Study on the Vertical Distribution and Transport of Aerosols in the Joint Observation of Satellite and Ground-Based LiDAR
Abstract
:1. Introduction
2. Data and Methods
2.1. Study Area and Period
2.2. Data and Methods
3. Results and Analysis
3.1. Overall Characteristics of PM2.5, PM10 and Meteorological Elements before and after the COVID-19 Pandemic
3.2. AOD Distribution and Aerosol Remote Sensing Observation Results
3.3. Analysis of Aerosol Pollution Process
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- WHO. WHO Director-General’s Opening Remarks at the Media Briefing on COVID-19. 2020. Available online: https://www.who.int/director-general/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19 (accessed on 11 March 2020).
- WHO. COVID-19 Weekly Epidemiological Update. 2023. Available online: https://covid19.who.int (accessed on 9 June 2023).
- Kok, J.F.; Storelvmo, T.; Karydis, V.A.; Adebiyi, A.A.; Mahowald, N.M.; Evan, A.T.; He, C.; Leung, D.M. Mineral dust aerosol impacts on global climate and climate change. Nat. Rev. Earth Environ. 2023, 4, 71–86. [Google Scholar] [CrossRef]
- Yang, H.; Fang, Z.; Xie, C.; Cohen, J.; Yang, Y.; Wang, B.; Xing, K.; Cao, Y. Two trans-boundary aerosol transport episodes in the western Yangtze River Delta, China: A perspective from ground-based LiDAR observation. Atmos. Pollut. Res. 2021, 12, 370–380. [Google Scholar] [CrossRef]
- Belkina, S.K.; Zalmanzon, Y.E.; Kuznetsov, Y.V.; Rizin, A.I.; Fertman, D.E. Special aerosol sources for certification and test of aerosol radiometers. J. Aerosol Sci. 1991, 22, S801–S804. [Google Scholar] [CrossRef]
- Colbeck, I.; Lazaridis, M. Aerosols and environmental pollution. Naturwissenschaften 2010, 97, 117–131. [Google Scholar] [CrossRef]
- Liu, Y.; Ning, Z.; Chen, Y.; Guo, M.; Liu, Y.; Gali, N.K.; Sun, L.; Duan, Y.; Cai, J.; Westerdahl, D.; et al. Aerodynamic analysis of SARS-CoV-2 in two Wuhan hospitals. Nature 2020, 582, 557–560. [Google Scholar] [CrossRef]
- Liang, Y.; Gui, K.; Che, H.; Li, L.; Zheng, Y.; Zhang, X.; Zhang, X.; Zhang, P.; Zhang, X. Changes in aerosol loading before, during and after the COVID-19 pandemic outbreak in China: Effects of anthropogenic and natural aerosol. Sci. Total Environ. 2023, 857, 159435. [Google Scholar] [CrossRef]
- Feng, Z.; Wang, X.; Yuan, J.; Zhang, Y.; Yu, M. Changes in air pollution, land surface temperature, and urban heat islands during the COVID-19 lockdown in three Chinese urban agglomerations. Sci. Total Environ. 2023, 892, 164496. [Google Scholar] [CrossRef] [PubMed]
- Jin, Q.; Luo, Y.; Meng, X.; Feng, M.; Huang, C. Short- and long-term impacts of the COVID-19 epidemic on urban PM(2.5) variations: Evidence from a megacity, Chengdu. Atmos. Environ. 2023, 294, 119479. [Google Scholar] [CrossRef]
- Ciotti, M.; Ciccozzi, M.; Terrinoni, A.; Jiang, W.C.; Wang, C.B.; Bernardini, S. The COVID-19 pandemic. Crit. Rev. Clin. Lab. Sci. 2020, 57, 365–388. [Google Scholar] [CrossRef]
- Rawal, V.; Kumar, M.; Verma, A.; Pais, J. COVID-19 Lockdown. Soc. Sci. 2020, 48, 67–82. [Google Scholar]
- Lolli, S.; Chen, Y.-C.; Wang, S.-H.; Vivone, G. Impact of meteorological conditions and air pollution on COVID-19 pandemic transmission in Italy. Sci. Rep. 2020, 10, 16213. [Google Scholar] [CrossRef]
- Watson, O.J.; Barnsley, G.; Toor, J.; Hogan, A.B.; Winskill, P.; Ghani, A.C. Global impact of the first year of COVID-19 vaccination: A mathematical modelling study. Lancet Infect. Dis. 2022, 22, 1293–1302. [Google Scholar] [CrossRef]
- Mousazadeh, M.; Paital, B.; Naghdali, Z.; Mortezania, Z.; Hashemi, M.; Niaragh, E.K.; Aghababaei, M.; Ghorbankhani, M.; Lichtfouse, E.; Sillanpää, M. Positive environmental effects of the coronavirus 2020 episode: A review. Environ. Dev. Sustain. 2021, 23, 12738–12760. [Google Scholar] [CrossRef] [PubMed]
- Kim, G.; Lee, J.; Lee, M.-I.; Kim, D. Impacts of urbanization on atmospheric circulation and aerosol transport in a coastal environment simulated by the WRF-Chem coupled with urban canopy model. Atmos. Environ. 2021, 249, 118253. [Google Scholar] [CrossRef]
- Yang, Y.; Zheng, Z.; Yim, S.Y.; Roth, M.; Ren, G.; Gao, Z.; Wang, T.; Li, Q.; Shi, C.; Ning, G. PM2.5 pollution modulates wintertime urban heat island intensity in the Beijing-Tianjin-Hebei Megalopolis, China. Geophys. Res. Lett. 2020, 47, e2019GL084288. [Google Scholar] [CrossRef]
- Guo, J.; Liu, H.; Li, Z.; Rosenfeld, D.; Jiang, M.; Xu, W.; Jiang, J.H.; He, J.; Chen, D.; Min, M.; et al. Aerosol-induced changes in the vertical structure of precipitation: A perspective of TRMM precipitation radar. Atmos. Chem. Phys. 2018, 18, 13329–13343. [Google Scholar] [CrossRef]
- Liu, L.; Guo, J.; Miao, Y.; Li, J.; Chen, D.; He, J.; Cui, C. Elucidating the relationship between aerosol concentration and summertime boundary layer structure in central China. Environ. Pollut. 2018, 241, 646–653. [Google Scholar] [CrossRef] [PubMed]
- Ranjan, A.K.; Patra, A.K.; Gorai, A. A review on estimation of particulate matter from satellite-based aerosol optical depth: Data, methods, and challenges. Asia-Pac. J. Atmos. Sci. 2021, 57, 679–699. [Google Scholar] [CrossRef]
- Acharya, P.; Barik, G.; Gayen, B.K.; Bar, S.; Maiti, A.; Sarkar, A.; Ghosh, S.; De, S.K.; Sreekesh, S. Revisiting the levels of Aerosol Optical Depth in south-southeast Asia, Europe and USA amid the COVID-19 pandemic using satellite observations. Environ. Res. 2021, 193, 110514. [Google Scholar] [CrossRef]
- Yang, F.; Wang, Y.; Tao, J.; Wang, Z.; Fan, M.; De Leeuw, G.; Chen, L. Preliminary Investigation of a New AHI Aerosol Optical Depth (AOD) Retrieval Algorithm and Evaluation with Multiple Source AOD Measurements in China. Remote Sens. 2018, 10, 748. [Google Scholar] [CrossRef]
- Lanzaco, B.L.; Olcese, L.E.; Palancar, G.G.; Toselli, B.M. A Method to Improve MODIS AOD Values: Application to South America. Aerosol Air Qual. Res. 2016, 16, 1509–1522. [Google Scholar] [CrossRef]
- Wang, Y.; Li, Z.; Wang, Q.; Jin, X.; Yan, P.; Cribb, M.; Li, Y.; Yuan, C.; Wu, H.; Wu, T. Enhancement of secondary aerosol formation by reduced anthropogenic emissions during Spring Festival 2019 and enlightenment for regional PM 2.5 control in Beijing. Atmos. Chem. Phys. 2021, 21, 915–926. [Google Scholar] [CrossRef]
- Glassmeier, F.; Hoffmann, F.; Johnson, J.S.; Yamaguchi, T.; Carslaw, K.S.; Feingold, G. Aerosol-cloud-climate cooling overestimated by ship-track data. Science 2021, 371, 485–489. [Google Scholar] [CrossRef]
- Guo, J.; Su, T.; Li, Z.; Miao, Y.; Li, J.; Liu, H.; Xu, H.; Cribb, M.; Zhai, P. Declining frequency of summertime local-scale precipitation over eastern China from 1970 to 2010 and its potential link to aerosols. Geophys. Res. Lett. 2017, 44, 5700–5708. [Google Scholar] [CrossRef]
- Guo, J.; Su, T.; Chen, D.; Wang, J.; Li, Z.; Lv, Y.; Guo, X.; Liu, H.; Cribb, M.; Zhai, P. Declining summertime local-scale precipitation frequency over China and the United States, 1981–2012: The disparate roles of aerosols. Geophys. Res. Lett. 2019, 46, 13281–13289. [Google Scholar] [CrossRef]
- Rosenfeld, D.; Zhu, Y.; Wang, M.; Zheng, Y.; Goren, T.; Yu, S. Aerosol-driven droplet concentrations dominate coverage and water of oceanic low-level clouds. Science 2019, 363, eaav0566. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Easter, R.C.; Ghan, S.J.; Abdul-Razzak, H. Impact of aerosol size representation on modeling aerosol-cloud interactions. J. Geophys. Res.-Atmos. 2002, 107, AAC 4-1–AAC 4-17. [Google Scholar] [CrossRef]
- Shang, D.; Peng, J.; Guo, S.; Wu, Z.; Hu, M. Secondary aerosol formation in winter haze over the Beijing-Tianjin-Hebei Region, China. Front. Environ. Sci. Eng. 2021, 15, 1–13. [Google Scholar] [CrossRef]
- Han, L.; Yang, X.; Zhang, P.; Xiao, Q.; Cheng, S.; Wang, H.; Guo, J.; Zheng, A. Temporal variations of urban re-suspended road dust characteristics and its vital contributions to airborne PM2. 5/PM10 during a long period in Beijing. Environ. Pollut. 2023, 330, 121727. [Google Scholar] [CrossRef] [PubMed]
- Ren, Y.; Wei, J.; Wu, Z.; Ji, Y.; Bi, F.; Gao, R.; Wang, X.; Wang, G.; Li, H. Chemical components and source identification of PM2. 5 in non-heating season in Beijing: The influences of biomass burning and dust. Atmos. Res. 2021, 251, 105412. [Google Scholar] [CrossRef]
- China National Bureau of Statistics. Seventh National Population Census Bulletin. 2021. Available online: https://www.gov.cn/guoqing/2021-05/13/content_5606149.htm (accessed on 10 June 2023).
- Xinhua News Agency Beijing Has Adjusted Its Level-I Response Tolevel-II Response for Public Health Emergencies. 2020. Available online: https://www.gov.cn/xinwen/2020-04/29/content_5507505.htm (accessed on 10 June 2023).
- Han, Y.; Wang, T.; Tang, J.; Wang, C.; Jian, B.; Huang, Z.; Huang, J. New insights into the Asian dust cycle derived from CALIPSO LiDAR measurements. Remote Sens. Environ. 2022, 272, 112906. [Google Scholar] [CrossRef]
- He, L.; Wang, L.; Li, Z.; Jiang, D.; Sun, L.; Liu, D.; Liu, L.; Yao, R.; Zhou, Z.; Wei, J. VIIRS Environmental Data Record and Deep Blue aerosol products: Validation, comparison, and spatiotemporal variations from 2013 to 2018 in China. Atmos. Environ. 2021, 250, 118265. [Google Scholar] [CrossRef]
- Ma, Q.; Zhu, L.; Wang, J.; Ju, J.; Wang, Y. Variations in Spring Atmospheric Circulation on the Southwestern Tibetan Plateau During Holocene Linked to High-and Low-Latitude Forcing. Geophys. Res. Lett. 2023, 50, e2023GL103163. [Google Scholar] [CrossRef]
- Ambient Air Quality Standards. 2016. Available online: https://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/dqhjbh/dqhjzlbz/201203/t20120302_224165.shtml (accessed on 9 June 2023).
- Datta, R.T.; Tedesco, M.; Fettweis, X.; Agosta, C.; Lhermitte, S.; Lenaerts, J.T.; Wever, N. The Effect of Foehn-Induced Surface Melt on Firn Evolution Over the Northeast Antarctic Peninsula. Geophys. Res. Lett. 2019, 46, 3822–3831. [Google Scholar] [CrossRef]
Month | T (°C) | RH (%) | WS (m/s) | WD (°) | PM2.5 (μg/m3) | PM10 (μg/m3) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | Std | Mean | Std | Mean | Std | Mean | Std | Mean | Std | Mean | Std | |
Jan. | −2.24 | 2.84 | 42.25 | 19.07 | 1.85 | 0.99 | 194.2 | 122.4 | 50.45 | 43.3 | 50.45 | 43.02 |
Feb. | 1.02 | 3.89 | 47.48 | 20.47 | 1.96 | 0.97 | 196.0 | 102.6 | 59.52 | 50.5 | 68.71 | 46.70 |
Mar. | 9.40 | 3.82 | 42.19 | 20.05 | 2.37 | 0.91 | 196.2 | 109.6 | 56.89 | 49.37 | 106.62 | 177.86 |
Apr. | 15.23 | 3.27 | 38.31 | 16.50 | 2.51 | 0.73 | 202.5 | 86.6 | 37.80 | 28.82 | 80.83 | 52.40 |
May. | 21.41 | 2.99 | 44.74 | 17.45 | 2.48 | 0.72 | 206.1 | 94.1 | 33.28 | 23.22 | 72.72 | 50.61 |
Jun. | 26.29 | 2.48 | 51.62 | 15.64 | 2.10 | 0.56 | 188.6 | 88.4 | 30.02 | 16.86 | 57.28 | 28.68 |
Jul. | 27.10 | 2.32 | 69.13 | 12.66 | 1.81 | 0.37 | 178.9 | 82.8 | 31.47 | 19.88 | 43.06 | 18.21 |
Aug. | 26.08 | 1.86 | 67.51 | 13.41 | 1.81 | 0.50 | 184.1 | 90.5 | 22.49 | 14.27 | 38.00 | 16.36 |
Sep. | 22.27 | 2.33 | 66.33 | 14.86 | 1.58 | 0.45 | 176.0 | 92.5 | 25.74 | 17.60 | 42.70 | 21.54 |
Oct. | 13.19 | 3.14 | 57.13 | 16.59 | 1.59 | 0.67 | 203.6 | 108.9 | 35.75 | 30.77 | 59.42 | 37.58 |
Nov. | 6.10 | 4.05 | 53.56 | 20.52 | 1.84 | 1.03 | 191.2 | 119.9 | 42.17 | 34.26 | 69.12 | 39.26 |
Dec. | −0.95 | 3.18 | 45.28 | 17.53 | 2.00 | 1.09 | 229.5 | 114.5 | 33.53 | 29.78 | 56.39 | 30.62 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, H.; Zhu, X.; Fang, Z.; Qiu, D.; Hu, Y.; Tian, C.; Ming, F. Study on the Vertical Distribution and Transport of Aerosols in the Joint Observation of Satellite and Ground-Based LiDAR. Atmosphere 2024, 15, 240. https://doi.org/10.3390/atmos15020240
Yang H, Zhu X, Fang Z, Qiu D, Hu Y, Tian C, Ming F. Study on the Vertical Distribution and Transport of Aerosols in the Joint Observation of Satellite and Ground-Based LiDAR. Atmosphere. 2024; 15(2):240. https://doi.org/10.3390/atmos15020240
Chicago/Turabian StyleYang, Hao, Xiaomeng Zhu, Zhiyuan Fang, Duoyang Qiu, Yalin Hu, Chunyan Tian, and Fei Ming. 2024. "Study on the Vertical Distribution and Transport of Aerosols in the Joint Observation of Satellite and Ground-Based LiDAR" Atmosphere 15, no. 2: 240. https://doi.org/10.3390/atmos15020240