VOCs Concentration, SOA Formation Contribution and Festival Effects during Heavy Haze Event: A Case Study in Zhengzhou, Central China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site and Measurements
2.2. PMF Model Analysis
2.3. Calculation of SOA Formation Potential
2.4. Geographic Origin of VOCs
2.4.1. Potential Source Contribution Function (PSCF)
2.4.2. Concentration Weighted Trajectory (CWT)
3. Results and Discussion
3.1. Overview of the Measurement Results
3.1.1. Correlation Analysis of Pollutant and Meteorology Factor
3.1.2. Evolution Process
3.1.3. CNY Festival Effects
3.2. Characteristics of Measured VOCs
3.2.1. Concentrations Characteristics and Chemical Composition
3.2.2. Diurnal Variations during Haze and Clean Periods
3.3. Potential Source-Areas of VOCs
3.4. Source Analysis
3.4.1. Identification of PMF Factors
3.4.2. Source Apportionment
3.4.3. Source Contributions to the SOAp
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Li, J.; Zhai, C.; Yu, J.; Liu, R.; Li, Y.; Zeng, L.; Xie, S. Spatiotemporal variations of ambient volatile organic compounds and their sources in Chongqing, a mountainous megacity in China. Sci. Total Environ. 2018, 627, 1442–1452. [Google Scholar] [PubMed]
- Sheng, J.; Zhao, D.; Ding, D.; Li, X.; Huang, M.; Gao, Y.; Quan, J.; Zhang, Q. Characterizing the level, photochemical reactivity, emission, and source contribution of the volatile organic compounds based on PTR-TOF-MS during winter haze period in Beijing, China. Atmos. Res. 2018, 212, 54–63. [Google Scholar]
- Hu, R.; Liu, G.; Zhang, H.; Xue, H.; Wang, X. Levels, characteristics and health risk assessment of VOCs in different functional zones of Hefei. Ecotox. Environ. Safe. 2018, 160, 301–307. [Google Scholar]
- Jaars, K.; Vestenius, M.; van Zyl, P.G.; Beukes, J.P.; Hellén, H.; Vakkari, V.; Venter, M.; Josipovic, M.; Hakola, H. Receptor modelling and risk assessment of volatile organic compounds measured at a regional background site in South Africa. Atmos. Environ. 2018, 172, 133–148. [Google Scholar]
- Cui, L.; Li, R.; Zhang, Y.; Meng, Y.; Zhao, Y.; Fu, H. A geographically and temporally weighted regression model for assessing intra-urban variability of volatile organic compounds (VOCs) in Yangpu district, Shanghai. Atmos. Environ. 2019, 213, 746–756. [Google Scholar]
- Song, C.; Liu, B.; Dai, Q.; Li, H.; Mao, H. Temperature dependence and source apportionment of volatile organic compounds (VOCs) at an urban site on the north China plain. Atmos. Environ. 2019, 207, 167–181. [Google Scholar]
- Mozaffar, A.; Zhang, Y.; Fan, M.; Fang, C.; Lin, Y. Characteristics of summertime ambient VOCs and their contributions to O3 and SOA formation in a suburban area of Nanjing, China. Atmos. Res. 2020, 240, 104923. [Google Scholar]
- Sun, J.; Gong, J.; Zhou, J.; Liu, J.; Liang, J. Analysis of PM2.5 pollution episodes in Beijing from 2014 to 2017: Classification, interannual variations and associations with meteorological features. Atmos. Environ. 2019, 213, 384–394. [Google Scholar]
- Tao, H.; Xing, J.; Zhou, H.; Pleim, J.; Ran, L.; Chang, X.; Wang, S.; Chen, F.; Zheng, H.; Li, J. Impacts of improved modeling resolution on the simulation of meteorology, air quality, and human exposure to PM2.5, O3 in Beijing, China. J. Clean. Prod. 2020, 243, 118574. [Google Scholar]
- Gao, J.; Zhang, J.; Li, H.; Li, L.; Xu, L.; Zhang, Y.; Wang, Z.; Wang, X.; Zhang, W.; Chen, Y.; et al. Comparative study of volatile organic compounds in ambient air using observed mixing ratios and initial mixing ratios taking chemical loss into account—A case study in a typical urban area in Beijing. Sci. Total Environ. 2018, 628–629, 791–804. [Google Scholar]
- Gu, Y.; Li, Q.; Wei, D.; Gao, L.; Tan, L.; Su, G.; Liu, G.; Liu, W.; Li, C.; Wang, Q. Emission characteristics of 99 NMVOCs in different seasonal days and the relationship with air quality parameters in Beijing, China. Ecotox. Environ. Safe. 2019, 169, 797–806. [Google Scholar]
- Yang, Y.; Ji, D.; Sun, J.; Wang, Y.; Yao, D.; Zhao, S.; Yu, X.; Zeng, L.; Zhang, R.; Zhang, H.; et al. Ambient volatile organic compounds in a suburban site between Beijing and Tianjin: Concentration levels, source apportionment and health risk assessment. Sci. Total Environ. 2019, 695, 133889. [Google Scholar] [PubMed]
- Lyu, X.; Wang, N.; Guo, H.; Xue, L.; Jiang, F.; Zeren, Y.; Cheng, H.; Cai, Z.; Han, L.; Zhou, Y. Causes of a continuous summertime O3 pollution event in Jinan, a central city in the North China Plain. Atmos. Chem. Phys. 2019, 19, 3025–3042. [Google Scholar]
- Tan, Z.; Lu, K.; Jiang, M.; Su, R.; Dong, H.; Zeng, L.; Xie, S.; Tan, Q.; Zhang, Y. Exploring ozone pollution in Chengdu, southwestern China: A case study from radical chemistry to O3-VOC-NOx sensitivity. Sci. Total Environ. 2018, 636, 775–786. [Google Scholar] [PubMed]
- Yang, Y.; Liu, X.; Zheng, J.; Tan, Q.; Feng, M.; Qu, Y.; An, J.; Cheng, N. Characteristics of one-year observation of VOCs, NOx, and O3 at an urban site in Wuhan, China. J. Environ. Sci. 2019, 79, 297–310. [Google Scholar]
- Sun, J.; Wu, F.; Hu, B.; Tang, G.; Zhang, J.; Wang, Y. VOC characteristics, emissions and contributions to SOA formation during hazy episodes. Atmos. Environ. 2016, 141, 560–570. [Google Scholar]
- Yang, W.; Zhang, Y.; Wang, X.; Li, S.; Zhu, M.; Yu, Q.; Li, G.; Huang, Z.; Zhang, H.; Wu, Z.; et al. Volatile organic compounds at a rural site in Beijing: Influence of temporary emission control and wintertime heating. Atmos. Chem. Phys. 2018, 18, 12663–12682. [Google Scholar]
- Zhou, X.; Li, Z.; Zhang, T.; Wang, F.; Wang, F.; Tao, Y.; Zhang, X.; Wang, F.; Huang, J. Volatile organic compounds in a typical petrochemical industrialized valley city of northwest China based on high-resolution PTR-MS measurements: Characterization, sources and chemical effects. Sci. Total Environ. 2019, 671, 883–896. [Google Scholar]
- Huang, R.; Zhang, Y.; Bozzetti, C.; Ho, K.; Cao, J.; Han, Y.; Daellenbach, K.R.; Slowik, J.G.; Platt, S.M.; Canonaco, F.; et al. High secondary aerosol contribution to particulate pollution during haze events in China. Nature 2014, 514, 218–222. [Google Scholar]
- Zhu, Y.; Yang, L.; Kawamura, K.; Chen, J.; Ono, K.; Wang, X.; Xue, L.; Wang, W. Contributions and source identification of biogenic and anthropogenic hydrocarbons to secondary organic aerosols at Mt. Tai in 2014. Environ. Pollut. 2017, 220, 863–872. [Google Scholar]
- Hui, L.; Liu, X.; Tan, Q.; Feng, M.; An, J.; Qu, Y.; Zhang, Y.; Cheng, N. VOC characteristics, sources and contributions to SOA formation during haze events in Wuhan, Central China. Sci. Total Environ. 2019, 650, 2624–2639. [Google Scholar]
- Jiang, N.; Duan, S.; Yu, X.; Zhang, R.; Wang, K. Comparative major components and health risks of toxic elements and polycyclic aromatic hydrocarbons of PM2.5 in winter and summer in Zhengzhou: Based on three-year data. Atmos. Res. 2018, 213, 173–184. [Google Scholar]
- Jiang, N.; Li, L.; Wang, S.; Li, Q.; Dong, Z.; Duan, S.; Zhang, R.; Li, S. Variation tendency of pollution characterization, sources, and health risks of PM2.5-bound polycyclic aromatic hydrocarbons in an emerging megacity in China: Based on three-year data. Atmos. Res. 2019, 217, 81–92. [Google Scholar]
- Wang, S.; Yin, S.; Zhang, R.; Yang, L.; Zhao, Q.; Zhang, L.; Yan, Q.; Jiang, N.; Tang, X. Insight into the formation of secondary inorganic aerosol based on high-time-resolution data during haze episodes and snowfall periods in Zhengzhou, China. Sci. Total Environ. 2019, 660, 47–56. [Google Scholar] [PubMed]
- Wang, S.; Yu, R.; Shen, H.; Wang, S.; Hu, Q.; Cui, J.; Yan, Y.; Huang, H.; Hu, G. Chemical characteristics, sources, and formation mechanisms of PM2.5 before and during the Spring Festival in a coastal city in Southeast China. Environ. Pollut. 2019, 251, 442–452. [Google Scholar] [PubMed]
- Zhang, J.; Wu, L. The influence of population movements on the urban relative humidity of Beijing during the Chinese Spring Festival holiday. J. Clean. Prod. 2018, 170, 1508–1513. [Google Scholar]
- Wen, J.; Shi, G.; Tian, Y.; Chen, G.; Liu, J.; Huang, F.Y.; Ivey, C.E.; Feng, Y. Source contributions to water-soluble organic carbon and water-insoluble organic carbon in PM2.5 during Spring Festival, heating and non-heating seasons. Ecotox. Environ. Safe. 2018, 164, 172–180. [Google Scholar]
- Li, B.W.; Ho, S.S.H.; Gong, S.L.; Ni, J.W.; Li, H.R.; Han, L.Y.; Yang, Y.; Qi, Y.J.; Zhao, D.X. Characterization of VOCs and their related atmospheric processes in a central Chinese city during severe ozone pollution periods. Atmos. Chem. Phys. 2019, 19, 617–638. [Google Scholar]
- Ren, Y.; Ma, S.; Wang, W.; Yu, S.; Li, Y.; Zhang, R.; Yin, S. Ambient VOCs characteristics, ozone formation potential, and source apportionment of air pollution in spring in Zhengzhou. Environ. Sci. 2020, 41, 2577–2585. [Google Scholar]
- Zou, Y.; Deng, X.J.; Zhu, D.; Gong, D.C.; Wang, H.; Li, F.; Tan, H.B.; Deng, T.; Mai, B.R.; Liu, X.T.; et al. Characteristics of 1 year of observational data of VOCs, NOx and O3 at a suburban site in Guangzhou, China. Atmos. Chem. Phys. 2015, 15, 6625–6636. [Google Scholar]
- Yadav, R.; Sahu, L.K.; Tripathi, N.; Pal, D.; Beig, G.; Jaaffrey, S.N.A. Investigation of emission characteristics of NMVOCs over urban site of western India. Environ. Pollut. 2019, 252, 245–255. [Google Scholar]
- Li, K.; Li, J.; Wang, W.; Tong, S.; Liggio, J.; Ge, M. Evaluating the effectiveness of joint emission control policies on the reduction of ambient VOCs: Implications from observation during the 2014 APEC summit in suburban Beijing. Atmos. Environ. 2017, 164, 117–127. [Google Scholar]
- Song, M.; Liu, X.; Zhang, Y.; Shao, M.; Lu, K.; Tan, Q.; Feng, M.; Qu, Y. Sources and abatement mechanisms of VOCs in southern China. Atmos. Environ. 2019, 201, 28–40. [Google Scholar]
- Liu, Y.; Song, M.; Liu, X.; Zhang, Y.; Hui, L.; Kong, L.; Zhang, Y.; Zhang, C.; Qu, Y.; An, J.; et al. Characterization and sources of volatile organic compounds (VOCs) and their related changes during ozone pollution days in 2016 in Beijing, China. Environ. Pollut. 2020, 257, 113599. [Google Scholar] [PubMed]
- Derwent, R.G.; Jenkin, M.E.; Utembe, S.R.; Shallcross, D.E.; Murrells, T.P.; Passant, N.R. Secondary organic aerosol formation from a large number of reactive man-made organic compounds. Sci. Total Environ. 2010, 408, 3374–3381. [Google Scholar]
- Draxler, R.R.; Hess, G.D. An overview of the hysplit-4 modeling system for trajectories. Aust. Meteorol. Mag. 1998, 47, 295–308. [Google Scholar]
- Wei, X.Y.; Liu, M.; Yang, J.; Du, W.N.; Sun, X.; Huang, Y.P.; Zhang, X.; Khalil, S.K.; Luo, D.M.; Zhou, Y.D. Characterization of PM2.5-bound PAHs and carbonaceous aerosols during three-month severe haze episode in Shanghai, China: Chemical composition, source apportionment and long-range transportation. Atmos. Environ. 2019, 203, 1–9. [Google Scholar]
- Wang, Y.Q.; Zhang, X.Y.; Draxler, R.R. TrajStat: GIS-based software that uses various trajectory statistical analysis methods to identify potential sources from longterm air pollution measurement data. Environ. Model. Softw. 2009, 24, 938–939. [Google Scholar]
- Wu, R.; Li, J.; Hao, Y.; Li, Y.; Zeng, L.; Xie, S. Evolution process and sources of ambient volatile organic compounds during a severe haze event in Beijing, China. Sci. Total Environ. 2016, 560–561, 62–72. [Google Scholar]
- Zhang, Q.; Wu, L.; Fang, X.; Liu, M.; Zhang, J.; Shao, M.; Lu, S.; Mao, H. Emission factors of volatile organic compounds (VOCs) based on the detailed vehicle classification in a tunnel study. Sci. Total Environ. 2018, 624, 878–886. [Google Scholar]
- Zheng, H.; Kong, S.; Yan, Y.; Chen, N.; Yao, L.; Liu, X.; Wu, F.; Cheng, Y.; Niu, Z.; Zheng, S.; et al. Compositions, sources and health risks of ambient volatile organic compounds (VOCs) at a petrochemical industrial park along the Yangtze River. Sci. Total Environ. 2020, 703, 135505. [Google Scholar]
- Yan, Y.; Peng, L.; Li, R.; Li, Y.; Li, L.; Bai, H. Concentration, ozone formation potential and source analysis of volatile organic compounds (VOCs) in a thermal power station centralized area: A study in Shuozhou, China. Environ. Pollut. 2017, 223, 295–304. [Google Scholar]
- Huang, Y.S.; Hsieh, C.C. Ambient volatile organic compound presence in the highly urbanized city: Source apportionment and emission position. Atmos. Environ. 2019, 206, 45–59. [Google Scholar]
- Liu, Y.; Lu, S.; Zeng, L.; Tang, D. Source profiles of volatile organic compounds (VOCs) measured in China: Part I. Atmos. Environ. 2008, 42, 6247–6260. [Google Scholar]
- Guo, H.; So, K.L.; Simpson, I.J.; Barletta, B.; Meinardi, S.; Blake, D.R. C1–C8 volatile organic compounds in the atmosphere of Hong Kong: Overview of atmospheric processing and source apportionment. Atmos. Environ. 2007, 41, 1456–1472. [Google Scholar]
- Lai, S.C.; Baker, A.K.; Schuck, T.J.; Brenninkmeijer, C.A.M.; Velthoven, P.V.; Oram, D.E.; Zahn, A.; Ziereis, H. Characterization and source regions of 51 high-CO events observed during Civil Aircraft for the Regular Investigation of the Atmosphere Based on an Instrument Container (CARIBIC) flights between south China and the Philippines, 2005–2008. J. Geophys. Res. 2011, 1169, 2001. [Google Scholar]
- Buzcu, B.; Fraser, M.P. Source identification and apportionment of volatile organic compounds in Houston, TX. Atmos. Environ. 2006, 40, 2385–2400. [Google Scholar]
- Guo, H.; Cheng, H.R.; Ling, Z.H.; Louie, P.K.K.; Ayoko, G.A. Which emission sources are responsible for the volatile organic compounds in the atmosphere of Pearl River Delta? J. Hazard. Mater. 2011, 188, 116–124. [Google Scholar]
- Kwon, K.D.; Jo, W.K.; Lim, H.J.; Jeong, W.S. Characterization of emissions composition for selected household products available in Korea. J. Hazard. Mater. 2007, 148, 192–198. [Google Scholar] [PubMed]
- Chan, L.Y.; Chu, K.W.; Zou, S.C.; Chan, C.-Y.; Wang, X.-M.; Barletta, B.; Blake, D.R.; Guo, H.; Tsai, W.-Y. Characteristics of nonmethane hydrocarbons (NMHCs) in industrial, industrial-urban, and industrial-surburban atmospheres of the Pearl River Delta (PRD) region of south China. NYSE JWA 2006, 111, D11304. [Google Scholar]
- Scheff, P.A.; Wadden, R.A.; Bates, B.A.; Aronian, P.F. Source fingerprints for receptor modeling of volatile organics. JAPCA 1989, 39, 469–478. [Google Scholar]
- Cai, C.J.; Geng, F.; Tie, X.; Yu, Q.; An, J. Characteristics and source apportionment of VOCs measured in Shanghai, China. Atmos. Environ. 2010, 44, 5005–5014. [Google Scholar]
- Srivastava, A.; Sengupta, B.; Dutta, S.A. Source apportionment of ambient VOCs in Delhi City. Sci. Total Environ. 2005, 343, 207–220. [Google Scholar] [PubMed]
- Li, J.; Xie, S.D.; Zeng, L.M.; Li, L.Y.; Li, Y.Q.; Wu, R.R. Characterization of ambient volatile organic compounds and their sources in Beijing, before, during, and after Asia-Pacific Economic Cooperation China 2014. Atmos. Chem. Phys. 2015, 15, 7945–7959. [Google Scholar]
- Mo, Z.; Shao, M.; Lu, S.; Niu, H.; Zhou, M.; Sun, J. Characterization of non-methane hydrocarbons and their sources in an industrialized coastal city, Yangtze River Delta, China. Sci. Total. Environ. 2017, 593–594, 641–653. [Google Scholar]
Haze-1 | Haze-2 | Haze-3 | |||
---|---|---|---|---|---|
Species | Mean ± SD | Species | Mean ± SD | Species | Mean ± SD |
Ethane | 16.83 ± 6.59 | Ethane | 15.96 ± 2.41 | Ethane | 19.3 ± 2.96 |
Acetylene | 13.59 ± 6.47 | Ethylene | 10.04 ± 2.72 | Acetylene | 11.57 ± 7.47 |
Ethylene | 10.29 ± 4.56 | Propane | 7.48 ± 1.19 | Ethylene | 11.52 ± 3.8 |
Propane | 8.39 ± 3.97 | Toluene | 4 ± 0.93 | Propane | 7.46 ± 1.69 |
Benzene | 4.3 ± 1.3 | Acetylene | 3.81 ± 2.4 | n-Butane | 4.1 ± 1.45 |
n-Butane | 3.37 ± 1.36 | n-Butane | 3.22 ± 0.61 | Toluene | 3.84 ± 1.24 |
Isopentane | 2.19 ± 1.13 | Pentane | 1.98 ± 0.5 | Isopentane | 3.09 ± 1.1 |
Propylene | 1.86 ± 0.56 | Isopentane | 1.96 ± 0.51 | Isoprene | 2.56 ± 2.68 |
n-Hexane | 1.81 ± 1.4 | Isobutane | 1.8 ± 0.31 | Pentane | 2.14 ± 0.73 |
Isobutane | 1.57 ± 0.65 | Benzene | 1.69 ± 0.38 | Cyclopentane | 2.03 ± 1.58 |
Toluene | 1.36 ± 0.57 | Cyclopentane | 1.5 ± 0.72 | Benzene | 1.95 ± 0.44 |
trans-2-Butene | 1.1 ± 0.54 | Propylene | 1.22 ± 0.25 | Isobutane | 1.93 ± 0.26 |
Isoprene | 1.08 ± 0.9 | n-Hexane | 0.68 ± 0.15 | Propylene | 1.34 ± 0.41 |
Pentane | 0.96 ± 0.67 | Ethyl benzene | 0.62 ± 0.15 | m/p-Xylene | 0.97 ± 0.59 |
m/p-Xylene | 0.74 ± 0.46 | m/p-Xylene | 0.48 ± 0.1 | n-Hexane | 0.91 ± 0.25 |
Cyclopentane | 0.71 ± 0.9 | Isoprene | 0.47 ± 0.45 | Ethyl benzene | 0.8 ± 0.28 |
cis-2-Pentene | 0.64 ± 0.4 | trans-2-Butene | 0.42 ± 0.11 | trans-2-Butene | 0.6 ± 0.34 |
Heptane | 0.47 ± 0.18 | Styrene | 0.34 ± 0.1 | Styrene | 0.39 ± 0.18 |
cis-2-Butene | 0.38 ± 0.32 | Dodecan | 0.29 ± 0.04 | o-Xylene | 0.36 ± 0.21 |
2-Methylpentane | 0.37 ± 0.2 | cis-2-Butene | 0.25 ± 0.19 | Dodecane | 0.33 ± 0.14 |
Source | Source Concentrations | |||
---|---|---|---|---|
Haze-1 | Haze-2 | Haze-3 | Clean Days | |
Coal combustion | 414 | 234 | 342 | 213 |
Solvent utilization | 1275 | 196 | 434 | 604 |
Vehicle exhaust | 498 | 575 | 767 | 479 |
LPG/NG | 67 | 105 | 108 | 59 |
Industrial process | 1669 | 464 | 1583 | 628 |
Total SOAp | 3923 | 1574 | 3234 | 1983 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, S.; Xue, C.; Deng, F.; Xu, Q.; Zhao, B. VOCs Concentration, SOA Formation Contribution and Festival Effects during Heavy Haze Event: A Case Study in Zhengzhou, Central China. Atmosphere 2024, 15, 1009. https://doi.org/10.3390/atmos15081009
Yu S, Xue C, Deng F, Xu Q, Zhao B. VOCs Concentration, SOA Formation Contribution and Festival Effects during Heavy Haze Event: A Case Study in Zhengzhou, Central China. Atmosphere. 2024; 15(8):1009. https://doi.org/10.3390/atmos15081009
Chicago/Turabian StyleYu, Shijie, Chaofang Xue, Fuwen Deng, Qixiang Xu, and Bingnan Zhao. 2024. "VOCs Concentration, SOA Formation Contribution and Festival Effects during Heavy Haze Event: A Case Study in Zhengzhou, Central China" Atmosphere 15, no. 8: 1009. https://doi.org/10.3390/atmos15081009