Investigation of the Synoptic and Dynamical Characteristics of Cyclone Shaheen (2021) and Its Influence on the Omani Coastal Region
Abstract
:1. Introduction
2. Materials and Methods
3. Description of the Synoptic Conditions
4. The Dynamical Characteristics of Shaheen
5. Impacts on the Oman Coastal Zone
- Hawasina group, consisting of radiolarites, chert and shale, limestone, and quartz sandstones,
- basic volcanic rocks, at the upper catchment western part bedrock, primarily comprised of the mantle sequence of the Semail nappe, where the ophiolite consists mainly of tectonized harzburgite (peridotite) and,
- tertiary sedimentary formations forming the upstream of Wadi’s.
- Intense erosion in the upstream hydrographic basins of wadi Hawasnah and wadi Bani, mainly in the loose alluvial deposits on the wadi valleys, with intense downcutting erosion and incision of their beds (Figure 17).
- This had, as an immediate result, a great increase in the wadi’s bed load, in the downstream areas, specifically on the coastal alluvial fans and gravel plains, creating extensive flooding, causing destruction of infrastructure such as roads, bridges, and homes (Figure 17).
6. Discussion and Conclusions
- Shaheen in its formation was an upper warm-core tropical cyclone and gradually transformed to a typically deep warm-core tropical system.
- Total precipitation maxima were found in the regions with minimum 200–850 hPa VWS and IVT maxima.
- Total precipitation was increased in areas along SST gradients.
- A great increase in the wadi’s bed load was observed in the downstream areas, specifically on the coastal alluvial fans and gravel plains.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Frank, W.M.; Roundy, P.E. The role of tropical waves in tropical cyclogenesis. Mon. Weather Rev. 2006, 134, 2397–2417. [Google Scholar] [CrossRef]
- Ramsay, H. The global climatology of tropical cyclones. In Oxford Research Encyclopedia of Natural Hazard Science; Oxford University Press: Oxford, UK, 2017. [Google Scholar] [CrossRef]
- Mohapatra, M.; Srivastava, A.K.; Balachandran, S.; Geetha, B. Inter-annual variation and trends in tropical cyclones and monsoon depressions over the north Indian Ocean. In Observed Climate Variability and Change over the Indian Region, 1st ed.; Rajeevan, M.N., Nayak, S., Eds.; Springer: Singapore, 2017; pp. 89–106. [Google Scholar] [CrossRef]
- Dhavale, S.; Mujumdar, M.; Roxy, M.K.; Singh, V.K. Tropical cyclones over the Arabian Sea during the monsoon onset phase. Int. J. Climatol. 2022, 42, 2996–3006. [Google Scholar] [CrossRef]
- Chowdhury, R.; Prasanna Kumar, S.; Narvekar, J.; Chakraborty, A. Back-to-back occurrence of tropical cyclones in the Arabian sea during October–November 2015: Causes and responses. J. Geophys. Res. Oceans 2020, 125, e2019JC015836. [Google Scholar] [CrossRef]
- Singh, V.K.; Roxy, M.K.; Deshpande, M. Role of warm ocean conditions and the MJO in the genesis and intensification of extremely severe cyclone Fani. Sci. Rep. 2021, 11, 3607. [Google Scholar] [CrossRef]
- Hoarau, K.; Chalonge, L. A Climatology of Intense Tropical Cyclones in the North Indian Ocean Over the Past Three Decades (1980–2008). In Indian Ocean Tropical Cyclones and Climate Change, 1st ed.; Charabi, Y., Ed.; Springer: Dordrecht, The Netherlands, 2010; pp. 3–7. [Google Scholar] [CrossRef]
- Fritz, H.M.; Blount, C.; Albusaidi, F.B.; Al-Harthy, A.H.M. Cyclone Gonu storm surge in the Gulf of Oman. In Indian Ocean Tropical Cyclones and Climate Change, 1st ed.; Charabi, Y., Ed.; Springer: Dordrecht, The Netherlands, 2010; pp. 255–263. [Google Scholar] [CrossRef]
- Terry, J.; Al Ruheili, A.; Boldi, R.; Gienko, G.; Stahl, H. Cyclone Shaheen: The exceptional tropical cyclone of October 2021 in the Gulf of Oman. Weather 2022, 77, 364–370. [Google Scholar] [CrossRef]
- Mukherjee, P.; Ramakrishnan, B. Investigation of unique Arabian Sea tropical cyclone with GPU-based WRF model: A case study of Shaheen. J. Atmos. Sol.-Terr. Phys. 2023, 246, 106052. [Google Scholar] [CrossRef]
- Jaiswal, N.; Jishad, M.; Deb, S.K.; Varma, A.K.; Agarwal, N.; Sharma, R. Analysis of atmospheric and oceanic conditions during unusual occurrence of tropical cyclone Gulab and Shaheen in North Indian Ocean. J. Earth Syst. Sci. 2023, 132, 109. [Google Scholar] [CrossRef]
- AlRuheili, A.M. A tale of Shaheen’s cyclone consequences in Al Khaboura City, Oman. Water 2022, 14, 340. [Google Scholar] [CrossRef]
- Kabir, R.; Ritchie, E.A.; Stark, C. Tropical Cyclone Exposure in the North Indian Ocean. Atmosphere 2022, 13, 1421. [Google Scholar] [CrossRef]
- Lin, I.I.; Camargo, S.J.; Patricola, C.M.; Boucharel, J.; Chand, S.; Klotzbach, P.; Chan, J.C.; Wang, B.; Chang, P.; Li, T.; et al. ENSO and tropical cyclones. In El Niño Southern Oscillation in a Changing Climate, 1st ed.; McPhaden, M.J., Santoso, A., Cai, W., Eds.; American Geophysical Union: Washington, DC, USA, 2021; pp. 377–408. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Klaes, K.D.; Holmlund, K. An update on EUMETSAT programmes and plans. In Earth Observing Systems XXI; SPIE: Bellingham, WA, USA, 2016; Volume 9972, pp. 378–389. [Google Scholar] [CrossRef]
- Aminou, D.M.A.; Ottenbacher, A.; Jacquet, B.; Pasternak, F.; Coste, P. Meteosat second generation: Inflight calibration of the imaging radiometer SEVIRI. In Earth Observing Systems VI; SPIE: Bellingham, WA, USA, 2002; Volume 4483, pp. 248–257. [Google Scholar] [CrossRef]
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Liu, Z.; Berner, J.; Huang, X.Y. A Description of the Advanced Research WRF Model Version 4; NCAR Tech Note, NCAR/TN–556+ STR; UCAR: Boulder, CO, USA, 2021. [Google Scholar] [CrossRef]
- Malakar, P.; Kesarkar, A.P.; Bhate, J.N.; Singh, V.; Deshamukhya, A. Comparison of reanalysis data sets to comprehend the evolution of tropical cyclones over North Indian Ocean. Earth Space Sci. 2020, 7, e2019EA000978. [Google Scholar] [CrossRef]
- Mohanty, U.C.; Osuri, K.K.; Routray, A.; Mohapatra, M.; Pattanayak, S. Simulation of Bay of Bengal tropical cyclones with WRF model: Impact of initial and boundary conditions. Mar. Geod. 2010, 33, 294–314. [Google Scholar] [CrossRef]
- Nadimpalli, R.; Osuri, K.K.; Mohanty, U.C.; Das, A.K.; Kumar, A.; Sil, S.; Niyogi, D. Forecasting tropical cyclones in the Bay of Bengal using quasi-operational WRF and HWRF modeling systems: An assessment study. Meteorol. Atmos. Phys. 2020, 132, 1–17. [Google Scholar] [CrossRef]
- Chin, M.; Ginoux, P.; Kinne, S.; Torres, O.; Holben, B.N.; Duncan, B.N.; Martin, R.V.; Logan, J.A.; Higurashi, A.; Nakajima, T. Tropospheric aerosol optical thickness from the GOCART model and comparisons with satellite and Sun photometer measurements. J. Atmos. Sci. 2002, 59, 461–483. [Google Scholar] [CrossRef]
- Alam, M.M. Sensitivity study of planetary boundary layer parameterization schemes for the simulation of tropical cyclone ‘Fani’ over the Bay of Bengal using high resolution WRF-ARW model. J. Eng. Sci. 2020, 11, 1–18. [Google Scholar] [CrossRef]
- Qi, F.; Fei, J.; Ma, Z.; Chen, J.; Huang, X.; Cheng, X. Comparison of simulated tropical cyclone intensity and structures using the WRF with hydrostatic and nonhydrostatic dynamical cores. Atmosphere 2018, 9, 483. [Google Scholar] [CrossRef]
- Prakash, K.R.; Nigam, T.; Pant, V. Estimation of oceanic subsurface mixing under a severe cyclonic storm using a coupled atmosphere–ocean–wave model. Ocean Sci. 2018, 14, 259–272. [Google Scholar] [CrossRef]
- Varlas, G.; Katsafados, P.; Papadopoulos, A.; Korres, G. Implementation of a two-way coupled atmosphere-ocean wave modeling system for assessing air-sea interaction over the Mediterranean Sea. Atmos. Res. 2018, 208, 201–217. [Google Scholar] [CrossRef]
- Yang, S.; Moon, I.J.; Bae, H.J.; Kim, B.M.; Byun, D.S.; Lee, H.Y. Intense atmospheric frontogenesis by air–sea coupling processes during the passage of Typhoon Lingling captured at Ieodo Ocean Research Station. Sci. Rep. 2022, 12, 15513. [Google Scholar] [CrossRef]
- Ma, H.; Cao, X.; Ma, X.; Su, H.; Jing, Y.; Zhu, K. Improving the Wind Power Density Forecast in the Middle-and High-Latitude Regions of China by Selecting the Relatively Optimal Planetary Boundary Layer Schemes. Atmosphere 2022, 13, 2034. [Google Scholar] [CrossRef]
- Shikhovtsev, A.Y.; Kovadlo, P.G.; Lezhenin, A.A.; Korobov, O.A.; Kiselev, A.V.; Russkikh, I.V.; Kolobov, D.Y.; Shikhovtsev, M.Y. Influence of Atmospheric Flow Structure on Optical Turbulence Characteristics. Appl. Sci. 2023, 13, 1282. [Google Scholar] [CrossRef]
- Hong, S.Y.; Pan, H.L. Nonlocal boundary layer vertical diffusion in a medium-range forecast model. Mon. Weather Rev. 1996, 124, 2322–2339. [Google Scholar] [CrossRef]
- Francis, D.; Fonseca, R.; Nelli, N. Key Factors Modulating the Threat of the Arabian Sea’s Tropical Cyclones to the Gulf Countries. J. Geophys. Res. Atmos 2022, 127, e2022JD036528. [Google Scholar] [CrossRef]
- Sebastian, M.; Behera, M.R. Impact of SST on tropical cyclones in North Indian Ocean. Procedia Eng. 2015, 116, 1072–1077. [Google Scholar] [CrossRef]
- Podestá, G.P.; Brown, O.B.; Evans, R.H. The annual cycle of satellite-derived sea surface temperature in the southwestern Atlantic Ocean. J. Clim. 1991, 4, 457–467. [Google Scholar] [CrossRef]
- DeMaria, M.; Kaplan, J. Sea surface temperature and the maximum intensity of Atlantic tropical cyclones. J. Clim. 1994, 7, 1324–1334. [Google Scholar] [CrossRef]
- Emanuel, K.A. An air-sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. J. Atmos. Sci. 1986, 43, 585–604. [Google Scholar] [CrossRef]
- Yao, J.; Duan, W.; Qin, X. Which features of the SST forcing error most likely disturb the simulated intensity of tropical cyclones? Adv. Atmos. Sci. 2021, 38, 581–602. [Google Scholar] [CrossRef]
- Reid, G.C.; Gage, K.S. On the annual variation in height of the tropical tropopause. J. Atmos. Sci. 1981, 38, 1928–1938. [Google Scholar] [CrossRef]
- Schade, L.R. Tropical cyclone intensity and sea surface temperature. J. Atmos. Sci. 2000, 57, 3122–3130. [Google Scholar] [CrossRef]
- Lin, Y.; Zhao, M.; Zhang, M. Tropical cyclone rainfall area controlled by relative sea surface temperature. Nat. Commun. 2015, 6, 6591. [Google Scholar] [CrossRef] [PubMed]
- Finocchio, P.M.; Rios-Berrios, R. The intensity-and size-dependent response of tropical cyclones to increasing vertical wind shear. J. Atmos. Sci. 2021, 78, 3673–3690. [Google Scholar] [CrossRef]
- Chen, Q.; Fang, J. Effects of vertical wind shear on intensity and structure of tropical cyclone. J. Trop. Meteorol. 2012, 18, 172. [Google Scholar]
- Zehr, R.M. Tropical Cyclogenesis in the Western North Pacific; NOAA Technical Report NESDIS, 61; NOAA: Washington, DC, USA, 1992. Available online: https://repository.library.noaa.gov/view/noaa/13116 (accessed on 12 June 2023).
- Elsberry, R.L.; Jeffries, R.A. Vertical wind shear influences on tropical cyclone formation and intensification during TCM-92 and TCM-93. Mon. Weather Rev. 1996, 124, 1374–1387. [Google Scholar] [CrossRef]
- Hart, R.E. A cyclone phase space derived from thermal wind and thermal asymmetry. Mon. Weather Rev. 2003, 131, 585–616. [Google Scholar] [CrossRef]
- Pang, H.; Fu, G. Case study of potential vorticity tower in three explosive cyclones over Eastern Asia. J. Atmos. Sci. 2017, 74, 1445–1454. [Google Scholar] [CrossRef]
- Edwards, J.P. Barotropic Instability in the Inner Core of Tropical Cyclones. Doctoral Dissertation, Colorado State University, Fort Collins, CO, USA, 1994. [Google Scholar]
- Xie, X.; Wei, Z.; Wang, B.; Chen, Z.; Oltmanns, M.; Song, X. Extreme air–sea turbulent fluxes during tropical cyclone Barijat observed by a newly designed drifting buoy. Fundam. Res. 2022, in press. [CrossRef]
- Chen, B.F.; Lee, C.S.; Elsberry, R.L. On tropical cyclone size and intensity changes associated with two types of long-lasting rainbands in monsoonal environments. Geophys. Res. Lett. 2014, 41, 2575–2581. [Google Scholar] [CrossRef]
- Farr, M.B.; Gasch, J.V.; Travis, E.J.; Weaver, S.M.; Yavuz, V.; Semenova, I.G.; Panasiuk, O.; Lupo, A.R. An Analysis of the Synoptic Dynamic and Hydrologic Character of the Black Sea Cyclone Falchion. Meteorology 2022, 1, 495–512. [Google Scholar] [CrossRef]
- Yu, E.; Bai, R.; Chen, X.; Shao, L. Impact of physical parameterizations on wind simulation with WRF V3.9.1.1 under stable conditions at planetary boundary layer gray-zone resolution: A case study over the coastal regions of North China. Geosci. Model Dev. 2022, 15, 8111–8134. [Google Scholar] [CrossRef]
- Xiong, J.; Yu, F.; Fu, C.; Dong, J.; Liu, Q. Evaluation and improvement of the ERA5 wind field in typhoon storm surge simulations. Appl. Ocean Res. 2022, 118, 103000. [Google Scholar] [CrossRef]
- Fairall, C.W.; Bradley, E.F.; Hare, J.E.; Grachev, A.A.; Edson, J.B. Bulk parameterization of air–sea fluxes: Updates and verification for the COARE algorithm. J. Clim. 2003, 16, 571–591. [Google Scholar] [CrossRef]
- Yu, L.; Jin, X.; Weller, R. Multidecade Global Flux Datasets from the Objectively Analyzed Air-sea Fluxes (OAFlux) Project: Latent and Sensible Heat Fluxes, Ocean Evaporation, and Related Surface Meteorological Variables. OAFlux Project Tech. Rep. 2008. Available online: https://www.researchgate.net/publication/237440650 (accessed on 23 May 2023).
- Wang, C.; Weisberg, R.H.; Yang, H. Effects of the wind speed–evaporation–SST feedback on the El Niño–Southern Oscillation. J. Atmos. Sci. 1999, 56, 1391–1403. [Google Scholar] [CrossRef]
- Estoque, M.A. A theoretical study of tropical wave disturbances. J. Meteorol. Soc. Jpn. 1974, 52, 106–119. [Google Scholar] [CrossRef]
- Tsujino, S.; Kuo, H.C. Potential vorticity mixing and rapid intensification in the numerically simulated Supertyphoon Haiyan (2013). J. Atmos. Sci. 2020, 77, 2067–2090. [Google Scholar] [CrossRef]
- Glennie, K.W. Geology of the Oman mountains. Verh. Koninklink Ned. Geol. Mijnbouwkd. Genootchachp 1974, 1, 423. [Google Scholar] [CrossRef]
- Kwarteng, A.Y.; Dorvlo, A.S.; Vijaya Kumar, G.T. Analysis of a 27-year rainfall data (1977–2003) in the Sultanate of Oman. Int. J. Clim. 2009, 29, 605–617. [Google Scholar] [CrossRef]
- Al-Hatrushi, S.M.; Kwarteng, A.; Sana, A.; Al-Buloushi, A.S.; MacLachlan, A.; Hamed, K.H. Coastal Erosion in Al Batinah, Sultanate of Oman; Sultan Qaboos University: Muscat, Oman, 2014. [Google Scholar]
- Goldenberg, S.B.; Landsea, C.W.; Mestas-Nuñez, A.M.; Gray, W.M. The recent increase in Atlantic hurricane activity: Causes and implications. Science 2001, 293, 474–479. [Google Scholar] [CrossRef]
- Varlas, G.; Papadopoulos, A.; Katsafados, P. An analysis of the synoptic and dynamical characteristics of hurricane Sandy (2012). Meteorol. Atmos. Phys. 2019, 131, 443–453. [Google Scholar] [CrossRef]
- Tao, D.; Zhang, F. Effect of environmental shear, sea-surface temperature, and ambient moisture on the formation and predictability of tropical cyclones: An ensemble-mean perspective. J. Adv. Model. Earth Syst. 2014, 6, 384–404. [Google Scholar] [CrossRef]
- Frank, W.M.; Young, G.S. The interannual variability of tropical cyclones. Mon. Weather Rev. 2007, 135, 3587–3598. [Google Scholar] [CrossRef]
- Dibajnia, M.; Soltanpour, M.; Nairn, R.; Allahyar, M. Cyclone Gonu: The most intense tropical cyclone on record in the Arabian Sea. In Indian Ocean Tropical Cyclones and Climate Change, 1st ed.; Charabi, Y., Ed.; Springer: Dordrecht, The Netherlands, 2010; pp. 149–157. [Google Scholar] [CrossRef]
- Terry, J.P.; Gienko, G. Quantitative observations on tropical cyclone tracks in the Arabian Sea. Theor. Appl. Climatol. 2019, 135, 1413–1421. [Google Scholar] [CrossRef]
- Ramaswamy, V. Influence of Tropical Storms in the Northern Indian Ocean on Dust Entrainment and Long-Range Transport. In Typhoon Impact and Crisis Management, 1st ed.; Tang, D., Sui, G., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 149–174. [Google Scholar] [CrossRef]
Parameter | Configuration |
---|---|
Dynamics | Non-hydrostatic |
Model Domain | 5° N–42° N, 30° E–67° E |
Horizontal Grid Distance | 9 km × 9 km |
Horizontal Grid System | Arakawa C |
Integration Time Step | 24 s |
Vertical coordinates | Terrain—following hydrostatic pressure vertical coordinate with 37 vertical levels |
Time integration schemes | 3rd order Runge—Kutta Scheme |
Spatial differencing scheme | 6th order center differencing |
Microphysics | WSM 3—class scheme |
Radiation schemes | RRTM for long wave/Dudhia for shortwave |
Surface layer parameterization | Monin-Obukhov Scheme |
Planetary boundary layer physics | Yonsei University (YSU) Scheme |
Land Surface Model | Unified Noah |
Cumulus Scheme | Kain—Fritsch |
(Model—Observations) | Temperature at 2 m (226 Valid obs.) | Wind Speed at 10 m (155 Valid obs.) | Sea Level Pressure (202 Valid obs.) | |||
---|---|---|---|---|---|---|
SUAFS | ERA5 | SUAFS | ERA5 | SUAFS | ERA5 | |
Bias | 0.4 | 0.2 | 1.9 | 1.4 | 0.2 | 2.5 |
RMSE | 2.3 | 2.2 | 3.4 | 3.1 | 2.9 | 3.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Katsafados, P.; Saviolakis, P.-M.; Varlas, G.; Ben-Romdhane, H.; Pavlopoulos, K.; Spyrou, C.; Farrah, S. Investigation of the Synoptic and Dynamical Characteristics of Cyclone Shaheen (2021) and Its Influence on the Omani Coastal Region. Atmosphere 2024, 15, 222. https://doi.org/10.3390/atmos15020222
Katsafados P, Saviolakis P-M, Varlas G, Ben-Romdhane H, Pavlopoulos K, Spyrou C, Farrah S. Investigation of the Synoptic and Dynamical Characteristics of Cyclone Shaheen (2021) and Its Influence on the Omani Coastal Region. Atmosphere. 2024; 15(2):222. https://doi.org/10.3390/atmos15020222
Chicago/Turabian StyleKatsafados, Petros, Pantelis-Manolis Saviolakis, George Varlas, Haifa Ben-Romdhane, Kosmas Pavlopoulos, Christos Spyrou, and Sufian Farrah. 2024. "Investigation of the Synoptic and Dynamical Characteristics of Cyclone Shaheen (2021) and Its Influence on the Omani Coastal Region" Atmosphere 15, no. 2: 222. https://doi.org/10.3390/atmos15020222