure on the Particulates Concentrations in the Vicinity of Large-Scale Extraction Activities. Minerals 2022, 12, 347. [Google Scholar] [CrossRef]
- Kyrkilis, G.; Chaloulakou, A.; Kassomenos, P.A. Development of an aggregate Air Quality Index for an urban Mediterranean agglomeration: Relation to potential health effects. Environ. Int. 2007, 33, 670–676. [Google Scholar] [CrossRef] [PubMed]
- Kirešová, S.; Guzan, M. Determining the Correlation between Particulate Matter PM10 and Meteorological Factors. Eng 2022, 3, 343–363. [Google Scholar] [CrossRef]
- Paraskevopoulou, D.; Liakakou, E.; Gerasopoulos, E.; Theodosi, C.; Mihalopoulos, N. Long-term characterization of organic and elemental carbon in the PM2.5 fraction: The case of Athens, Greece. Atmos. Chem. Phys. 2014, 14, 13313–13325. [Google Scholar] [CrossRef]
- Dörter, M.; Mağat-Türk, E.; Döğeroğlu, T.; Özden-Üzmez, Ö.; Gaga, E.O.; Karakaş, D.; Yenisoy-Karakaş, S. An assessment of spatial distribution and atmospheric concentrations of ozone, nitrogen dioxide, sulfur dioxide, benzene, toluene, ethylbenzene, and xylenes: Ozone formation potential and health risk estimation in Bolu city of Turkey. Environ. Sci. Pollut. Res. 2022, 29, 53569–53583. [Google Scholar] [CrossRef]
- Guo, H.; Lee, S.C.; Chan, L.Y.; Li, W.M. Risk assessment of exposure to volatile organic compounds in different indoor environments. Environ. Res. 2004, 94, 57–66. [Google Scholar] [CrossRef]
- Dimitriou, K.; Kassomenos, P. Background concentrations of benzene, potential long range transport influences and corresponding cancer risk in four cities of central Europe, in relation to air mass origination. J. Environ. Manag. 2020, 262, 110374. [Google Scholar] [CrossRef]
- USEPA-IRIS. 2015. Available online: https://cfpub.epa.gov/ncea/iris2/atoz.cfm (accessed on 16 June 2020).
- Vesilind, P.A.; Morgan, S.M.; Heine, L.G. Introduction to Environmental Engineering, 3rd ed.; Cengage Learning: Singapore, 2010. [Google Scholar]
- Lee, G.; KIM, M.; Park, D.; Yoo, C. Fine Particulate Matter (PM2.5) Sources and Its Individual Contribution Estimation Using a Positive Matrix Factorization Model. Toxics 2023, 11, 69. [Google Scholar] [CrossRef]
- Siregar, S.; Idiawati, N.; Lestari, P.; Berekute, A.K.; Pan, W.-C.; Yu, K.-P. Chemical Composition, Source Appointment and Health Risk of PM2.5 and PM2.5-10 during Forest and Peatland Fires in Riau, Indonesia. Aerosol. Air Qual. Res. 2022, 22, 220015. [Google Scholar] [CrossRef]
- Feng, Y.; An, J.; Tang, G.; Zhang, Y.; Wang, J.; Lv, H. Characteristics and Sources of Volatile Organic Compounds in the Nanjing Industrial Area. Atmosphere 2022, 13, 1136. [Google Scholar] [CrossRef]
- Fang, B.; Zeng, H.; Zhang, L.; Wang, H.; Liu, J.; Hao, K.; Zheng, G.; Wang, M.; Wang, Q.; Yang, W. Toxic metals in outdoor/indoor airborne PM2.5 in port city of Northern, China: Characteristics, sources, and personal exposure risk assessment. Environ. Pollut. 2021, 279, 116937. [Google Scholar] [CrossRef]
- Ali-Taleshi, M.S.; Riyahi Bakhtiari, A.; Masiol, M. The possible emission sources and atmospheric photochemical processes of air pollutants in Tehran, Iran: The role of micrometeorological factors on the air quality. Air Qual. Atmos. Health 2024, 17, 525–539. [Google Scholar] [CrossRef]
- Yang, J.; Fu, X.; Qiao, L.; Yao, L.; Zhang, F.; Li, W. Characteristics of Atmospheric Pollution in a Chinese Megacity: Insights from Three Different Functional Areas. Sustainability 2023, 15, 2429. [Google Scholar] [CrossRef]
- Liu, H.; Jia, M.; You, K.; Wang, J.; Tao, J.; Liu, H.; Zhang, R.; Li, L.; Xu, M.; Ren, Y.; et al. Elucidating the Chemical Compositions and Source Apportionment of Multi-Size Atmospheric Particulate (PM10, PM2.5 and PM1) in 2019–2020 Winter in Xinxiang, North China. Atmosphere 2022, 13, 1400. [Google Scholar] [CrossRef]
- Kong, X.; He, W.; Qin, N.; He, Q.; Yang, B.; Ouyang, H.; Wang, Q.; Xu, F. Comparison of transport pathways and potential sources of PM10 in two cities around a large Chinese lake using the modified trajectory analysis. Atmos. Res. 2013, 122, 284–297. [Google Scholar] [CrossRef]
- Rolph, G.; Stein, A.; Stunder, B. Real-time Environmental Applications and Display system: READY. Environ. Model. Softw. 2017, 95, 210–228. [Google Scholar] [CrossRef]
- Stein, A.F.; Draxler, R.R.; Rolph, G.D.; Stunder, B.J.B.; Cohen, M.D.; Ngan, F. NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bull. Am. Meteorol. Soc. 2015, 96, 2059–2077. [Google Scholar] [CrossRef]
- Petroselli, C.; Crocchianti, S.; Vecchiocattivi, M.; Moroni, B.; Selvaggi, R.; Castellini, S.; Corbucci, I.; Bruschi, F.; Marchetti, E.; Galletti, M.; et al. Decadal trends (2009–2018) in Saharan dust transport at Mt. Martano EMEP station, Italy. Atmos. Res. 2024, 304, 107364. [Google Scholar] [CrossRef]
- Liu, B.; Liang, D.; Yang, J.; Dai, Q.; Bi, X.; Feng, Y.; Yuan, J.; Xiao, Z.; Zhang, Y.; Xu, H. Characterization and source apportionment of volatile organic compounds based on 1-year of observational data in Tianjin, China. Environ. Pollut. 2016, 218, 757–769. [Google Scholar] [CrossRef]
- Peng, X.; Liu, M.; Zhang, Y.; Meng, Z.; Achal, V.; Zhou, T.; Long, L.; She, Q. The characteristics and local-regional contributions of atmospheric black carbon over urban and suburban locations in Shanghai, China. Environ. Pollut. 2019, 255, 113188. [Google Scholar] [CrossRef]
- Hilario, M.R.A.; Cruz, M.T.; Bañaga, P.A.; Betito, G.; Braun, R.A.; Stahl, C.; Cambaliza, M.O.; Lorenzo, G.R.; MacDonald, A.B.; AzadiAghdam, M.; et al. Characterizing Weekly Cycles of Particulate Matter in a Coastal Megacity: The Importance of a Seasonal, Size-Resolved, and Chemically Speciated Analysis. J. Geophys. Res. Atmos. 2020, 125, e2020JD032614. [Google Scholar] [CrossRef]
- Dimitriou, K.; Tsagkaraki, M.; Tavernaraki, K.; Papoutsidaki, K.; Malandraki, M.A.; Petrinoli, K.; Liakakou, E.; Bougiatioti, A.; Mihalopoulos, N. The effect of mixed layer across air mass trajectory pathways on PM2.5 constituent levels: The case of a major urban center in the Eastern Mediterranean. Atmos. Pollut. Res. 2024, 15, 102129. [Google Scholar] [CrossRef]
- Desservettaz, M.; Pikridas, M.; Stavroulas, I.; Bougiatioti, A.; Liakakou, E.; Hatzianastassiou, N.; Sciare, J.; Mihalopoulos, N.; Bourtsoukidis, E. Emission of volatile organic compounds from residential biomass burning and their rapid chemical transformations. Sci. Total Environ. 2023, 903, 166592. [Google Scholar] [CrossRef] [PubMed]
- Kaskaoutis, D.G.; Grivas, G.; Oikonomou, K.; Tavernaraki, P.; Papoutsidaki, K.; Tsagkaraki, M.; Stavroulas, I.; Zarmpas, P.; Paraskevopoulou, D.; Bougiatioti, A.; et al. Impacts of severe residential wood burning on atmospheric processing, water-soluble organic aerosol and light absorption, in an inland city of Southeastern Europe. Atmos. Environ. 2022, 280, 119139. [Google Scholar] [CrossRef]
- Kaskaoutis, D.G.; Grivas, G.; Theodosi, C.; Tsagkaraki, M.; Paraskevopoulou, D.; Stavroulas, I.; Liakakou, E.; Gkikas, A.; Hatzianastassiou, N.; Wu, C.; et al. Carbonaceous aerosols in contrasting atmospheric environments in Greek cities: Evaluation of the EC-tracer methods for secondary organic carbon estimation. Atmosphere 2020, 11, 161. [Google Scholar] [CrossRef]
- Monteiro, A.; Rodrigues, V.; Picado, A.; Dias, J.M.; Abrantes, N.; Ré, A.; Rosa, M.; Russo, M.; Barreirinha, A.; Potiris, M.; et al. Holistic evaluation of the environmental impacts of shipping in the sensitive region of Ria de Aveiro. Sci. Total Environ. 2024, 946, 174314. [Google Scholar] [CrossRef]
- Chevet, E.; Boiron, O.; Anselmet, F. Modeling of air pollution due to marine traffic in Marseille. Atmos. Environ. 2024, 329, 120542. [Google Scholar] [CrossRef]
- Georgoulias, A.K.; Balis, D.; Koukouli, M.E.; Meleti, C.; Bais, A.; Zerefos, C. A study of the total atmospheric sulfur dioxide load using ground-based measurements and the satellite derived Sulfur Dioxide Index. Atmos. Environ. 2009, 43, 1693–1701. [Google Scholar] [CrossRef]
- Kaskaoutis, D.G.; Petrinoli, K.; Grivas, G.; Kalkavouras, P.; Tsagkaraki, M.; Tavernaraki, K.; Papoutsidaki, K.; Stavroulas, I.; Paraskevopoulou, D.; Bougiatioti, A.; et al. Impact of peri-urban forest fires on air quality and aerosol optical and chemical properties: The case of the August 2021 wildfires in Athens, Greece. Sci. Total Environ. 2024, 907, 168028. [Google Scholar] [CrossRef]
- Mylonaki, M.; Gini, M.; Georgopoulou, M.; Pilou, M.; Chalvatzaki, E.; Solomos, S.; Diapouli, E.; Giannakaki, E.; Lazaridis, M.; Pandis, S.N.; et al. Wildfire and African dust aerosol oxidative potential, exposure and dose in the human respiratory tract. Sci. Total Environ. 2024, 913, 169683. [Google Scholar] [CrossRef]
- Conte, M.; Merico, E.; Cesari, D.; Dinoi, A.; Grasso, F.M.; Donateo, A.; Guascito, M.R.; Contini, D. Long-term characterisation of African dust advection in south-eastern Italy: Influence on fine and coarse particle concentrations, size distributions, and carbon content. Atmos. Res. 2020, 233, 104690. [Google Scholar] [CrossRef]
- Titos, G.; Ealo, M.; Pandolfi, M.; Pérez, N.; Sola, Y.; Sicard, M.; Comerón, A.; Querol, X.; Alastuey, A. Spatiotemporal evolution of a severe winter dust event in the western Mediterranean: Aerosol optical and physical properties. J. Geophys. Res. 2017, 122, 4052–4069. [Google Scholar] [CrossRef]
- Gini, M.; Manousakas, M.; Karydas, A.G.; Eleftheriadis, K. Mass size distributions, composition and dose estimates of particulate matter in Saharan dust outbreaks. Environ. Pollut. 2022, 298, 118768. [Google Scholar] [CrossRef] [PubMed]
- Chalvatzaki, E.; Chatoutsidou, S.E.; Kopanakis, I.; Melas, D.; Parliari, D.; Mihalopoulos, N.; Lazaridis, M. Personal deposited dose and its influencing factors at several Greek sites: An analysis in respect to seasonal and diurnal variations. Environ. Sci. Pollut. Res. 2021, 28, 29276–29286. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, S.; Pandithurai, G.; Waghmare, V.; Mahajan, A.S.; Tinel, L.; Aslam, M.Y.; Meena, G.S.; Patil, S.; Buchunde, P.; Kumar, A. Seasonal variability of volatile organic compounds (VOCs) at a high-altitude station in the Western Ghats, India: Influence of biogenic, anthropogenic emissions and long-range transport. Atmos. Environ. 2024, 331, 120598. [Google Scholar] [CrossRef]
- Singh, R.; Sinha, B.; Hakkim, H.; Sinha, V. Source apportionment of volatile organic compounds during paddy-residue burning season in north-west India reveals large pool of photochemically formed air toxics. Environ. Pollut. 2023, 338, 122656. [Google Scholar] [CrossRef]
- Zeng, L.; Li, K.; Guo, H.; Zhou, B.; Lyu, X.; Huo, Y.; Uhde, E.; Yang, J.; Zeren, Y.; Lu, H.; et al. Contributions of Indoor Household Activities to Inhalation Health Risks Induced by Gaseous Air Pollutants in Hong Kong Home. Aerosol. Air Qual. Res. 2023, 23, 230063. [Google Scholar] [CrossRef]
- Chen, J.-J.; Wang, T.B.; Chang, L.-T.; Chuang, K.-J.; Chuang, H.-C.; Chang, T.-Y. Exposure and health risk assessment of volatile organic compounds among drivers and passengers in long-distance buses. Environ. Res. 2024, 252, 118959. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, X.; Dufresne, M.; Wu, L.; Wang, T.; Lara, R.; Seco, R.; Monge, M.; Yáñez-Serrano, A.M.; Gohy, M.; et al. Exploring the variations in ambient BTEX in urban Europe and its environmental health implications. Atmos. Chem. Phys. Discuss. 2024, Preprint. [Google Scholar] [CrossRef]
- Kaskaoutis, D.G.; Dumka, U.C.; Rashki, A.; Psiloglou, B.E.; Gavriil, A.; Mofidi, A.; Petrinoli, K.; Karagiannis, D.; Kambezidis, H.D. Analysis of intense dust storms over the eastern Mediterranean in March 2018: Impact on radiative forcing and Athens air quality. Atmos. Environ. 2019, 209, 23–39. [Google Scholar] [CrossRef]
- Pateraki, S.; Assimakopoulos, V.D.; Maggos, T.; Fameli, K.M.; Kotroni, V.; Vasilakos, C. Particulate matter pollution over a Mediterranean urban area. Sci. Total Environ. 2013, 463–464, 508–524. [Google Scholar] [CrossRef] [PubMed]
- Solomos, S.; Kalivitis, N.; Mihalopoulos, N.; Amiridis, V.; Kouvarakis, G.; Gkikas, A.; Binietoglou, I.; Tsekeri, A.; Kazadzis, S.; Kottas, M.; et al. From tropospheric folding to Khamsin and Foehn winds: How atmospheric dynamics advanced a record-breaking dust episode in Crete. Atmosphere 2018, 9, 240. [Google Scholar] [CrossRef]
- Meade, L.E.; Riva, M.; Blomberg, M.Z.; Brock, A.K.; Qualters, E.M.; Siejack, R.A.; Ramakrishnan, K.; Surratt, J.D.; Kautzman, K.E. Seasonal variations of fine particulate organosulfates derived from biogenic and anthropogenic hydrocarbons in the mid-Atlantic United States. Atmos. Environ. 2016, 145, 405–414. [Google Scholar] [CrossRef]
- Pu, W.; Zhao, X.; Shi, X.; Ma, Z.; Zhang, X.; Yu, B. Impact of long-range transport on aerosol properties at a regional background station in Northern China. Atmos. Res. 2015, 153, 489–499. [Google Scholar] [CrossRef]
- Vlachokostas, C.; Achillas, C.; Moussiopoulos, N.; Kalogeropoulos, K.; Sigalas, G.; Kalognomou, E.-A.; Banias, G. Health effects and social costs of particulate and photochemical urban air pollution: A case study for Thessaloniki, Greece. Air Qual. Atmos. Health 2012, 5, 325–334. [Google Scholar] [CrossRef]
Station Name | City | Abbreviation | Type of Station | Longitude (°) | Latitude (°) | Altitude (m) | Pollutant Availability |
---|---|---|---|---|---|---|---|
Agia Paraskevi | Athens | AGP | Suburban/Background | 23.82 | 38.00 | 290 | NO2, O3, PM10, PM2.5 |
Aristotelous | Athens | ARI | Urban/Traffic | 23.73 | 37.99 | 75 | NO2, SO2, PM10, PM2.5 |
Piraeus 1 | Athens | PIR | Urban/Traffic | 23.65 | 37.94 | 4 | CO, NO2, O3, SO2, PM10, PM2.5, C6H6 |
Thrakomakedones | Athens | THR | Suburban/Background | 23.76 | 38.14 | 550 | NO2, O3, PM10, PM2.5 |
Elefsina | Athens | ELE | Suburban/Industrial | 23.54 | 38.05 | 20 | NO2, O3, SO2, PM10, PM2.5, C6H6 |
Agia Sofia | Thessaloniki | AGS | Urban/Traffic | 22.95 | 40.63 | 12 | CO, NO2, O3, SO2, PM10, PM2.5, C6H6 |
Panorama | Thessaloniki | PAO | Suburban/Background | 23.03 | 40.59 | 363 | NO2, O3, PM10, PM2.5 |
Patra 2 | Patra | PAT | Urban/Traffic | 21.73 | 38.25 | 8 | CO, NO2, SO2, PM10, PM2.5, C6H6 |
Volos 1 | Volos | VOL | Urban/Traffic | 22.94 | 39.37 | 31 | PM10, PM2.5 |
Ioannina 2 | Ioannina | IOA | Urban/Background | 20.85 | 39.67 | 481 | CO, NO2, O3, SO2, PM10, PM2.5 |
Kozani | Kozani | KOZ | Urban/Background | 21.79 | 40.29 | 675 | PM10, PM2.5 |
Air Quality Category | AQI | CO Max 8 h (mg/m3) | NO2 Max Hourly (μg/m3) | O3 Max Hourly (μg/m3) | PM10 Mean Daily (μg/m3) | PM2.5 Mean Daily (μg/m3) | SO2 Mean Daily (μg/m3) | |
---|---|---|---|---|---|---|---|---|
Number | Description | |||||||
1 | Good | 0–50 | 0 ≤ Cp < 4.7 | 0 ≤ Cp < 152 | 0 ≤ Cp < 137 | 0 ≤ Cp < 18 | 0 ≤ Cp < 12 | 0 ≤ Cp < 30 |
2 | Moderate | 51–100 | 4.7 ≤ Cp < 10 | 152 ≤ Cp < 200 | 137 ≤ Cp < 180 | 18 ≤ Cp < 75 | 12 ≤ Cp < 35.4 | 30 ≤ Cp < 125 |
3 | Unhealthy for sensitive groups | 101–150 | 10 ≤ Cp < 13 | 200 ≤ Cp < 262 | 180 ≤ Cp < 236 | 75 ≤ Cp < 124 | 35.4 ≤ Cp < 55.4 | 125 ≤ Cp < 194 |
4 | Unhealthy | 151–200 | 13 ≤ Cp < 16 | 262 ≤ Cp < 326 | 236 ≤ Cp < 294 | 124 ≤ Cp < 172 | 55.4 ≤ Cp < 150.4 | 194 ≤ Cp < 264 |
5 | Very unhealthy | 201–300 | 16 ≤ Cp < 32 | 326 ≤ Cp < 646 | 294 ≤ Cp < 582 | 172 ≤ Cp < 206 | 150.4 ≤ Cp < 250.4 | 264 ≤ Cp < 524 |
6 | Hazardous | 301–400 | 32 ≤ Cp < 43 | 646 ≤ Cp < 806 | 582 ≤ Cp < 726 | 206 ≤ Cp < 245 | 250.4 ≤ Cp < 350.4 | 524 ≤ Cp < 698 |
7 | Severe | 401–500 | 43 ≤ Cp < 54 | 806 ≤ Cp < 966 | 726 ≤ Cp < 870 | 245 ≤ Cp < 294 | 350.4 ≤ Cp < 500.4 | 698 ≤ Cp < 872 |
Station | AQI Category | CO | NO2 | O3 | SO2 | PM10 | PM2.5 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cold | Warm | Cold | Warm | Cold | Warm | Cold | Warm | Cold | Warm | Cold | Warm | ||
AGP | 1 | 100 | 100 | 99.0 | 77.7 | 69.8 | 46.6 | 68.0 | 56.6 | ||||
2 | 0 | 0 | 1.0 | 20.1 | 29.4 | 53 | 31.7 | 43 | |||||
3 | 0 | 0 | 0 | 1.7 | 0.5 | 0.3 | 0.1 | 0.4 | |||||
4 | 0 | 0 | 0 | 0.5 | 0.1 | 0.1 | 0.2 | 0 | |||||
5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |||||
6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |||||
7 | 0 | 0 | 0 | 0 | 0.2 | 0 | 0 | 0 | |||||
Station | AQI category | CO | NO2 | O3 | SO2 | PM10 | PM2.5 | ||||||
cold | warm | cold | warm | cold | warm | cold | warm | cold | warm | cold | warm | ||
ARI | 1 | 99.6 | 99.5 | 100 | 100 | 9.2 | 3.9 | 19.3 | 26.9 | ||||
2 | 0.4 | 0.4 | 0 | 0 | 86.0 | 94.7 | 68.2 | 72.6 | |||||
3 | 0 | 0.1 | 0 | 0 | 4.5 | 1.3 | 10.6 | 0.4 | |||||
4 | 0 | 0 | 0 | 0 | 0.1 | 0.1 | 1.9 | 0.1 | |||||
5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |||||
6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |||||
7 | 0 | 0 | 0 | 0 | 0.2 | 0 | 0 | 0 | |||||
Station | AQI category | CO | NO2 | O3 | SO2 | PM10 | PM2.5 | ||||||
cold | warm | cold | warm | cold | warm | cold | warm | cold | warm | cold | warm | ||
PIR | 1 | 99.5 | 100 | 99.8 | 95.1 | 99.9 | 96.9 | 100 | 99.9 | 6.7 | 2.0 | 34.4 | 39.2 |
2 | 0.5 | 0 | 0.2 | 4.6 | 0.1 | 3.1 | 0 | 0.1 | 88.9 | 96.2 | 57.5 | 60.0 | |
3 | 0 | 0 | 0 | 0.3 | 0 | 0 | 0 | 0 | 4.1 | 1.8 | 7.3 | 0.8 | |
4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.2 | 0 | 0.8 | 0 | |
5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
7 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.1 | 0 | 0 | 0 | |
Station | AQI category | CO | NO2 | O3 | SO2 | PM10 | PM2.5 | ||||||
cold | warm | cold | warm | cold | warm | cold | warm | cold | warm | cold | warm | ||
THR | 1 | 100 | 100 | 97.6 | 75.4 | 68.9 | 48.8 | 55.0 | 47.2 | ||||
2 | 0 | 0 | 2.3 | 20.2 | 30.5 | 50.8 | 44.6 | 52.4 | |||||
3 | 0 | 0 | 0.1 | 3.5 | 0.4 | 0.4 | 0.2 | 0.4 | |||||
4 | 0 | 0 | 0 | 0.6 | 0 | 0 | 0.2 | 0 | |||||
5 | 0 | 0 | 0 | 0.3 | 0 | 0 | 0 | 0 | |||||
6 | 0 | 0 | 0 | 0 | 0.1 | 0 | 0 | 0 | |||||
7 | 0 | 0 | 0 | 0 | 0.1 | 0 | 0 | 0 | |||||
Station | AQI category | CO | NO2 | O3 | SO2 | PM10 | PM2.5 | ||||||
cold | warm | cold | warm | cold | warm | cold | warm | cold | warm | cold | warm | ||
ELE | 1 | 100 | 100 | 98.8 | 79.1 | 99.9 | 98.9 | 25.5 | 14.8 | 25.7 | 28.3 | ||
2 | 0 | 0 | 1.2 | 18.6 | 0.1 | 1.1 | 74.0 | 84.8 | 71.6 | 70.4 | |||
3 | 0 | 0 | 0 | 2.2 | 0 | 0 | 0.3 | 0.4 | 2.5 | 1.1 | |||
4 | 0 | 0 | 0 | 0.1 | 0 | 0 | 0 | 0 | 0.2 | 0.2 | |||
5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |||
6 | 0 | 0 | 0 | 0 | 0 | 0 | 0.1 | 0 | 0 | 0 | |||
7 | 0 | 0 | 0 | 0 | 0 | 0 | 0.1 | 0 | 0 | 0 | |||
Station | AQI category | CO | NO2 | O3 | SO2 | PM10 | PM2.5 | ||||||
cold | warm | cold | warm | cold | warm | cold | warm | cold | warm | cold | warm | ||
AGS | 1 | 99.6 | 100 | 100 | 100 | 99.9 | 99.3 | 99.7 | 100 | 3.7 | 2.4 | 9.2 | 25.7 |
2 | 0.4 | 0 | 0 | 0 | 0.1 | 0.7 | 0.3 | 0 | 85.7 | 97.0 | 70.5 | 74.2 | |
3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 10.4 | 0.6 | 16.3 | 0.1 | |
4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.2 | 0 | 4.0 | 0 | |
5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
7 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
Station | AQI category | CO | NO2 | O3 | SO2 | PM10 | PM2.5 | ||||||
cold | warm | cold | warm | cold | warm | cold | warm | cold | warm | cold | warm | ||
PAO | 1 | 100 | 100 | 99.7 | 84.9 | 56.4 | 57.0 | 49.3 | 80.4 | ||||
2 | 0 | 0 | 0.3 | 15.1 | 43.4 | 43.0 | 50.0 | 19.6 | |||||
3 | 0 | 0 | 0 | 0 | 0.2 | 0 | 0.7 | 0 | |||||
4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |||||
5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |||||
6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |||||
7 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |||||
Station | AQI category | CO | NO2 | O3 | SO2 | PM10 | PM2.5 | ||||||
cold | warm | cold | warm | cold | warm | cold | warm | cold | warm | cold | warm | ||
PAT | 1 | 100 | 100 | 100 | 99.9 | 99.9 | 100 | 7.5 | 11.2 | 18.6 | 61.6 | ||
2 | 0 | 0 | 0 | 0.1 | 0.1 | 0 | 90.7 | 88.1 | 74.7 | 38.0 | |||
3 | 0 | 0 | 0 | 0 | 0 | 0 | 1.5 | 0.4 | 5.9 | 0.2 | |||
4 | 0 | 0 | 0 | 0 | 0 | 0 | 0.3 | 0.1 | 0.8 | 0.2 | |||
5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.1 | 0 | 0 | |||
6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |||
7 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.1 | 0 | 0 | |||
Station | AQI category | CO | NO2 | O3 | SO2 | PM10 | PM2.5 | ||||||
cold | warm | cold | warm | cold | warm | cold | warm | cold | warm | cold | warm | ||
VOL | 1 | 8.3 | 19.0 | 13.8 | 63.9 | ||||||||
2 | 89.1 | 80.9 | 69.3 | 36.0 | |||||||||
3 | 2.5 | 0.1 | 13.7 | 0.1 | |||||||||
4 | 0.1 | 0 | 3.2 | 0 | |||||||||
5 | 0 | 0 | 0 | 0 | |||||||||
6 | 0 | 0 | 0 | 0 | |||||||||
7 | 0 | 0 | 0 | 0 | |||||||||
Station | AQI category | CO | NO2 | O3 | SO2 | PM10 | PM2.5 | ||||||
cold | warm | cold | warm | cold | warm | cold | warm | cold | warm | cold | warm | ||
IOA | 1 | 100 | 100 | 100 | 100 | 99.4 | 92.3 | 100 | 100 | 17.0 | 48.1 | 12.5 | 63.2 |
2 | 0 | 0 | 0 | 0 | 0.6 | 7.1 | 0 | 0 | 73.0 | 51.5 | 55.5 | 36.8 | |
3 | 0 | 0 | 0 | 0 | 0 | 0.6 | 0 | 0 | 7.6 | 0.4 | 18.4 | 0 | |
4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2.2 | 0 | 13.2 | 0 | |
5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.2 | 0 | 0.4 | 0 | |
6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
7 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
Station | AQI category | CO | NO2 | O3 | SO2 | PM10 | PM2.5 | ||||||
cold | warm | cold | warm | cold | warm | cold | warm | cold | warm | cold | warm | ||
KOZ | 1 | 63.7 | 66.7 | 55.6 | 72.9 | ||||||||
2 | 36.3 | 33.3 | 44.4 | 27.1 | |||||||||
3 | 0 | 0 | 0 | 0 | |||||||||
4 | 0 | 0 | 0 | 0 | |||||||||
5 | 0 | 0 | 0 | 0 | |||||||||
6 | 0 | 0 | 0 | 0 | |||||||||
7 | 0 | 0 | 0 | 0 | |||||||||
Station | PM10 | PM2.5 | ||
---|---|---|---|---|
Cold | Warm | Cold | Warm | |
AGP | 0.059 * | −0.052 * | −0.081 * | −0.193 * |
ARI | −0.317 * | −0.195 * | −0.434 * | −0.360 * |
PIR | −0.264 * | −0.148 * | −0.356 * | −0.284 * |
THR | 0.041 * | 0.006 | −0.062 * | −0.050 * |
ELE | −0.075 * | −0.082 * | −0.262 * | −0.187 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dimitriou, K.; Mihalopoulos, N. Air Quality Assessment in Six Major Greek Cities with an Emphasis on the Athens Metropolitan Region. Atmosphere 2024, 15, 1074. https://doi.org/10.3390/atmos15091074
Dimitriou K, Mihalopoulos N. Air Quality Assessment in Six Major Greek Cities with an Emphasis on the Athens Metropolitan Region. Atmosphere. 2024; 15(9):1074. https://doi.org/10.3390/atmos15091074
Chicago/Turabian StyleDimitriou, Konstantinos, and Nikolaos Mihalopoulos. 2024. "Air Quality Assessment in Six Major Greek Cities with an Emphasis on the Athens Metropolitan Region" Atmosphere 15, no. 9: 1074. https://doi.org/10.3390/atmos15091074