Evaluation of the Indoor Air Quality in Governmental Oversight Supermarkets (Co-Ops) in Kuwait
Abstract
:1. Introduction
1.1. Co-Ops Supermarkets
1.2. Indoor Air Quality (IAQ) Parameters
1.3. Perceived Air Quality (PAQ)
1.4. Indoor Air Quality Index (AQI)
1.5. Study Objectives
2. Materials and Methods
2.1. Co-Operatives Locations and Description
2.2. On-Site Measurements
2.3. Indoor Air Quality Indicators
2.4. Indoor Air Quality Index (AQI)
Ii = | Index value for pollutant i |
Xi = | Concentration of pollutant i |
Xi,j = | Lower Breakpoint value of the concentration |
Xi,j+1 = | Higher Breakpoint value of the concentration |
Ii,j+1 = | Index Breakpoint value of Xi,j+1 |
Ii,j = | Index Breakpoint value of Xi,j |
2.5. Perceived Air Quality (PAQ)
2.6. Data Analysis and Correlations
2.7. Indoor/Outdoor Regression
3. Results and Discussion
3.1. On-Site Measurements of Indoor Air Quality Indicators
3.2. Indoor Air Quality Index (AQI)
3.3. Perceived Air Quality (PAQ)
3.4. Correlations
3.5. Indoor/Outdoor Regression
4. Conclusions
Author Contributions
Conflicts of Interest
References
- Cheng, L.; Li, B.; Cheng, Q.; Baldwin, A.N.; Shang, Y. Investigations of indoor air quality of large department store buildings in China based on field measurements. Build. Environ. 2017, 118, 128–143. [Google Scholar] [CrossRef]
- De Robles, D.; Kramer, S.W. Improving Indoor Air Quality through the Use of Ultraviolet Technology in Commercial Buildings. Procedia Eng. 2017, 196, 888–894. [Google Scholar] [CrossRef]
- Guo, P.; Yokoyama, K.; Piao, F.; Sakai, K.; Khalequzzaman, M.; Kamijima, M.; Nakajima, T.; Kitamura, F. Sick building syndrome by indoor air pollution in Dalian, China. Int. J. Environ. Res. Public Health 2013, 10, 1489–1504. [Google Scholar] [CrossRef] [PubMed]
- Kishi, R.; Ketema, R.M.; Bamai, Y.A.; Araki, A.; Kawai, T.; Tsuboi, T.; Saito, I.; Yoshioka, E.; Saito, T. Indoor environmental pollutants and their association with sick house syndrome among adults and children in elementary school. Build. Environ. 2018, 136, 293–301. [Google Scholar] [CrossRef]
- Takigawa, T.; Saijo, Y.; Morimoto, K.; Nakayama, K.; Shibata, E.; Tanaka, M.; Yoshimura, T.; Chikara, H.; Kishi, R. A longitudinal study of aldehydes and volatile organic compounds associated with subjective symptoms related to sick building syndrome in new dwellings in Japan. Sci. Total Environ. 2012, 417–418, 61–67. [Google Scholar] [CrossRef] [PubMed]
- Guzman, J.A. Carbon monoxide Poisoning. Crit. Care Clin. 2012, 28, 537–548. [Google Scholar] [CrossRef] [PubMed]
- Raub, J.A.; Mathieu-Nolf, M.; Hampson, N.B.; Thom, S.R. Carbon monoxide poisoning—A public health perspective. Toxicology 2000, 145, 1–14. [Google Scholar] [CrossRef]
- Hess, D.R. Inhaled carbon monoxide: From toxin to therapy. Respir. Care 2017, 62, 1333–1342. [Google Scholar] [CrossRef] [PubMed]
- Billionnet, C.; Gay, E.; Kirchner, S.; Leynaert, B.; Annesi-Maesano, I. Quantitative assessments of indoor air pollution and respiratory health in a population-based sample of French dwellings. Environ. Res. 2011, 111, 425–434. [Google Scholar] [CrossRef]
- Agency for Toxic Substances and Disease Registry. Toxicological Profile of Hydrogen Sulfide. Available online: https://www.atsdr.cdc.gov/ToxProfiles/tp.asp?id=389&tid=67 (accessed on 19 October 2019).
- Agency for Toxic Substances and Disease Registry. Toxicological Profile of Nitrogen Oxides. Available online: https://www.atsdr.cdc.gov/toxfaqs/tf.asp?id=396&tid=69 (accessed on 19 October 2019).
- Fanger, P.O. Introduction of the olf and the decipol units to quantify air pollution perceived by humans indoors and outdoors. Energy Build. 1988, 12, 1–6. [Google Scholar] [CrossRef]
- Sakellaris, I.A.; Saraga, D.E.; Mandin, C.; Roda, C.; Fossati, S.; de Kluizenaar, Y.; Carrer, P.; Dimitroulopoulou, S.; Mihucz, V.G.; Szigeti, T.; et al. Perceived Indoor Environment and Occupants’ Comfort in European ‘Modern’ Office Buildings: The OFFICAIR Study. Int. J. Environ. Res. Public Health 2016, 13, 444. [Google Scholar] [CrossRef] [PubMed]
- EPA-US. Guidelines for the Reporting of Daily Air Quality—The Air Quality Index (AQI); EPA-US: Sacramento, CA, USA, 2006.
- Saad, S.M.; Shakaff, A.Y.M.; Saad, A.R.M.; Yusof, A.M.; Andrew, A.M.; Zakaria, A.; Adom, A.H. Development of indoor environmental index: Air quality index and thermal comfort index. AIP Conf. Proc. 2017, 1808, 020043. [Google Scholar]
- Wang, H. Developing an indoor air quality index system based on the health risk assessment. In Proceedings of the 11th International Conference on Air Quality and Climate, Barcelona, Spain, 12–16 March 2018; pp. 17–22. [Google Scholar]
- Aeroqual. What’s Best for Measuring Ozone, Electrochemical Sensors or HMOS? 2016. Available online: https://www.aeroqual.com/electrochemical-sensors-hmos (accessed on 20 October 2019).
- Minet, L.; Gehr, R.; Hatzopoulou, M. Capturing the sensitivity of land-use regression models to short-term mobile monitoring campaigns using air pollution micro-sensors. Environ. Pollut. 2017, 230, 280–290. [Google Scholar] [CrossRef] [PubMed]
- Spinelle, L.; Gerboles, M.; Kok, G.; Persijn, S.; Sauerwald, T. Review of portable and low-cost sensors for the ambient air monitoring of benzene and other volatile organic compounds. Sensors 2017, 17, 1520. [Google Scholar] [CrossRef]
- Schütze, A.; Baur, T.; Leidinger, M.; Reimringer, W.; Jung, R.; Conrad, T.; Sauerwald, T. Highly Sensitive and Selective VOC Sensor Systems Based on Semiconductor Gas Sensors: How to? Environments 2017, 4, 20. [Google Scholar] [CrossRef]
- Peterson, P.J.D.; Aujla, A.; Grant, K.H.; Brundle, A.G.; Thompson, M.R.; Vande Hey, J.; Leigh, R.J. Practical use of metal oxide semiconductor gas sensors for measuring nitrogen dioxide and ozone in urban environments. Sensors 2017, 17, 1653. [Google Scholar] [CrossRef]
- Szulczyński, B.; Gębicki, J. Currently Commercially Available Chemical Sensors Employed for Detection of Volatile Organic Compounds in Outdoor and Indoor Air. Environments 2017, 4, 21. [Google Scholar] [CrossRef]
- Cheung, P.K.; Jim, C.Y. Impacts of air conditioning on air quality in tiny homes in Hong Kong. Sci. Total Environ. 2019, 684, 434–444. [Google Scholar] [CrossRef]
- Karmakar, D.; Ghosh, T.; Padhy, P.K. Effects of air pollution on carbon sequestration potential in two tropical forests of West Bengal, India. Ecol. Indic. 2019, 98, 377–388. [Google Scholar] [CrossRef]
- Miskell, G.; Alberti, K.; Feenstra, B.; Henshaw, G.S.; Papapostolou, V.; Patel, H.; Polidori, A.; Salmond, J.A.; Weissert, L.F.; Williams, D.E. Reliable data from low cost ozone sensors in a hierarchical network. Atmos. Environ. 2019, 214, 116870. [Google Scholar] [CrossRef]
- Huang, J.; Song, Y.; Chu, M.; Dong, W.; Miller, M.R.; Loh, M.; Xu, J.; Yang, D.; Chi, R.; Yang, X.; et al. Cardiorespiratory responses to low-level ozone exposure: The inDoor Ozone Study in childrEn (DOSE). Environ. Int. 2019, 131, 105021. [Google Scholar] [CrossRef] [PubMed]
- Masiol, M.; Squizzato, S.; Chalupa, D.; Rich, D.Q.; Hopke, P.K. Spatial-temporal variations of summertime ozone concentrations across a metropolitan area using a network of low-cost monitors to develop 24 hourly land-use regression models. Sci. Total Environ. 2019, 654, 1167–1178. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.; Gillespie, J.; Schuder, M.D.; Duberstein, W.; Beverland, I.J.; Heal, M.R. Evaluation and calibration of Aeroqual series 500 portable gas sensors for accurate measurement of ambient ozone and nitrogen dioxide. Atmos. Environ. 2015, 100, 111–116. [Google Scholar] [CrossRef]
- Parkinson, T.; Parkinson, A.; de Dear, R. Continuous IEQ monitoring system: Performance specifications and thermal comfort classification. Build. Environ. 2019, 149, 241–252. [Google Scholar] [CrossRef]
- Al-Hemoud, A.; Al-Awadi, L.; Al-Khayat, A.; Behbehani, W. Streamlining IAQ guidelines and investigating the effect of door opening/closing on concentrations of VOCs, formaldehyde, and NO2 in office buildings. Build. Environ. 2018, 137, 127–137. [Google Scholar] [CrossRef]
- ASHRAE. Standard 62.1-Ventilation for Acceptable Indoor Air Quality; ASHRAE: New York, NY, USA, 2016. [Google Scholar]
- EPA-Kuwait. Rules and Regulations—Standards; EPA-Kuwait: Kuwait City, Kuwait, 2014.
- Shang, Y.; Li, B.; Baldwin, A.N.; Ding, Y.; Yu, W.; Cheng, L. Investigation of indoor air quality in shopping malls during summer in Western China using subjective survey and field measurement. Build. Environ. 2016, 108, 1–11. [Google Scholar] [CrossRef]
- Reuben, U.; Ismail, A.F.; Ahmad, A.L.; Maina, H.M.; Daud, A. Indoor Air Quality and Sick Building Syndrome Among Nigerian Laboratory University Workers. J. Phys. Sci. 2019, 30, 179–195. [Google Scholar] [CrossRef]
- Zorpas, A.A.; Skouroupatis, A. Indoor air quality evaluation of two museums in a subtropical climate conditions. Sustain. Cities Soc. 2016, 20, 52–60. [Google Scholar] [CrossRef]
- Klinmalee, A.; Srimongkol, K.; Oanh, N.T.K. Indoor air pollution levels in public buildings in Thailand and exposure assessment. Environ. Monit. Assess. 2009, 156, 581–594. [Google Scholar] [CrossRef]
- Brauer, M.; Lee, K.; Spengler, J.D.; Salonen, R.O.; Pennanen, A.; Braathen, O.A.; Mihalikova, E.; Miskovic, P.; Nozaki, A.; Tsuzuki, T.; et al. Nitrogen Dioxide in Indoor Ice Skating Facilities: An International Survey. J. Air Waste Manag. Assoc. 1997, 47, 1095–1102. [Google Scholar] [CrossRef]
- Tang, J.H.; Chan, L.Y.; Chang, C.C.; Liu, S.; Li, Y.S. Characteristics and sources of non-methane hydrocarbons in background atmospheres of eastern, southwestern, and southern China. J. Geophys. Res. 2009, 114. [Google Scholar] [CrossRef] [Green Version]
- Cashman, J. International Chemical Safety Cards. Emergency Response Handbook for Chemical and Biological Agents and Weapons, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2008; Available online: http://www.ilo.org/dyn/icsc/showcard.listCards3 (accessed on 20 September 2019).
Residential Area | Population 1 | Female | Male |
---|---|---|---|
1, Adailia | 21636 | 11292 | 10344 |
2, Qurtoba | 33691 | 17748 | 15943 |
3, Khaldia | 19193 | 9928 | 9265 |
Co-Op 1 | Co-Op 2 | Co-Op 3 | |
---|---|---|---|
Number of shareholders | 7811 | 6000 | 6868 |
Building Establishment | 1980 | 1992 | 2008 |
Type of ventilation | Mechanical Natural | Mechanical | Mechanical |
Area, m2 | 2850 | 2869 | 3500 |
Floor Level | 2 (Ground and Upper floor) | 2 (Ground and Upper floor) | 3 (Basement, Ground, and Upper floor) |
Distance from the main door to the parking lot (m) | 2.5 | 20.5 | 21.7 |
Floor levels transportation | Elevator Escalator | Elevator Escalator | Elevator Escalator |
Parking Bays | 2 | 3 | 2 |
Sensor | Type | Range (ppm) | Minimum Detection Limit (ppm) | Accuracy of Factory Calibration |
---|---|---|---|---|
CO2 | NDIR | 0–2000 | 10 | < ± 10 ppm + 5% |
CO | GSE | 0–100 | 0.2 | < ± 10% |
NO2 | GSE | 0–1 | 0.005 | < ± 0.02 ppm |
H2S | GSE | 0–10 | 0.04 | < ± 0.05 ppm |
TVOC | PID | 0–20 | 0.01 | < ± 0.02 ppm + 10% |
NMHC | GSS | 0–25 | 0.1 | < ± 0.1 ppm + 10% |
Pollutant | Standard (ppm) | Averaging Period | Organization | Ref. |
---|---|---|---|---|
CO2 | 1000 | - | ASHRAE | [31] |
1000 | - | Norway IAQ Regulations | ||
1000 | - | Portugal IAQ Regulations | ||
CO | 8.732 6.110 | 8 h Daily Max. | WHO | |
8.732 | 8 h | EPA-KW 1 | [32] | |
2.620 | - | Lithuania IAQ Regulations | ||
5.240 | 30 min | Romania IAQ Regulations | ||
NO2 | 0.053 0.250 | 1 y 24 h | ASHRAE | [31] |
0.106 0.021 | 1 h 1 y | WHO | ||
0.106 | 1 h | EPA-KW | ||
0.053 | 1 h | Norway IAQ Regulations | ||
H2S | 0.030 | 1 h | CAAQS | |
TVOCs | 0.166 (As Acetaldehyde) | 8 h | ASHRAE | [31] |
0.189 (As Benzene) | 1 h | ASHRAE | [31] | |
NMHC | - | - | - |
Level of Health Concern | AQI | CO2 (ppm) | CO (ppm) | NO2 (ppm) | VOC (ppm) |
---|---|---|---|---|---|
Good | 100–76 | 340–600 | 0.0–1.7 | 0.000–0.021 | 0.000–0.087 |
Moderate | 75–51 | 601–1000 | 1.8–8.7 | 0.022–0.080 | 0.088–0.261 |
Unhealthy | 50–26 | 1001–1500 | 8.8–10 | 0.090–0.170 | 0.262–0.430 |
Hazardous | 25–0 | 1501–5000 | 10.1–50 | 0.180–5.000 | 0.440–3.000 |
Co-Op 1 | Co-Op 2 | Co-Op 3 | Total | |
---|---|---|---|---|
Number of Respondents | 924 | 746 | 805 | 2475 |
Decipol | Air Quality |
---|---|
10 | Sick Building |
1 | Healthy Building |
0.1 | Town Outdoor Air |
0.01 | Mountainous Area Outdoor Air |
Co-Op 1 | No. | Recorded Scores | Number of People | Percentage % | ACC 1 |
---|---|---|---|---|---|
1 | 1 | 63 | 6.82 | 0.068 | |
2 | 0.9 | 37 | 4.00 | 0.036 | |
3 | 0.8 | 85 | 9.20 | 0.074 | |
4 | 0.7 | 61 | 6.60 | 0.046 | |
5 | 0.6 | 42 | 4.55 | 0.027 | |
6 | 0.5 | 60 | 6.49 | 0.032 | |
7 | 0.4 | 38 | 4.11 | 0.016 | |
8 | 0.3 | 37 | 4.00 | 0.012 | |
9 | 0.2 | 38 | 4.11 | 0.008 | |
10 | 0.1 | 59 | 6.39 | 0.006 | |
11 | 0 | 212 | 22.94 | 0.000 | |
12 | −0.1 | 39 | 4.22 | −0.004 | |
13 | −0.2 | 31 | 3.35 | −0.007 | |
14 | −0.3 | 43 | 4.65 | −0.014 | |
15 | −0.4 | 21 | 2.27 | −0.009 | |
16 | −0.5 | 17 | 1.84 | −0.009 | |
17 | −0.6 | 11 | 1.19 | −0.007 | |
18 | −0.7 | 5 | 0.54 | −0.004 | |
19 | −0.8 | 6 | 0.65 | −0.005 | |
20 | −0.9 | 6 | 0.65 | −0.006 | |
21 | −1 | 13 | 1.41 | −0.014 | |
Total | - | - | 924 | 100.00% | 0.25 |
PAQ | CO2 | CO | H2S | TVOCs | NO2 | NMHC | |
---|---|---|---|---|---|---|---|
Co-Op 1 | 1.25 | 1145 | 2.217 | 0.017 | 0.324 | 0.080 | 0.233 |
Co-Op 2 | 1.00 | 1119 | 0.095 | 0.007 | 0.369 | 0.059 | 0.246 |
Co-Op 3 | 0.75 | 880 | 0.550 | 0.005 | 0.326 | 0.061 | 0.204 |
CO2 | CO | H2S | TVOC | ||
---|---|---|---|---|---|
Mean ± σ | |||||
CO2 | 1655.5 ± 16.4 | - | |||
CO | 3.900 ± 0.520 | 0.938 | - | - | - |
H2S | 0.055 ± 0.022 | 0.907 | 0.975 | - | - |
TVOC | 0.340 ± 0.016 | 0.586 | 0.703 | 0.749 | - |
NO2 | 0.081 ± 0.022 | −0.342 | −0.387 | −0.453 | −0.545 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almutairi, A.; Alsanad, A.; Alhelailah, H. Evaluation of the Indoor Air Quality in Governmental Oversight Supermarkets (Co-Ops) in Kuwait. Appl. Sci. 2019, 9, 4950. https://doi.org/10.3390/app9224950
Almutairi A, Alsanad A, Alhelailah H. Evaluation of the Indoor Air Quality in Governmental Oversight Supermarkets (Co-Ops) in Kuwait. Applied Sciences. 2019; 9(22):4950. https://doi.org/10.3390/app9224950
Chicago/Turabian StyleAlmutairi, Azel, Abdullah Alsanad, and Heba Alhelailah. 2019. "Evaluation of the Indoor Air Quality in Governmental Oversight Supermarkets (Co-Ops) in Kuwait" Applied Sciences 9, no. 22: 4950. https://doi.org/10.3390/app9224950